-
Notifications
You must be signed in to change notification settings - Fork 0
/
ntd_issues_analysis.Rmd
547 lines (449 loc) · 21.2 KB
/
ntd_issues_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
---
title: "NTD_issues_analysis"
author: "Kim Engie"
date: "2023-08-11"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = F)
# install.packages("tidyverse")
# install.packages("readxl")
# install.packages("plotly")
# install.packages("kableExtra")
library(tidyverse)
library(readxl)
library(plotly)
library(kableExtra)
```
### Introduction
This document contains the detailed analysis of historical NTD issues, as part of the Slalom Consulting project on Caltrans NTD Reporting Modernization. For a more concise summary of results without the code snippets, please see the accompanying powerpoint files from this project.
We analyze issues that were returned to Caltrans for resolution in 2020, 2021, and 2022 by their frequency, their issue type, and reporting agencies. We then derive the commonalities that could have triggered something being flagged by NTD. Finally, we curate the top 23 issues to target in a pre-submission validation tool, given these results.
---
Step 1: load in the data - 3 years of NTD issues from 3 different spreadsheets.
```{r, echo=T, results='hide', message=F}
# getwd()
issues_2022 <- read_excel("~/Dev/caltrans/View Issues 9R02 Export_26-Jun-2023 05-51-58 PM.xlsx", sheet = "Sub-Recipient Issues",
skip = 1, .name_repair = "universal")
issues_2021 <- read_excel("~/Dev/caltrans/View Issues 9R02 Export_1-Jun-2022 11-04-44 PM FINAL.xlsx", sheet = "Sub-Recipient Issues",
skip = 1, .name_repair = "universal")
issues_2020 <- read_excel("~/Dev/caltrans/All Issues 9R02 Export 2021-05-18 FINAL (Rd4).xlsx", sheet = "Sub-Recipient Issues",
skip = 1, .name_repair = "universal")
```
After checking that all the columns are the same in each dataset, we combine everything into one dataset, adding a column for the year of the issue.
```{r, echo=TRUE}
issues_2020 <- issues_2020 %>%
mutate(year = as.integer(2020))
issues_2021 <- issues_2021 %>%
mutate(year = as.integer(2021))
issues_2022 <- issues_2022 %>%
mutate(year = as.integer(2022))
issues <- bind_rows(issues_2020, issues_2021, issues_2022) %>%
relocate(year)
```
```{r, echo=F, include=FALSE}
# Export to csv
# write.csv(issues, "ntd_issues_2020-22.csv", row.names=FALSE)
```
```{r, echo=F}
knitr::kable(issues %>% head(1),
format = "html",
caption = "The first row of the combined issues dataset") %>%
kable_styling("striped", full_width = F) %>% scroll_box(width = "100%")
```
### Breakdown of Issues by Year
Three issues account for almost 25% of all validation flags in the past 3 years.
