forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathui.js
92 lines (83 loc) · 3.38 KB
/
ui.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {linearRegressionModel, multiLayerPerceptronRegressionModel1Hidden, multiLayerPerceptronRegressionModel2Hidden, run} from '.';
const statusElement = document.getElementById('status');
export function updateStatus(message) {
statusElement.innerText = message;
};
const baselineStatusElement = document.getElementById('baselineStatus');
export function updateBaselineStatus(message) {
baselineStatusElement.innerText = message;
};
export function updateModelStatus(message, modelName) {
const statElement = document.querySelector(`#${modelName} .status`);
statElement.innerText = message;
};
const NUM_TOP_WEIGHTS_TO_DISPLAY = 5;
/**
* Updates the weights output area to include information about the weights
* learned in a simple linear model.
* @param {List} weightsList list of objects with 'value':number and
* 'description':string
*/
export function updateWeightDescription(weightsList) {
const inspectionHeadlineElement =
document.getElementById('inspectionHeadline');
inspectionHeadlineElement.innerText =
`Top ${NUM_TOP_WEIGHTS_TO_DISPLAY} weights by magnitude`;
// Sort weights objects by descending absolute value.
weightsList.sort((a, b) => Math.abs(b.value) - Math.abs(a.value));
var table = document.getElementById('myTable');
// Clear out table contents
table.innerHTML = '';
// Add new rows to table.
weightsList.forEach((weight, i) => {
if (i < NUM_TOP_WEIGHTS_TO_DISPLAY) {
let row = table.insertRow(-1);
let cell1 = row.insertCell(0);
let cell2 = row.insertCell(1);
if (weight.value < 0) {
cell2.setAttribute('class', 'negativeWeight');
} else {
cell2.setAttribute('class', 'positiveWeight');
}
cell1.innerHTML = weight.description;
cell2.innerHTML = weight.value.toFixed(4);
}
});
};
export async function setup() {
const trainSimpleLinearRegression = document.getElementById('simple-mlr');
const trainNeuralNetworkLinearRegression1Hidden =
document.getElementById('nn-mlr-1hidden');
const trainNeuralNetworkLinearRegression2Hidden =
document.getElementById('nn-mlr-2hidden');
trainSimpleLinearRegression.addEventListener('click', async (e) => {
const model = linearRegressionModel();
await run(model, 'linear', true);
}, false);
trainNeuralNetworkLinearRegression1Hidden.addEventListener(
'click', async () => {
const model = multiLayerPerceptronRegressionModel1Hidden();
await run(model, 'oneHidden', false);
}, false);
trainNeuralNetworkLinearRegression2Hidden.addEventListener(
'click', async () => {
const model = multiLayerPerceptronRegressionModel2Hidden();
await run(model, 'twoHidden', false);
}, false);
};