-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval.py
279 lines (213 loc) · 9.63 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from __future__ import print_function
import tensorflow as tf
# from deployment import model_deploy
# from net import model_save as model
import os
slim = tf.contrib.slim
import time
from net import model
from dataset import read_utils
from dataset import vgg_preprocessing
from tensorflow.python import debug as tf_debug
from PIL import Image
import numpy as np
from dataset.utils import char_list, HEIGHT, WIDTH
flags = tf.app.flags
flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]")
flags.DEFINE_integer("sample_size", 100, "The size of samples [64]")
flags.DEFINE_string("data_dir", "data/", "Evaluation dataset directory.")
flags.DEFINE_string("dataset", "coco", "Evaluation dataset.")
flags.DEFINE_string("gt_file", "data/file.txt", "Ground truth file.")
flags.DEFINE_string("logdir", "logs", "Directory to save log")
flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("ckpt_file", "model.ckpt", "Checkpoint file")
flags.DEFINE_string("mode", "new", "Decode mode")
flags.DEFINE_boolean("load", False, "Load existing model")
flags.DEFINE_boolean("case_insensitive", False, "Lower case")
flags.DEFINE_boolean("val_save", False, "Save images and videos when validating")
flags.DEFINE_boolean("debug", False, "Whether to turn on debug mode")
flags.DEFINE_boolean("verbose", False, "Whether to store verbose logs")
FLAGS = flags.FLAGS
# if not os.path.exists(FLAGS.checkpoint_dir):
# os.makedirs(FLAGS.checkpoint_dir)
# if not os.path.exists(FLAGS.sample_dir):
# os.makedirs(FLAGS.sample_dir)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
ITEMS_TO_DESCRIPTIONS = {
'image': 'A color image of varying height and width.',
'length': 'label length',
'label': 'A list of labels, one per each object.',
}
_R_MEAN = 123.68 / 255
_G_MEAN = 116.78 / 255
_B_MEAN = 103.94 / 255
def code2str(code_list):
output = ''
for c in code_list:
if FLAGS.mode == 'old':
output += char_list[c]
elif FLAGS.mode == 'new':
if c+32 >= 97:
output += chr(c+32+26)
else:
output += chr(c+32)
return output
def str2code(string):
output = []
for c in string:
if FLAGS.mode == 'old':
output.append(char_list.find(c))
elif FLAGS.mode == 'new':
temp = ord(c)
if temp >= 97 and temp <= 122:
temp -= 32
if temp > 122:
temp -= 26
output.append(temp-32)
return output
def mean_image_subtraction(image, means):
num_channels = image.shape[-1]
for i in range(num_channels):
image[:, :, i] -= means[i]
return image
# =========================================================================== #
# Main
# =========================================================================== #
def main(_):
checkpoint_dir = FLAGS.checkpoint_dir
with tf.Graph().as_default():
# deploy_config = model_deploy.DeploymentConfig()
# Create global_step.
val_images = tf.placeholder(tf.float32, shape=[1, HEIGHT, WIDTH, 3], name='input_img')
val_labels = tf.sparse_placeholder(tf.int32, name='input_labels')
val_width = tf.placeholder(tf.int32, shape=[1], name='input_width')
#indices = tf.placeholder(tf.int32, [None, 2])
#values = tf.placeholder(tf.int32, [None])
#shape = tf.placeholder(tf.int32, [2])
#val_labels = tf.SparseTensor(indices, values, shape)
# Build Model
crnn = model.CRNNNet()
with tf.variable_scope('crnn'):
val_logits, val_seq_len = crnn.net(val_images, val_width, is_training=False, kp=1.0)
val_loss = crnn.losses(val_labels, val_logits, val_seq_len)
# TODO: BK-tree NN search
decoded, log_prob = tf.nn.ctc_beam_search_decoder(tf.transpose(val_logits, perm=[1, 0, 2]), val_seq_len, merge_repeated=False)
acc = tf.reduce_mean(tf.edit_distance(tf.cast(decoded[0], tf.int32), val_labels, normalize=False))
acc_norm = tf.reduce_mean(tf.edit_distance(tf.cast(decoded[0], tf.int32), val_labels))
# Start Training
with tf.Session(config=config) as sess:
save = tf.train.Saver(max_to_keep=50)
assert FLAGS.load
if not FLAGS.load:
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.run(init_op) # Start input enqueue threads.