1. RR20F-005: The cost per hour changed by 30% or more.
2. A10-033: The number of *General Purpose Maintenance Facilities* differs from previous year.
3. RR20F-146: The miles per vehicle changed by 20% or more
```{r, echo=FALSE, warning=F, message=F}
knitr::kable(issues %>% count(year), format="html",
caption = "Total Issues, 2020 - 2022") %>%
kable_styling("striped")
```
```{r, echo=FALSE, include=FALSE}
issues_by_yr1 <- issues %>% filter(!is.na(Issue.Check.ID)) %>%
count(Issue.Check.ID, year) %>%
group_by(Issue.Check.ID) %>%
mutate(
total_issues = sum(n)) %>%
ungroup() %>%
arrange(desc(total_issues)) %>%
mutate(
pct_total = round((total_issues/sum(n))*100,2)
)
issues_by_yr2 <- issues_by_yr1 %>%
left_join(
issues_by_yr1 %>%
group_by(Issue.Check.ID) %>%
summarize(pct_total = mean(pct_total)) %>%
ungroup() %>%
arrange(desc(pct_total)) %>%
mutate(cumulative_pct = cumsum(pct_total)),
by = c("Issue.Check.ID" = "Issue.Check.ID", "pct_total"="pct_total")
)
```
```{r, include=F}
issues_by_yr2 %>%
group_by(Issue.Check.ID) %>%
summarize(pct_total = mean(pct_total)) %>%
ungroup() %>%
arrange(desc(pct_total)) %>%
mutate(cum_pct = cumsum(pct_total))
```
---
```{r, message=F, warning=FALSE}
g <-
ggplot(issues_by_yr2 , aes(x = reorder(Issue.Check.ID, cumulative_pct), y=n, #%>% head(75)
group = factor(year), fill = factor(year), label=n)) +
geom_bar(stat = "identity", color="white") +
scale_fill_brewer(palette = "Blues") +
geom_line(aes(x=reorder(Issue.Check.ID, cumulative_pct), y=cumulative_pct, group=1, label=cumulative_pct), stat="identity", color="grey", linetype="dotted") + #
scale_y_continuous(name="Count of Issues", sec.axis = sec_axis(~., name="Cumulative %")) +
# geom_text(aes(label=total_issues,
# # position=position_dodge(0.9),
# vjust = 0), colour = "black", size=2) +
# facet_wrap(~year) +
theme_classic() +
labs(x = "count", y = "") + #title="Issue count by Year (Top 25)", subtitle="with cumulative percentage per issue"
guides(fill=guide_legend(title=NULL)) +
theme(legend.position = c(.87, .25), legend.title = element_blank(),
axis.text.x=element_text(angle=90, vjust = 0.65, color="black", size = 6),
axis.text.y=element_text(size=8, color="darkgrey"),
axis.title.x = element_blank(), axis.title.y = element_text(color = "darkgrey", size=8),
axis.line.x = element_line(color = "grey"), axis.line.y = element_blank(),
axis.ticks = element_blank()
)
ggplotly(g, height = 450, tooltip = c("label")) %>%
layout(title = list(text = paste0('Issue count by Year (top 25)',
'<br>',
'<sup>',
'With cumulative percentage per issue',
'</sup>')))
```
```{r, include=F}
# Static graphic to include in PPT (same as above, but static & different color scheme)
label_byyr <- issues_by_yr2 %>% group_by(Issue.Check.ID) %>% summarize(mylabel = mean(total_issues)) %>% arrange(desc(mylabel))
ggplot(issues_by_yr2 , aes(x = reorder(Issue.Check.ID, cumulative_pct), y=n, #%>% head(75)
group = factor(year), fill = factor(year), label=n)) +
geom_bar(stat = "identity", color="white") +
scale_fill_brewer(palette = "Blues") +
geom_line(aes(x=reorder(Issue.Check.ID, cumulative_pct), y=cumulative_pct, group=1, label=cumulative_pct), stat="identity", color="grey", linetype="dotted") +
scale_y_continuous(name="Count of Issues", sec.axis = sec_axis(~., name="Cumulative %")) +
# geom_text(aes(label=total_issues,
# # position=position_dodge(0.9),
# vjust = 0), colour = "black", size=2) +
# facet_wrap(~year) +
theme_classic() +
labs(x = "count", y = "") + #title="Issue count by Year (Top 25)", subtitle="with cumulative percentage per issue"
guides(fill=guide_legend(title=NULL)) +
theme(legend.position = c(.87, .4), legend.title = element_blank(), legend.text = element_text(size = 7),
axis.text.x=element_text(angle=90, vjust = 0.65, color="black", size = 6),
axis.text.y=element_text(size=8, color="darkgrey"),
axis.title.x = element_blank(), axis.title.y = element_text(color = "darkgrey", size=8),
axis.line.x = element_line(color = "grey"), axis.line.y = element_blank(),
axis.ticks = element_blank()
)
# TO SAVE
# ggsave("issues_byyr.png", dpi = 300, width = 6, height = 3, units = "in") #
```
```{r, echo=F, message=F, warning=F}
issues_yr_table <- issues %>% filter(!is.na(Issue.Check.ID)) %>%
group_by(Issue.Check.ID, year) %>%
summarize(n = n()) %>%
ungroup %>%
pivot_wider(names_from = year, values_from = n) %>%
mutate(total = rowSums(across(c("2020", "2021", "2022")), na.rm = TRUE)) %>%
arrange(desc(total))
knitr::kable(
issues_yr_table,
format="html",
caption = "Yearly breakdown of Issues") %>%
kable_styling("striped", full_width = F) %>% scroll_box(width = "600px", height="500px")
```
```{r, include=FALSE}
# #write to csv
# write.csv(issues_yr_table, "ntd_issues_yearly_totals.csv", row.names=FALSE)
```
---
#### BY AGENCY
Validation flags are also clumped across certain agencies more than others.
