From 1d5b903c5ba6fcb2bdb09e121790ed58cd6b70a9 Mon Sep 17 00:00:00 2001 From: Fernando Bravo Date: Wed, 11 Oct 2023 15:29:21 +0200 Subject: [PATCH 1/8] Add brisque algorithm to checkbox_support Added modified version of the brisque algorithm in chechkbox_support/vendor. The algorithm is implemented in: https://github.com/rehanguha/brisque Vendorized also python-libsvm to fix imports in snap --- .../vendor/brisque/CHANGELOG.md | 13 + .../vendor/brisque/LICENSE.txt | 201 +++++ .../vendor/brisque/__init__.py | 1 + .../vendor/brisque/brisque.py | 210 +++++ .../vendor/brisque/models/__init__.py | 3 + .../vendor/brisque/models/normalize.pickle | Bin 0 -> 686 bytes .../vendor/brisque/models/svm.txt | 782 ++++++++++++++++++ .../vendor/brisque/svm/__init__.py | 0 .../vendor/brisque/svm/svm.py | 444 ++++++++++ .../vendor/brisque/svm/svmutil.py | 442 ++++++++++ 10 files changed, 2096 insertions(+) create mode 100644 checkbox-support/checkbox_support/vendor/brisque/CHANGELOG.md create mode 100644 checkbox-support/checkbox_support/vendor/brisque/LICENSE.txt create mode 100644 checkbox-support/checkbox_support/vendor/brisque/__init__.py create mode 100644 checkbox-support/checkbox_support/vendor/brisque/brisque.py create mode 100644 checkbox-support/checkbox_support/vendor/brisque/models/__init__.py create mode 100644 checkbox-support/checkbox_support/vendor/brisque/models/normalize.pickle create mode 100644 checkbox-support/checkbox_support/vendor/brisque/models/svm.txt create mode 100644 checkbox-support/checkbox_support/vendor/brisque/svm/__init__.py create mode 100644 checkbox-support/checkbox_support/vendor/brisque/svm/svm.py create mode 100644 checkbox-support/checkbox_support/vendor/brisque/svm/svmutil.py diff --git a/checkbox-support/checkbox_support/vendor/brisque/CHANGELOG.md b/checkbox-support/checkbox_support/vendor/brisque/CHANGELOG.md new file mode 100644 index 0000000000..c698e2efef --- /dev/null +++ b/checkbox-support/checkbox_support/vendor/brisque/CHANGELOG.md @@ -0,0 +1,13 @@ +- 0.0.16 + - Removed url image loading + - Removed scipy dependency + - Changed image reading from skimage to opencv + - Fixed ordered dict creation to work in older versions of python + - Images resized to 640p width for processing + - Using original model +- 0.0.15 + - #9 + - Removed direct image loading instead made it more generic using NdArray + - Moved the loading of the model to init method for faster score processing +- 0.0.14 + - PyTest and Doc Update \ No newline at end of file diff --git a/checkbox-support/checkbox_support/vendor/brisque/LICENSE.txt b/checkbox-support/checkbox_support/vendor/brisque/LICENSE.txt new file mode 100644 index 0000000000..261eeb9e9f --- /dev/null +++ b/checkbox-support/checkbox_support/vendor/brisque/LICENSE.txt @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/checkbox-support/checkbox_support/vendor/brisque/__init__.py b/checkbox-support/checkbox_support/vendor/brisque/__init__.py new file mode 100644 index 0000000000..7a26ebb79f --- /dev/null +++ b/checkbox-support/checkbox_support/vendor/brisque/__init__.py @@ -0,0 +1 @@ +__version__ = "0.0.16" \ No newline at end of file diff --git a/checkbox-support/checkbox_support/vendor/brisque/brisque.py b/checkbox-support/checkbox_support/vendor/brisque/brisque.py new file mode 100644 index 0000000000..b772e3b484 --- /dev/null +++ b/checkbox-support/checkbox_support/vendor/brisque/brisque.py @@ -0,0 +1,210 @@ +import collections +from itertools import