else:
# ckpt_file = 'model.ckpt-' + FLAGS.ckpt_step
ckpt_path = os.path.join(FLAGS.checkpoint_dir, FLAGS.ckpt_file)
save.restore(sess, ckpt_path)
print("Done loading checkpoint")
# sess.run(tf.local_variables_initializer())
with open(FLAGS.gt_file, 'r') as f:
val_loss_s, val_acc_s, val_acc_norm_s = 0, 0, 0
counter = 0
hit = 0
for line in f:
# print(line)
if FLAGS.dataset == 'ch4':
line = line.replace('\xef\xbb\xbf','')
line = line.replace('\r\n','')
# parse each line
img_file = line.split(', ')[0]
img_label = line.split(', ')[1][1:-1]
print(img_file, img_label)
if FLAGS.dataset == 'coco':
line = line.replace('\r\n','')
line = line.replace('\n','')
img_file = line.split(',')[0]+'.jpg'
if len(line) < 10:
continue
start = line.find(',')
img_label = line[start+1:]
print(img_file, img_label)
# labels.append(label)
# print(img_file, label)
# imgLists.append(os.path.join(data_prefix, img_file))
if FLAGS.dataset == 'IC13':
line = line.replace('\xef\xbb\xbf','')
line = line.replace('\r\n','')
# parse each line
img_file = line.split(', ')[0]
img_label = line.split(', ')[1][1:-1]
# print(img_file, img_label)
img = Image.open(os.path.join(FLAGS.data_dir, img_file))
# w, h = img.size
# # print(w, h)
# ratio = 32 / float(h)
# data = data.resize([int(ratio*w), 32])
# # print(data.size)
# container = Image.new('RGB', (32, 100))
# container.paste(img)
# img = container
w, h = img.size
if w < h:
img = img.rotate(-90, expand=True)
w, h = img.size
# print(w, h)
ratio = HEIGHT / float(h)
if int(ratio*w) > WIDTH:
img = img.resize([WIDTH, HEIGHT])
actual_width = [WIDTH]
else:
img = img.resize([int(ratio*w), HEIGHT])
actual_width = [int(ratio*w)]
# print(data.size)
container = Image.new('RGB', (WIDTH, HEIGHT))
container.paste(img)
img = container
img = np.asarray(img, np.float32)
# img = img * (1. / 255) - 0.5
img /= 255.
img = mean_image_subtraction(
img,
[_R_MEAN, _G_MEAN, _B_MEAN])
img = np.expand_dims(img, axis=0)
str_label = img_label
if FLAGS.case_insensitive:
str_label = str_label.lower()
img_label = str2code(img_label)
if -1 in img_label:
continue
print(img_file, str_label)
indices = [(0, i) for i in range(len(img_label))]
values = [c for c in img_label]
shape = [1, len(img_label)]
t1 = time.time()
output_label, te_acc, te_acc_norm = sess.run([decoded, acc, acc_norm], feed_dict={
val_images: img,
val_labels: (indices, values, shape),
val_width: actual_width
})
t2 = time.time()
print(t2 - t1)
val_loss_s += 0
val_acc_s += te_acc
val_acc_norm_s += te_acc_norm
counter += 1
output_str = code2str(output_label[0].values)
print(img_file, output_str)
print(te_acc)
if FLAGS.case_insensitive:
output_str = output_str.lower()
if output_str == str_label:
hit += 1
print(hit)
val_loss_s /= counter
val_acc_s /= counter
val_acc_norm_s /= counter
pred_acc = hit / float(counter)
print(hit, counter)
print('loss %.3f edit dist %.3f %.3f acc %.3f' % (val_loss_s, val_acc_s, val_acc_norm_s, pred_acc))
if __name__ == '__main__':
tf.app.run()