```{r, echo = FALSE, message=F}
issues_agency_table <- issues %>% filter(!is.na(Issue.Check.ID)) %>%
group_by(Reporter, year) %>%
summarize(n = n()) %>%
ungroup %>%
pivot_wider(names_from = year, values_from = n) %>%
mutate(total = rowSums(across(c("2020", "2021", "2022")), na.rm = TRUE)) %>%
arrange(desc(total)) %>%
ungroup() %>%
mutate(cumulative_pct = round((cumsum(total)/sum(total))*100, 1)
)
knitr::kable(
issues_agency_table,
format="html",
caption = "Issues per Agency") %>%
kable_styling("striped") %>% scroll_box(height="500px")
```
```{r, include=FALSE}
# #write to csv
# write.csv(issues_agency_table, "ntd_issues_agency_totals.csv", row.names=FALSE)
```
---
```{r, warning=FALSE}
p <-
issues_agency_table %>%
pivot_longer(cols = c("2020","2021","2022"), names_to = "year", values_to = "n") %>%
mutate(Agency = str_remove(Reporter, "\\d{5} - ")) %>%
replace(is.na(.), 0) %>%
ggplot(aes(x=n, y=reorder(Agency, -cumulative_pct), fill = factor(year), label=n)) +
geom_bar(stat="identity") +
scale_fill_brewer(palette = "PuRd") +
# geom_line(aes(x=cumulative_pct, y=reorder(Agency, -cumulative_pct), group=1, label=cumulative_pct), stat="identity", color="grey", linetype="dotted") +
# scale_x_continuous(name="", sec.axis = sec_axis(~., name="Cumulative %")) +
theme_classic() +
labs(x = "count", y = "") +
guides(fill=guide_legend(title=NULL)) +
theme(legend.position = c(.5, .25), legend.title = element_blank(),
axis.text.x=element_text(vjust = 0.65, color="black", size = 6),
axis.text.y=element_text(size=8, color="black"),
axis.title.x = element_blank(), axis.title.y = element_text(color = "darkgrey", size=8),
axis.line.x = element_line(color = "grey"), axis.line.y = element_blank(),
axis.ticks = element_blank()
)
#
ggplotly(p, height = 850, tooltip = c("label")) %>%
layout(title = list(text = paste0('Issue count by Reporting Agency')))
```
```{r, include=FALSE}
### Static graphic for Powerpoint
# For cleaner labels:
reporting_agency = c("Tehama County", "City of Arvin", "Tuolumne County", "Morongo Basin", "San Benito County",
"City of Rio Vista", "Alpine County", "Palo Verde Valley", "Amador Regional", "City of McFarland",
"City of Escalon", "Sierra County", "Glenn Transit", "County of Sacramento", "Humboldt Transit",
"Nevada County", "Mendocino Transit", "County of Siskiyou", "Town of Truckee",
"Mountain Area Regional", "City of Solvang", "Eastern Sierra Transit", "California City",
"Calaveras Transit", "City of Taft", "City of Shafter", "Wasco, City of", "Fresno County",