chain +import pickle +import os +import math + +import cv2 +import numpy as np + +try: + from .svm import svmutil +except: + from libsvm import svmutil + +from .models import MODEL_PATH + + +class BRISQUE: + def __init__(self): + self.model = os.path.join(MODEL_PATH, "svm.txt") + self.norm = os.path.join(MODEL_PATH, "normalize.pickle") + + # Load in model + self.model = svmutil.svm_load_model(self.model) + with open(self.norm, 'rb') as f: + self.scale_params = pickle.load(f) + + def load_gray_image(self, path): + img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) + + # Resize image to a width of 640 + desired_width = int(640) + height, width = img.shape + aspect_ratio = width / height + desired_height = int(desired_width / aspect_ratio) + resized_image = cv2.resize(img, (desired_width, desired_height), + interpolation=cv2.INTER_NEAREST) + + float_img = np.float64(resized_image) / 255.0 + return float_img + + def score(self, path): + gray_image = self.load_gray_image(path) + # Don't calculate score if image is too homogeneous + if np.std(gray_image) < 1e-2: + return float('nan') + brisque_features = self.calculate_brisque_features( + gray_image, kernel_size=7, sigma=7 / 6) + downscaled_image = cv2.resize(gray_image, None, fx=1 / 2, fy=1 / 2, + interpolation=cv2.INTER_CUBIC) + downscale_brisque_features = self.calculate_brisque_features( + downscaled_image, kernel_size=7, sigma=7 / 6) + brisque_features = np.concatenate( + (brisque_features, downscale_brisque_features)) + + return self.calculate_image_quality_score(brisque_features) + + def normalize_kernel(self, kernel): + return kernel / np.sum(kernel) + + def gaussian_kernel2d(self, n, sigma): + Y, X = np.indices((n, n)) - int(n / 2) + gaussian_kernel = 1 / (2 * np.pi * sigma ** 2) * ( + np.exp(-(X ** 2 + Y ** 2) / (2 * sigma ** 2))) + return self.normalize_kernel(gaussian_kernel) + + def local_mean(self, image, kernel): + return cv2.filter2D(image, -1, cv2.flip(kernel, -1), + borderType=cv2.BORDER_CONSTANT) + + def local_deviation(self, image, local_mean, kernel): + "Vectorized approximation of local deviation" + sigma = image ** 2 + sigma = self.local_mean(sigma, kernel) + return np.sqrt(np.abs(local_mean ** 2 - sigma)) + + def calculate_mscn_coeff(self, image, kernel_size=6, sigma=7 / 6): + C = 1 / 255 + kernel = self.gaussian_kernel2d(kernel_size, sigma=sigma) + local_mean = self.local_mean(image, kernel) + local_var = self.local_deviation(image, local_mean, kernel) + + return (image - local_mean) / (local_var + C) + + def generalized_gaussian_dist(self, x, alpha, sigma): + beta = sigma * np.sqrt(math.gamma(1 / alpha) + / math.gamma(3 / alpha)) + + coefficient = alpha / (2 * beta() * math.gamma(1 / alpha)) + return coefficient * np.exp(-(np.abs(x) / beta) ** alpha) + + def calculate_pair_product_coeff(self, mscn_coeff): + od = collections.OrderedDict() + od['mscn'] = mscn_coeff + od['horizontal'] = mscn_coeff[:, :-1] * mscn_coeff[:, 1:] + od['vertical'] = mscn_coeff[:-1, :] * mscn_coeff[1:, :] + od['main_diagonal'] = (mscn_coeff[:-1, :-1] * + mscn_coeff[1:, 1:]) + od['secondary_diagonal'] = (mscn_coeff[1:, :-1] * + mscn_coeff[:-1, 1:]) + return od + + def asymmetric_generalized_gaussian(self, x, nu, sigma_l, sigma_r): + def beta(sigma): + return sigma * np.sqrt(math.gamma(1 / nu) / + math.gamma(3 / nu)) + + def f_par(x, sigma): + return coefficient * np.exp(-(x / beta(sigma)) ** nu) + + coefficient = nu / ((beta(sigma_l) + beta(sigma_r)) * + math.gamma(1 / nu)) + + return np.where(x < 0, f_par(-x, sigma_l), f_par(x, sigma_r)) + + def asymmetric_generalized_gaussian_fit(self, x): + def estimate_phi(alpha): + numerator = math.gamma(2 / alpha) ** 2 + denominator = math.gamma(1 / alpha) * math.gamma(3 / alpha) + return numerator / denominator + + def estimate_r_hat(x): + size = np.prod(x.shape) + return (np.sum(np.abs(x)) / size) ** 2 / (np.sum(x ** 2) / size) + + def estimate_R_hat(r_hat, gamma): + numerator = (gamma ** 3 + 1) * (gamma + 1) + denominator = (gamma ** 2 + 1) ** 2 + return r_hat * numerator / denominator + + def mean_squares_sum(x, filter=lambda z: z == z): + filtered_values = x[filter(x)] + squares_sum = np.sum(filtered_values ** 2) + return squares_sum / ((filtered_values.shape)) + + def estimate_gamma(x): + left_squares = mean_squares_sum(x, lambda z: z < 0) + right_squares = mean_squares_sum(x, lambda z: z >= 0) + + return np.sqrt(left_squares) / np.sqrt(right_squares) + + def estimate_alpha(x): + r_hat = estimate_r_hat(x) + gamma = estimate_gamma(x) + R_hat = estimate_R_hat(r_hat, gamma) + + # Alternative implementation with scipy.optimize.root + # solution = optimize.root(lambda z: estimate_phi(z) - + # R_hat, [0.2]).x[0] + x_arr = np.arange(0.025, 10 + 0.001, 0.001) + phy_arr = np.asarray([estimate_phi(z) for z in x_arr]) + pos = np.argmin(np.abs(phy_arr - R_hat)) + solution = x_arr[pos] + + return solution + + def estimate_sigma(x, alpha, filter=lambda z: z < 0): + return np.sqrt(mean_squares_sum(x, filter)) + + def estimate_mean(alpha, sigma_l, sigma_r): + return (sigma_r - sigma_l) * constant * (math.gamma(2 / alpha) / + math.gamma(1 / alpha)) + + alpha = estimate_alpha(x) + sigma_l = estimate_sigma(x, alpha, lambda z: z < 0) + sigma_r = estimate_sigma(x, alpha, lambda z: z >= 0) + + constant = np.sqrt(math.gamma(1 / alpha) / math.gamma(3 / alpha)) + mean = estimate_mean(alpha, sigma_l, sigma_r) + + return alpha, mean, sigma_l, sigma_r + + def calculate_brisque_features(self, image, kernel_size=7, sigma=7 / 6): + def calculate_features(coeff_name, coeff): + alpha, mean, sigma_l, sigma_r = ( + self.asymmetric_generalized_gaussian_fit(coeff)) + + if coeff_name == 'mscn': + var = (sigma_l ** 2 + sigma_r ** 2) / 2 + return [alpha, var] + + return [alpha, mean, sigma_l ** 2, sigma_r ** 2] + + mscn_coeff = self.calculate_mscn_coeff(image, kernel_size, sigma) + coeff = self.calculate_pair_product_coeff(mscn_coeff) + + features = [calculate_features(coeff_name=name, coeff=cf) + for name, cf in coeff.items()] + flatten_features = list(chain.from_iterable(features)) + return np.array(flatten_features, dtype=object) + + def scale_features(self, features): + min_ = np.array(self.scale_params['min_'], dtype=np.float64) + max_ = np.array(self.scale_params['max_'], dtype=np.float64) + features = np.array(features, dtype=np.float64) + + return (2.0 / (max_ - min_) * (features - min_)) - 1 + + def calculate_image_quality_score(self, brisque_features): + scaled_brisque_features = self.scale_features(brisque_features) + + x, idx = svmutil.gen_svm_nodearray( + list(scaled_brisque_features), + isKernel=(self.model.param.kernel_type == svmutil.PRECOMPUTED)) + + nr_classifier = 1 + prob_estimates = (svmutil.c_double * nr_classifier)() + + return svmutil.libsvm.svm_predict_probability(self.model, x, + prob_estimates) diff --git a/checkbox-support/checkbox_support/vendor/brisque/models/__init__.py b/checkbox-support/checkbox_support/vendor/brisque/models/__init__.py new file