-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIMDbConvolutionEmbeddingTextCategorizationDemo.py
123 lines (92 loc) · 3.95 KB
/
IMDbConvolutionEmbeddingTextCategorizationDemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import keras
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from keras.datasets import imdb
from time import time
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics import f1_score
from scipy.sparse import csr_matrix, csc_matrix, lil_matrix
from PyCoalescedTsetlinMachineCUDA.tm import MultiClassConvolutionalTsetlinMachine2D, MultiClassTsetlinMachine
maxlen = 1000
epochs = 25
batches = 10
hypervector_size = 2048
bits = 1024
clauses = 10000*2
T = 8000
s = 40.0
NUM_WORDS=10000
INDEX_FROM=2
print("Downloading dataset...")
train,test = keras.datasets.imdb.load_data(num_words=NUM_WORDS, maxlen=maxlen, index_from=INDEX_FROM)
train_x, train_y = train
test_x, test_y = test
#train_x = train_x[0:1000]
#train_y = train_y[0:1000]
#test_x = test_x[0:1000]
#test_y = test_y[0:1000]
word_to_id = keras.datasets.imdb.get_word_index()
word_to_id = {k:(v+INDEX_FROM) for k,v in word_to_id.items()}
word_to_id["<PAD>"] = 0
word_to_id["<START>"] = 1
word_to_id["<UNK>"] = 2
id_to_word = {value:key for key,value in word_to_id.items()}
# Read from file instead, otherwise the same
print("Retrieving embeddings...")
indexes = np.arange(hypervector_size, dtype=np.uint32)
encoding = {}
for i in range(NUM_WORDS+INDEX_FROM):
encoding[i] = np.random.choice(indexes, size=(bits), replace=False)
# encoding = {}
# f = open("/data/near-lossless-binarization/binary_vectors_1024.vec", "r")
# line = f.readline()
# line = f.readline().strip()
# while line:
# entries = line.split(" ")
# if entries[0] in word_to_id:
# values = np.unpackbits(np.fromstring(" ".join(entries[1:]), dtype=np.int64, sep=' ').view(np.uint8))
# encoding[word_to_id[entries[0]]] = np.unpackbits(np.fromstring(" ".join(entries[1:]), dtype=np.int64, sep=' ').view(np.uint8)).nonzero()
# line = f.readline().strip()
# f.close()
print("Producing bit representation...")
print(train_y.shape[0])
X_train = np.zeros((train_y.shape[0], maxlen, 1, hypervector_size), dtype=np.uint32)
for e in range(train_y.shape[0]):
position = 0
for word_id in train_x[e]:
if word_id in encoding:
X_train[e, position, 0][encoding[word_id]] = 1
position += 1
Y_train = train_y.astype(np.uint32)
print(test_y.shape[0])
X_test = np.zeros((test_y.shape[0], maxlen, 1, hypervector_size), dtype=np.uint32)
for e in range(test_y.shape[0]):
position = 0
for word_id in test_x[e]:
if word_id in encoding:
X_test[e, position, 0][encoding[word_id]] = 1
position += 1
Y_test = test_y.astype(np.uint32)
batch_size_train = Y_train.shape[0] // batches
batch_size_test = Y_test.shape[0] // batches
tm = MultiClassConvolutionalTsetlinMachine2D(clauses, T, s, (1, 1))
for i in range(epochs):
start_training = time()
for batch in range(batches):
tm.fit(X_train[batch*batch_size_train:(batch+1)*batch_size_train], Y_train[batch*batch_size_train:(batch+1)*batch_size_train], epochs=1, incremental=True)
stop_training = time()
start_testing = time()
Y_test_predicted = np.zeros(0, dtype=np.uint32)
for batch in range(batches):
Y_test_predicted = np.concatenate((Y_test_predicted, tm.predict(X_test[batch*batch_size_test:(batch+1)*batch_size_test])))
result_test = 100*(Y_test_predicted == Y_test[:batch_size_test*batches]).mean()
f1_test = f1_score(Y_test[:batch_size_test*batches], Y_test_predicted, average='macro')
stop_testing = time()
Y_train_predicted = np.zeros(0, dtype=np.uint32)
for batch in range(batches):
Y_train_predicted = np.concatenate((Y_train_predicted, tm.predict(X_train[batch*batch_size_train:(batch+1)*batch_size_train])))
result_train = 100*(Y_train_predicted == Y_train[:batch_size_train*batches]).mean()
f1_train = f1_score(Y_train[:batch_size_train*batches], Y_train_predicted, average='macro')
print("#%d Accuracy Test: %.2f%% Accuracy Train: %.2f%% Training: %.2fs Testing: %.2fs" % (i+1, result_test, result_train, stop_training-start_training, stop_testing-start_testing))