"City of Dixon", "Tulare County Area", "Modoc", "City of Arcata", "Lake Transit", "Mariposa County",
"Madera County", "City of Ridgecrest", "City of Eureka", "Redwood Coast", "Kern Regional",
"City of Guadalupe", "City of Corcoran", "City of Dinuba", "City of Ojai", "City of Tehachapi",
"Trinity County", "Lassen Transit", "City of Auburn", "Colusa County", "Plumas County", "San Diego",
"SunLine Transit", "City of Chowchilla", "Imperial County", "Yosemite Area", "Greyhound",
"Santa Clara Valley", "Monterey-Salinas", "City of Santa Maria", "County of Sonoma",
"Antelope Valley", "Riverside Transit", "Yuba-Sutter Transit", "Livermore / Amador Valley",
"Eastern Contra Costa Transit", "City of Porterville", "Kings County", "Stanislaus County",
"City of Needles", "City of Woodlake", "San Mateo County", "San Joaquin Regional",
"North County Transit", "Merced County", "Butte County", "Santa Barbara County",
"Tulare County Regional", "Yurok Tribe", "County of Shasta")
issues_agency_table %>%
cbind(reporting_agency) %>% relocate(reporting_agency, .after = Reporter) %>%
mutate(no. = row_number()) %>%
pivot_longer(cols = c("2020","2021","2022"), names_to = "year", values_to = "n") %>%
# mutate(Agency = str_remove(Reporter, "\\d{5} - ")) %>%
replace(is.na(.), 0) %>%
ggplot(aes(x=reorder(reporting_agency, no., mean), y=n, fill = factor(year))) +
geom_bar(stat="identity") +
scale_fill_brewer(palette = "PuRd") +
geom_line(aes(x=reorder(reporting_agency, -cumulative_pct), y=cumulative_pct, group=1, label=cumulative_pct), stat="identity", color="grey", linetype="dotted") +
scale_y_continuous(name="Count of Issues", sec.axis = sec_axis(~., name="Cumulative %")) +
theme_classic() +
labs(x = "count", y = "") +
guides(fill=guide_legend(title=NULL)) +
theme(legend.position = c(.87, .5), legend.title = element_blank(), legend.text = element_text(size=6),
axis.text.x=element_text(angle=90, hjust = 1, color="black", size = 6),
axis.text.y=element_text(size=8, color="darkgrey"),
axis.title.x = element_blank(), axis.title.y = element_text(color = "darkgrey", size=8),
axis.line.x = element_line(color = "grey"), axis.line.y = element_blank(),
axis.ticks = element_blank()
)
```
```{r, include=FALSE}
# TO SAVE
# ggsave("issues_byagency.png", dpi = 300, width = 7, height = 3.5, units = "in") #
```
---
#### Unique Issues
There are many, repeated errors to resolve, some clearly describing various transit types (e.g., DR - DO, DR - PT, MB, CB). Here we make a new "clean" description column by removing everything in brackets, for each Issue ID.
