forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsynthetic_images.js
301 lines (274 loc) · 11.3 KB
/
synthetic_images.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Module for synthesizing images to be used for training and testing the
* simple object-detection model.
*
* This module is written in a way that can be used in both the Node.js-based
* training pipeline (train.js) and the browser-based testing environment
* (index.js).
*/
let tf; // tensorflowjs module passed in for browser/node compatibility.
/**
* Generate a random color style for canvas strokes and fills.
*
* @returns {string} Style string in the form of 'rgb(100,200,250)'.
*/
function generateRandomColorStyle() {
const colorR = Math.round(Math.random() * 255);
const colorG = Math.round(Math.random() * 255);
const colorB = Math.round(Math.random() * 255);
return `rgb(${colorR},${colorG},${colorB})`;
}
/**
* Synthesizes images for simple object recognition.
*
* The synthesized imags consist of
* - a white background
* - a configurable number of circles of random radii and random color
* - a configurable number of line segments of random starting and ending
* points and random color
* - Target object: a rectangle or a triangle, with configurable probabilities.
* - If a rectangle, the side lengths are random and so is the color
* - If a triangle, it is always equilateral. The side length and the color
* is random and the triangle is rotated by a random angle.
*/
class ObjectDetectionImageSynthesizer {
/**
* Constructor of ObjectDetectionImageSynthesizer.
*
* @param {} canvas An HTML canvas object or node-canvas object.
* @param {*} tensorFlow A tensorflow module passed in. This done for
* compatibility between browser and Node.js.
*/
constructor(canvas, tensorFlow) {
this.canvas = canvas;
tf = tensorFlow;
// Min and max of circles' radii.
this.CIRCLE_RADIUS_MIN = 5;
this.CIRCLE_RADIUS_MAX = 20;
// Min and max of rectangle side lengths.
this.RECTANGLE_SIDE_MIN = 40;
this.RECTANGLE_SIDE_MAX = 100;
// Min and max of triangle side lengths.
this.TRIANGLE_SIDE_MIN = 50;
this.TRIANGLE_SIDE_MAX = 100;
// Canvas dimensions.
this.w = this.canvas.width;
this.h = this.canvas.height;
}
/**
* Generate a single image example.
*
* @param {number} numCircles Number of circles (background object type)
* to include.
* @param {number} numLines Number of line segments (backgrond object
* type) to include
* @param {number} triangleProbability The probability of the target
* object being a triangle (instead of a rectangle). Must be a number
* >= 0 and <= 1. Default: 0.5.
* @returns {Object} An object with the following fields:
* - image: A [w, h, 3]-shaped tensor for the pixel content of the image.
* w and h are the width and height of the canvas, respectively.
* - target: A [5]-shaped tensor. The first element is a 0-1 indicator
* for whether the target is a triangle (0) or a rectangle (1).
* The remaning four elements are the bounding box of the shape:
* [left, right, top, bottom], in the unit of pixels.
*/
async generateExample(numCircles, numLines, triangleProbability = 0.5) {
if (triangleProbability == null) {
triangleProbability = 0.5;
}
tf.util.assert(
triangleProbability >= 0 && triangleProbability <= 1,
`triangleProbability must be a number >= 0 and <= 1, but got ` +
`${triangleProbability}`);
const ctx = this.canvas.getContext('2d');
ctx.clearRect(0, 0, this.w, this.h); // Clear canvas.
// Draw circles (1st half).
for (let i = 0; i < numCircles / 2; ++i) {
this.drawCircle(ctx);
}
// Draw lines segments (1st half).
for (let i = 0; i < numLines / 2; ++i) {
this.drawLineSegment(ctx);
}
// Draw the target object: a rectangle or an equilateral triangle.
// Determine whether the target is a rectangle or a triangle.
const isRectangle = Math.random() > triangleProbability;
let boundingBox;
ctx.fillStyle = generateRandomColorStyle();
ctx.beginPath();
if (isRectangle) {
// Draw a rectangle.
// Both side lengths of the rectangle are random and independent of
// each other.
const rectangleW =
Math.random() * (this.RECTANGLE_SIDE_MAX - this.RECTANGLE_SIDE_MIN) +
this.RECTANGLE_SIDE_MIN;
const rectangleH =
Math.random() * (this.RECTANGLE_SIDE_MAX - this.RECTANGLE_SIDE_MIN) +
this.RECTANGLE_SIDE_MIN;
const centerX = (this.w - rectangleW) * Math.random() + (rectangleW / 2);
const centerY = (this.h - rectangleH) * Math.random() + (rectangleH / 2);
boundingBox =
this.drawRectangle(ctx, centerX, centerY, rectangleH, rectangleW);
} else {
// Draw an equilateral triangle, rotated by a random angle.
