-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchainMaps.py
255 lines (210 loc) · 7.83 KB
/
chainMaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from pureTensor import pureTensor
import relation
from tensor import tensor
from monomial import monomial
from tensorAlgebra import tensorAlgebra
from algebra import algebra
from functionOnKn import functionOnKn
from bimoduleMapDecorator import bimoduleMapDecorator
"""
File: chainMaps.py
Author: Chris Campbell
Email: c (dot) j (dot) campbell (at) ed (dot) ac (dot) uk
Github: https://github.com/campbellC
Description: The chain maps for the koszul and bar complexes.
"""
##############################################################################
###### Chain map definitions
##############################################################################
def b_n(tens,alg):
tens = tens.clean()
if tens == 0:
return 0
else:
for pure in tens:
domain = tensorAlgebra([alg] * len(pure))
codomain = tensorAlgebra([alg] * (len(pure) - 1))
break
@bimoduleMapDecorator(domain,codomain)
def b_nInner(tens):
assert isinstance(tens, pureTensor)
assert len(tens) >= 2
tens = tens.clean()
if len(tens) == 2:
return tens[0] * tens[1]
else:
answer = tens.subTensor(1,len(tens) )
answer = answer - pureTensor(1).tensorProduct(tens[1]*tens[2]).tensorProduct(tens.subTensor(3,len(tens)))
if len(tens) != 3:
answer = answer + tens.subTensor(0,2).tensorProduct(b_n(tens.subTensor(2,len(tens)), alg))
return answer
return b_nInner(tens)
def k_1(tens,alg):
freeAlgebra = algebra()
K1 = tensorAlgebra([alg,freeAlgebra,alg])
K0 = tensorAlgebra([alg,alg])
@bimoduleMapDecorator(K1,K0)
def k_1Inner(pT):
assert isinstance(pT,pureTensor)
generator = pT[1]
return pureTensor([generator,1])-pureTensor([1,generator])
return k_1Inner(tens)
def k_2(tens,alg):
freeAlgebra = algebra()
K1 = K2 = tensorAlgebra([alg,freeAlgebra,alg])
@bimoduleMapDecorator(K2,K1)
def k_2Inner(tens):
assert isinstance(tens,pureTensor)
answer= tensor()
rel =tens.monomials[1]
for i in rel.leadingMonomial:
answer = answer + i.coefficient * pureTensor((i.submonomial(0,1),i.submonomial(1,2), 1))
answer = answer + i.coefficient * pureTensor((1,i.submonomial(0,1),i.submonomial(1,2)))
for i in rel.lowerOrderTerms:
answer = answer - i.coefficient * pureTensor((i.submonomial(0,1),i.submonomial(1,2), 1))
answer = answer - i.coefficient * pureTensor((1,i.submonomial(0,1),i.submonomial(1,2)))
return answer
return k_2Inner(tens)
def k_3(tens,alg):
freeAlgebra = algebra()
K3 = K2 = tensorAlgebra([alg,freeAlgebra,alg])
@bimoduleMapDecorator(K3,K2)
def k_3Inner(pT):
answer= tensor()
doublyDefined = pT[1]
for generator, rel in doublyDefined.leftHandRepresentation:
answer = answer + pureTensor((generator,rel,1)).clean()
for rel, generator in doublyDefined.rightHandRepresentation:
answer = answer - pureTensor((1,rel,generator)).clean()
return answer
return k_3Inner(tens)
def k_4(tens,alg):
freeAlgebra = algebra()
K4 = K3 = tensorAlgebra([alg,freeAlgebra,alg])
@bimoduleMapDecorator(K4,K3)
def k_4Inner(pT):
answer= tensor()
doublyDefined = pT[1]
for generator, rel in doublyDefined.leftHandRepresentation:
answer = answer + pureTensor((generator,rel,1)).clean()
for rel, generator in doublyDefined.rightHandRepresentation:
answer = answer - pureTensor((1,rel,generator)).clean()
return answer
return k_4Inner(tens)
def i_1(tens,alg):
freeAlgebra = algebra()
B1 = tensorAlgebra([alg] * 3)
K1 = tensorAlgebra([alg,freeAlgebra,alg])
@bimoduleMapDecorator(K1,B1)
def i_1Inner(pT):