* Streamline descriptions by removing all the numbers within brackets
* tally
```{r, include=F}
# Add columns of streamlined descriptions
# "descr_novalue" strips the numbers from the brackets
# "descr_stripped" strips both numbers and letters, in other words vehicle types, from the brackets.
issues_cleaned <- issues %>%
mutate(
descr_novalue = str_replace_all(Description, "\\{\\S*\\}", "\\{\\}"),
descr_stripped = str_replace_all(Description, "\\{(.*)\\}", "\\{\\}")
) %>%
relocate(descr_stripped, .before = Description) %>%
relocate(descr_novalue, .before = Description)
```
```{r, include=F}
# write to csv
# write.csv(issues_cleaned, "ntd_issues_condensed.csv", row.names=FALSE)
```
```{r, echo=F, include=F}
# TALLY
knitr::kable(
streamlined_tally_transportdetail <- issues_cleaned %>% filter(!is.na(Issue.Check.ID)) %>%
count(Issue.Check.ID, descr_novalue) %>%
# group_by(Issue.Check.ID) %>%
# mutate(
# total_per_issueID = sum(n)
# ) %>%
# ungroup() %>%
# arrange(desc(total_per_issueID))
arrange(desc(n)) %>%
mutate(pct_total = round((n/sum(n))*100,2),
cumulative_pct = round((cumsum(n) / sum(n))*100, 2),
no. = row_number()) %>%
relocate(no., .before = Issue.Check.ID),
format = "html",
caption = "Issues and their Generic Questions (with transport type details)") %>%
kable_styling("striped", full_width = T) %>% scroll_box(width = "100%", height="500px")
```
```{r, include=F}
# write to csv
# write.csv(streamlined_tally_transportdetail, "ntd_issues_transportdetail_streamlined_qs.csv", row.names=FALSE)
```
Further collapsed with the transport type stripped out.
```{r, echo=F}
# TALLY
knitr::kable(
streamlined_tally <- issues_cleaned %>% filter(!is.na(Issue.Check.ID)) %>%
count(Issue.Check.ID, descr_stripped) %>%
arrange(desc(n)) %>%
mutate(pct_total = round((n/sum(n))*100,2),
cumulative_pct = round((cumsum(n) / sum(n))*100, 2),
no. = row_number()) %>%
relocate(no., .before = Issue.Check.ID),
format = "html",
caption = "Issues and their Generic Questions (combining transport type)") %>%
kable_styling("striped", full_width = T) %>% scroll_box(width = "100%", height="500px")
```
```{r, include=F}
# write to csv
# write.csv(streamlined_tally, "ntd_issues_streamlined_qs.csv", row.names=FALSE)
```
#### Deriving NTD flags
This section contains the code for finding the min/max range of top validation flags. We inspect each of the top 23 by inputting the Issue ID below and inspecting the results.
```{r, echo=T, results='hide'}
error = "RR20F-143"
single_issue <- issues %>% filter(Issue.Check.ID==error)
```
<!-- *Regex below:* -->
<!-- Get the number in the last bracket. -->
<!-- Regex looks behind for an open curly bracket ?<=\\{, looks ahead for a closing parenthesis ?=\\}, and grabs everything in the middle (numbers only) \\S*, in other words (?<=\\().+?(?=\\)) -->
<!-- * to grab everything we use .+? -->
<!-- * https://stackoverflow.com/questions/8613237/extract-info-inside-all-parenthesis-in-r -->
```{r, echo=T, warning=F, message=F}
# # If all numbers
# min_max <- single_issue %>%
# mutate(
# numbers = str_extract_all(Description, "(?<=\\{)\\S*(?=\\})"),
# percent_chr = map_chr(numbers, 1),
# percent = as.double(str_remove(percent_chr, ","), na.rm=TRUE)
# ) %>%
# relocate(percent, .before = numbers)
# # If sub-categories
# min_max <- single_issue %>%
# mutate(
# entries = str_extract_all(Description, "(?<=\\{)\\S*(?=\\})"),
# category_chr = map_chr(entries, first),
# pct_chr = map_chr(entries, 2),
# percent = as.double(str_remove(pct_chr, ","))) %>%
# relocate(percent, .before = entries) %>%
# relocate(category_chr, .before = percent)
# If one needs to calculate the percentage from 2 numbers
min_max <- single_issue %>%
mutate(
numbers = str_extract_all(Description, "(?<=\\{)\\S*(?=\\})"),
thisyr = as.double(map_chr(numbers, 1), na.rm = TRUE),
lastyr = as.double(map_chr(numbers, 2), na.rm=TRUE),
percent = (thisyr/lastyr) - 1
) %>%
relocate(percent, .before = numbers)
```
```{r, echo=T, results='hide', warning=FALSE}
min_max %>%
# group_by(category_chr) %>%
summarize(min = min(percent),
max = max(percent),
min_absolute = min(abs(percent)),
max_absolute = max(abs(percent)),
)
```
#### Validation issues with the longest conversational trail
This section investigates which issues are potentially the longest to resolve, inferred from whether they had the most back and forth in their comment history. These might not be the same issues that are greatest by volume, so we cross check for thoroughness.