// The distance from the center of the triangle to any of the three
// vertices.
const side = this.TRIANGLE_SIDE_MIN +
(this.TRIANGLE_SIDE_MAX - this.TRIANGLE_SIDE_MIN) * Math.random();
const centerX = (this.w - side) * Math.random() + (side / 2);
const centerY = (this.h - side) * Math.random() + (side / 2);
// Rotate the equilateral triangle by a random angle uniformly
// distributed between 0 and degrees.
const angle = Math.PI / 3 * 2 * Math.random(); // 0 - 120 degrees.
boundingBox = this.drawTriangle(ctx, centerX, centerY, side, angle);
}
ctx.fill();
// Draw circles (2nd half).
for (let i = numCircles / 2; i < numCircles; ++i) {
this.drawCircle(ctx);
}
// Draw lines segments (2nd half).
for (let i = numLines / 2; i < numLines; ++i) {
this.drawLineSegment(ctx);
}
return tf.tidy(() => {
const imageTensor = tf.browser.fromPixels(this.canvas);
const shapeClassIndicator = isRectangle ? 1 : 0;
const targetTensor =
tf.tensor1d([shapeClassIndicator].concat(boundingBox));
return {image: imageTensor, target: targetTensor};
});
}
drawCircle(ctx, centerX, centerY, radius) {
centerX = centerX == null ? this.w * Math.random() : centerX;
centerY = centerY == null ? this.h * Math.random() : centerY;
radius = radius == null ? this.CIRCLE_RADIUS_MIN +
(this.CIRCLE_RADIUS_MAX - this.CIRCLE_RADIUS_MIN) * Math.random() :
radius;
ctx.fillStyle = generateRandomColorStyle();
ctx.beginPath();
ctx.arc(centerX, centerY, radius, 0, Math.PI * 2);
ctx.fill();
}
drawLineSegment(ctx, x0, y0, x1, y1) {
x0 = x0 == null ? Math.random() * this.w : x0;
y0 = y0 == null ? Math.random() * this.h : y0;
x1 = x1 == null ? Math.random() * this.w : x1;
y1 = y1 == null ? Math.random() * this.h : y1;
ctx.strokeStyle = generateRandomColorStyle();
ctx.beginPath();
ctx.moveTo(x0, y0);
ctx.lineTo(x1, y1);
ctx.stroke();
}
/**
* Draw a rectangle.
*
* A rectangle is a target object in the simple object detection task here.
* Therefore, its bounding box is returned.
*
* @param {} ctx Canvas context.
* @param {number} centerX Center x-coordinate of the triangle.
* @param {number} centerY Center y-coordinate of the triangle.
* @param {number} w Width of the rectangle.
* @param {number} h Height of the rectangle.
* @param {number} angle Angle that the triangle is rotated for, in radians.
* @returns {[number, number, number, number]} Bounding box of the rectangle:
* [left, right, top bottom].
*/
drawRectangle(ctx, centerX, centerY, w, h) {
ctx.moveTo(centerX - w / 2, centerY - h / 2);
ctx.lineTo(centerX + w / 2, centerY - h / 2);
ctx.lineTo(centerX + w / 2, centerY + h / 2);
ctx.lineTo(centerX - w / 2, centerY + h / 2);
return [centerX - w / 2, centerX + w / 2, centerY - h / 2, centerY + h / 2];
}
/**
* Draw an equilateral triangle.
*
* A triangle are a target object in the simple object detection task here.
* Therefore, its bounding box is returned.
*
* @param {} ctx Canvas context.
* @param {number} centerX Center x-coordinate of the triangle.
* @param {number} centerY Center y-coordinate of the triangle.
* @param {number} side Length of the side.
* @param {number} angle Angle that the triangle is rotated for, in radians.
* @returns {[number, number, number, number]} Bounding the triangle, with
* the rotation taken into account: [left, right, top bottom].
*/
drawTriangle(ctx, centerX, centerY, side, angle) {
const ctrToVertex = side / 2 / Math.cos(30 / 180 * Math.PI);
ctx.fillStyle = generateRandomColorStyle();
ctx.beginPath();
const alpha1 = angle + Math.PI / 2;
const x1 = centerX + Math.cos(alpha1) * ctrToVertex;
const y1 = centerY + Math.sin(alpha1) * ctrToVertex;
const alpha2 = alpha1 + Math.PI / 3 * 2;
const x2 = centerX + Math.cos(alpha2) * ctrToVertex;
const y2 = centerY + Math.sin(alpha2) * ctrToVertex;
const alpha3 = alpha2 + Math.PI / 3 * 2;
const x3 = centerX + Math.cos(alpha3) * ctrToVertex;
const y3 = centerY + Math.sin(alpha3) * ctrToVertex;
ctx.moveTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.lineTo(x3, y3);
const xs = [x1, x2, x3];
const ys = [y1, y2, y3];
return [Math.min(...xs), Math.max(...xs), Math.min(...ys), Math.max(...ys)];
}
/**
* Generate a number (i.e., batch) of examples.
*
* @param {number} batchSize Number of example image in the batch.
* @param {number} numCircles Number of circles (background object type)
* to include.
* @param {number} numLines Number of line segments (background object type)
* to include.
* @returns {Object} An object with the following fields:
* - image: A [batchSize, w, h, 3]-shaped tensor for the pixel content of
* the image. w and h are the width and height of the canvas,
* respectively.
* - target: A [batchSize, 5]-shaped tensor. The first column is a 0-1
* indicator for whether the target is a triangle(0) or a rectangle (1).
* The remaning four columns are the bounding box of the shape:
* [left, right, top, bottom], in the unit of pixels.
*/
async generateExampleBatch(
batchSize, numCircles, numLines, triangleProbability) {
if (triangleProbability == null) {
triangleProbability = 0.5;
}
const imageTensors = [];
const targetTensors = [];
for (let i = 0; i < batchSize; ++i) {
const {image, target} =
await this.generateExample(numCircles, numLines, triangleProbability);
imageTensors.push(image);
targetTensors.push(target);
}
const images = tf.stack(imageTensors);
const targets = tf.stack(targetTensors);
tf.dispose([imageTensors, targetTensors]);
return {images, targets};
}
}
module.exports = {ObjectDetectionImageSynthesizer};