return pT
return i_1Inner(tens)
def i_2(tens,alg):
freeAlgebra = algebra()
B2 = tensorAlgebra([alg] * 4)
K2 = tensorAlgebra([alg,freeAlgebra,alg])
@bimoduleMapDecorator(K2,B2)
def i_2Inner(pT):
answer = tensor()
rel = pT[1]
for term in rel.leadingMonomial:
answer = answer + term.coefficient * pureTensor((1,term[0],term[1],1))
for term in rel.lowerOrderTerms:
answer = answer - term.coefficient * pureTensor((1,term[0],term[1],1))
return answer
return i_2Inner(tens)
def i_3(tens,alg):
freeAlgebra = algebra()
B3 = tensorAlgebra([alg] * 5)
K3 = tensorAlgebra([alg,freeAlgebra,alg])
@bimoduleMapDecorator(K3,B3)
def i_3Inner(pT):
answer = tensor()
doublyDefined = pT[1]
for generator, rel in doublyDefined.leftHandRepresentation:
rightHandSide = generator * i_2(pureTensor([1,rel,1]),alg)
answer = answer + pureTensor(1).tensorProduct(rightHandSide)
return answer
return i_3Inner(tens)
def m_2(abcd,alg):
B2 = tensorAlgebra([alg]*4)
freeAlgebra = algebra()
K2 = tensorAlgebra([alg,freeAlgebra,alg])
@bimoduleMapDecorator(B2,K2)
def m_2Inner(PT):
assert isinstance(PT, pureTensor)
assert len(PT) == 4
PT = PT.clean()
w = PT[1] * PT[2]
answer = tensor()
sequence = alg.makeReductionSequence(w)
for reductionFunction, weight in sequence:
answer += PT.coefficient * weight * PT[0] \
* pureTensor([reductionFunction.leftMonomial,
reductionFunction.relation,
reductionFunction.rightMonomial]) * PT[3]
return answer
return m_2Inner(abcd)
def m_1(abc,alg):
K1 = B1 = tensorAlgebra([alg]*3)
@bimoduleMapDecorator(B1,K1)
def m_1Inner(b):
b = b[1].clean()
answer = tensor()
if b.degree() != 0:
for i in range(b.degree()):
answer += b.coefficient * pureTensor([b[0:i],b[i],b[i+1:]])
return answer
return m_1Inner(abc)
##############################################################################
###### Dualised chain maps
##############################################################################
def dualMap(chainMap):
def functionFactory(func):
def newfunc(tensor):
return func(chainMap(tensor,func.algebra))
return newfunc
return functionFactory
m_1Dual = dualMap(m_1)
m_2Dual = dualMap(m_2)
def koszulDualMap(chainMap):
def functionFactory(func,knBasis):
images = [func(chainMap(i,func.algebra)) for i in knBasis]
return functionOnKn(func.algebra, knBasis, images)
return functionFactory
k_2Dual = koszulDualMap(k_2)
k_3Dual = koszulDualMap(k_3)
k_4Dual = koszulDualMap(k_4)
def i_3Dual(func,alg,basisOfK3):
images= []
for i in basisOfK3:
images.append(func(i_3(i,alg)))
return functionOnKn(alg,basisOfK3,images)
##############################################################################
###### Gerstenhaber Bracket
##############################################################################
def o0(f,g,alg):
B3 = tensorAlgebra([alg] * 5)
@bimoduleMapDecorator(B3,alg)
def localO(abcde):
intermediate = g(pureTensor([1,abcde[1],abcde[2],1]))
return f(pureTensor(abcde[0]).tensorProduct(intermediate).tensorProduct(abcde[3:]))
return localO
def o1(f,g,alg):
B3 = tensorAlgebra([alg] * 5)
@bimoduleMapDecorator(B3,alg)
def localO(abcde):
intermediate = g(pureTensor([1,abcde[2],abcde[3],1]))
return f(abcde[:2].tensorProduct(intermediate).tensorProduct(abcde[4]))
return localO
def o(f,g,alg):
def localO(abcde):
return o0(f,g,alg)(abcde)-o1(f,g,alg)(abcde)
return localO
def GerstenhaberBracket(f,g,basisOfK3):
alg = f.algebra
f = m_2Dual(f)
g = m_2Dual(g)
def localBracket(abcde):
return o(f,g,alg)(abcde)+o(g,f,alg)(abcde)
return i_3Dual(localBracket, alg, basisOfK3)