```{r, echo=T, warning=F, message=FALSE, results='hide'}
comment_length <- issues_cleaned %>%
mutate(
n_comments = str_count(Comment.History, "GMT")
) %>%
relocate(n_comments, .before = Comment.History)
comment_length %>%
filter(!is.na(n_comments)) %>%
group_by(n_comments, Issue.Check.ID, descr_stripped) %>%
summarize(freq = n()) %>%
arrange(desc(n_comments))
```
We look into which issues have a disproportionate share of back-and-forth, by counting the timestamps in the comment history column and summarizing in a new "n_comments" column.
```{r, echo=F, message=FALSE}
lengthy_convos <-
comment_length %>%
filter(!is.na(n_comments)) %>%
group_by(n_comments, Issue.Check.ID, descr_stripped) %>%
summarize(freq = n()) %>%
relocate(freq, .after = n_comments) %>%
ungroup() %>%
arrange(desc(n_comments)) %>%
mutate(
pct_of_issues = round((freq/sum(freq))*100,2),
pct_of_comments = round((n_comments/sum(n_comments, na.rm = TRUE))*100,2),
cumpct_comments = round((cumsum(n_comments) / sum(n_comments, na.rm = T))*100, 2),
cumpct_issues = round((cumsum(freq) / sum(freq, na.rm = T))*100, 2),
no. = row_number()
) %>%
ungroup()
knitr::kable(
lengthy_convos,
format="html") %>%
kable_styling("striped") %>% scroll_box(height="500px")
```
### Final Recommendations: The Prioritized Validation Issue List
Finally, we take a combination of the issues that are most numerous, and those that have the most comments to curate a list of 23 prioritized issues. These are the ones that were cross-checked manually lenthy_convos and streamlined_qs, and by human judgement can be done within project time.
```{r, warning=FALSE}
# Make new column with Yes or No for plotting
prioritized <- streamlined_tally %>%
mutate(
no. = row_number(),
prioritized = if_else(no. %in% c(1:21, 48, 64), "yes", "no")
)
p <- ggplot(prioritized, aes(x = reorder(Issue.Check.ID, no.), y=n,
fill = prioritized, label=descr_stripped)) + #group = factor(year),
geom_bar(stat = "identity", color="white") +
scale_fill_manual(values = c("grey85", "#0C62FB")) +
# geom_line(aes(x=reorder(Issue.Check.ID, no.), y=cumulative_pct, group=1, label=cumulative_pct), stat="identity", color="darkgrey", linetype="dotted") +
scale_y_continuous(name="Count of Issues") + #, sec.axis = sec_axis(~., name="Cumulative %")
# geom_text(aes(label=n,
# position=position_dodge(0.9),
# vjust = 0), colour = "white") +
theme_classic() +
# labs(x = "count") +
theme(legend.position = "none", legend.title = element_blank(),
axis.text.x=element_text(angle=90, vjust = 0.65, color="black", size = 6),
axis.text.y=element_text(size=8, color="darkgrey"),
axis.title.x = element_blank(), axis.title.y = element_text(color = "darkgrey", size=8),
axis.line.x = element_line(color = "grey"), axis.line.y = element_blank(),
axis.ticks = element_blank())
ggplotly(p)
```
```{r}
# ggsave("prioritized_issues.svg", dpi = 300, width = 5, height = 3, units = "in")
```
```{r}
knitr::kable(
prioritized %>% filter(prioritized == "yes"),
format = "html",
caption = "The top 23 Prioritized NTD validation flags") %>%
kable_styling("striped", full_width = T) %>% scroll_box(width = "100%", height="500px")
```