-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpcc.py
214 lines (133 loc) · 5.84 KB
/
pcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import time
import numpy as np
class ParticleCompetitionAndCooperation():
def __init__(self, n_neighbors=1, pgrd=0.5, delta_v=0.35, max_iter=1000, kernel='knn'):
self.n_neighbors = n_neighbors
self.pgrd = pgrd
self.delta_v = delta_v
self.max_iter = max_iter
self.accuracy_score = 0
self.storage = {}
self.graph = {}
self.c = 0
self.labels = []
self.data = None
self.unique_labels = []
self.spent = 0
def fit(self, data, labels):
start = time.time()
self.data = data
self.labels = labels
self.unique_labels = np.unique(self.labels)
self.unique_labels = self.unique_labels[self.unique_labels != -1]
self.c = len(self.unique_labels)
self.class_map = self.__genClassMap()
self.particles = self.__genParticles()
self.nodes = self.__genNodes()
self.dist_table = self.__genDistTable()
self.graph = self.__genGraph()
end = time.time()
print('finished with time: '+"{0:.5f}".format(end-start)+'s')
def predict(self, data):
start = time.time()
self.__labelPropagation()
end = time.time()
print('finished with time: '+"{0:.5f}".format(self.spent)+'s')
print('finished with time: '+"{0:.5f}".format(end-start)+'s')
return list(self.nodes[:,0])
def __labelPropagation(self):
for it in range(0,self.max_iter):
for p_i in range(0,len(self.particles)):
if(np.random.random() < self.pgrd):
next_node = self.__greedyWalk(p_i, self.graph[self.particles[p_i,0]])
else:
next_node = self.__randomWalk(self.graph[self.particles[p_i,0]])
self.__update(next_node, p_i)
for n_i in range(0,len(self.nodes)):
if(self.nodes[n_i,0] == -1):
self.nodes[n_i,0] = self.unique_labels[np.argmax(self.nodes[n_i,1:])]
def __update(self, n_i, p_i):
current_domain = []
new_domain = []
if(self.labels[n_i] == -1):
sub = (self.delta_v*self.particles[p_i,2])/(len(self.labels)-1)
for l in self.unique_labels:
if(self.particles[p_i,3] != l):
current_domain.append(self.nodes[n_i,self.class_map[l]])
self.nodes[n_i,self.class_map[l]] = max([0,self.nodes[n_i,self.class_map[l]]-sub])
new_domain.append(self.nodes[n_i,self.class_map[l]])
difference = []
for i in range(0,len(current_domain)):
difference.append(current_domain[i]-new_domain[i])
self.nodes[n_i,self.class_map[self.particles[p_i,3]]] += sum(difference)
else:
new_domain.append(0)
self.particles[p_i,2] = self.nodes[n_i,self.class_map[self.particles[p_i,3]]]
current_node = self.particles[p_i,0]
if(self.dist_table[n_i,p_i] > (self.dist_table[current_node,p_i]+1)):
self.dist_table[n_i,p_i] = self.dist_table[current_node,p_i]+1
if(self.nodes[n_i,self.class_map[self.particles[p_i,3]]] > max(new_domain)):#NEW OR CURRENT?
self.particles[p_i,0] = n_i
def __greedyWalk(self, p_i, neighbors):
start = time.time()
prob_sum = 0
slices = []
label = self.particles[p_i,3]
for n in neighbors:
prob_sum += self.nodes[n,self.class_map[label]]*(1/pow(1+self.dist_table[n,p_i],2))
slices.append(self.nodes[n,self.class_map[label]]*(1/pow(1+self.dist_table[n,p_i],2)))
slices = slices/sum(slices)
choice = 0
roullete_sum = 0
rand = np.random.uniform(0,prob_sum)
for i in range(0,len(slices)):
roullete_sum += slices[i]
if(roullete_sum > rand):
choice = i
break
end = time.time()
self.spent += end - start
return neighbors[choice]
def __randomWalk(self, neighbors):
return neighbors[np.random.choice(len(neighbors))]
def __genClassMap(self):
i = 1
class_map = {}
for c in self.unique_labels:
class_map[c] = i
i+=1
return class_map
def __genParticles(self):
labeled = self.labels[self.labels!=-1]
indexes = np.where(self.labels!=-1)[0]
particles = np.ones(shape=(len(labeled),4), dtype=int)
particles[:,0] = particles[:,1] = indexes
particles[:,3] = labeled
return particles
def __genNodes(self):
nodes = np.full(shape=(len(self.data),len(self.unique_labels)+1), fill_value=float(1/self.c))
nodes[:,0] = self.labels
nodes[nodes[:,0] != -1,1:] = 0
for l in np.unique(self.labels[self.labels!=-1]):
nodes[nodes[:,0] == l,l+1] = 1
return nodes
def __genDistTable(self):
dist_table = np.full(shape=(len(self.data),len(self.particles)), fill_value=len(self.data)-1,dtype=int)
for h,i in zip(self.particles[:,1],range(len(self.particles))):
dist_table[h,i] = 0
return dist_table
def __genGraph(self):
values = self.data
self.graph = {}
dist = np.array([[float("inf")] * len(values) for i in range(len(values))])
for i in range(0,len(values)):
actual = values[i]
for j in range(i+1,len(values)):
dist[j,i] = dist[i,j] = np.linalg.norm(actual-values[j])
for i in range(0,len(values)):
sorted_dist = np.argsort(dist[i])
self.graph[i] = list(sorted_dist[0:self.n_neighbors])
for i in range(0,len(self.data)):
self.graph[i] += ([k for k,v in self.graph.items() if i in v])
self.graph[i] = list(set(self.graph[i]))
return self.graph