mode 100644 index 0000000000..85cc17f838 --- /dev/null +++ b/checkbox-support/checkbox_support/vendor/brisque/models/__init__.py @@ -0,0 +1,3 @@ +import os + +MODEL_PATH = os.path.dirname(os.path.abspath(__file__)) \ No newline at end of file diff --git a/checkbox-support/checkbox_support/vendor/brisque/models/normalize.pickle b/checkbox-support/checkbox_support/vendor/brisque/models/normalize.pickle new file mode 100644 index 0000000000000000000000000000000000000000..18ed3adf6991d0feba7b3cb832a247209f9f5cf1 GIT binary patch literal 686 zcmYk(eJm7k7zc0})!Lo(j*23kIoDlYcFcI>=xJV>-Kf0e+;S$wrIAHy#a-0ZZoAxK ztvG8l6!O~4$+^S4SLj0PcB8AM;wHz|=~w;Z`TO(yzR$kDn^q4MmKOi!y3FmK)uoG> zJlT1f8^VM%IcUjOjv#X>+Y+GDBMb`_Q`-VAqq5s6qi(#Y2f>Kan>vPxF1;i+m9{HSVk!Pd>tkcCVOjNg<|S?PwL<4}q2&7}k~M zh2R&lDTy1!L>P5=(v{oajLO$rRmM+jDls1ncDL%)2>x;(|8Qmv!t{zJr@VCxK^il$ zoOZ3BY&~vb*qpIKJ0b9&uMh;V~ZX;XYT0T~+%JGvphzO3Q(o9wWs77FjhOK@FLv@GF-w-V`FSMGq@|s9t|GtDVGMdVBj`hz zGvA+YXC)%&wo|UoibBM~Ao%^ChLySWqODsMm$T{{07&blx literal 0 HcmV?d00001 diff --git a/checkbox-support/checkbox_support/vendor/brisque/models/svm.txt b/checkbox-support/checkbox_support/vendor/brisque/models/svm.txt new file mode 100644 index 0000000000..8b5e4912b2 --- /dev/null +++ b/checkbox-support/checkbox_support/vendor/brisque/models/svm.txt @@ -0,0 +1,782 @@ +svm_type epsilon_svr +kernel_type rbf +gamma 0.05 +nr_class 2 +total_sv 774 +rho -153.591 +probA 5.71401 +SV +-1024 1:-0.596978 2:-0.136393 3:-0.248933 4:0.432246 5:-0.769052 6:-0.120449 7:-0.265569 8:0.386313 9:-0.746024 10:-0.207071 11:-0.165391 12:-0.0705024 13:-0.592856 14:-0.583769 15:-0.171144 16:-0.0659713 17:-0.589443 18:-0.594489 19:0.674185 20:0.198835 21:0.570048 22:0.368743 23:-0.422326 24:0.232054 25:0.585366 26:0.347393 27:-0.388922 28:0.112603 29:0.677503 30:-0.274459 31:-0.238119 32:-0.168099 33:0.713911 34:-0.266084 35:-0.241827 36:-0.191255 +-1024 1:-0.747257 2:-0.461042 3:-0.509246 4:0.460519 5:-0.924187 6:-0.452938 7:-0.526127 8:0.0919585 9:-0.866725 10:-0.648671 11:-0.427259 12:0.20952 13:-0.849245 14:-0.788123 15:-0.43515 16:0.193888 17:-0.845022 18:-0.798055 19:0.186538 20:-0.121979 21:0.207729 22:0.580158 23:-0.747775 24:-0.0700023 25:0.265854 26:0.0177099 27:-0.568242 28:-0.396922 29:0.336801 30:0.0719453 31:-0.593952 32:-0.429034 33:0.351706 34:-0.10717 35:-0.548696 36:-0.488075 +1024 1:-0.75533 2:-0.574436 3:-0.55192 4:0.379678 5:-0.952804 6:-0.602946 7:-0.57194 8:0.110236 9:-0.908983 10:-0.720716 11:-0.430322 12:0.250062 13:-0.905263 14:-0.852556 15:-0.436685 16:0.304263 17:-0.909137 18:-0.849826 19:0.177945 20:-0.228712 21:0.123188 22:0.453352 23:-0.773433 24:-0.222516 25:0.097561 26:0.0502198 27:-0.640366 28:-0.459302 29:0.328999 30:-0.21165 31:-0.643798 32:-0.644918 33:0.341207 34:-0.0187527 35:-0.678533 36:-0.610199 +1024 1:-0.829642 2:-0.727723 3:-0.694168 4:0.300593 5:-0.987107 6:-0.759054 7:-0.673586 8:0.319375 9:-0.985322 10:-0.804744 11:-0.525268 12:0.498311 13:-0.97631 14:-0.904066 15:-0.537989 16:0.519832 17:-0.976596 18:-0.90404 19:-0.35768 20:-0.454139 21:-0.241546 22:0.135183 23:-0.81523 24:-0.509566 25:-0.270732 26:0.17582 27:-0.802685 28:-0.572738 29:-0.0871261 30:-0.0954986 31:-0.767057 32:-0.754333 33:-0.0892388 34:-0.0533 35:-0.766998 36:-0.74817 +1024 1:-0.768371 2:-0.615355 3:-0.571835 4:0.359354 5:-0.963103 6:-0.650212 7:-0.560487 8:0.196013 9:-0.944032 10:-0.756069 11:-0.421133 12:0.364459 13:-0.936134 14:-0.867119 15:-0.430545 16:0.412933 17:-0.938875 18:-0.864475 19:0.155747 20:-0.25506 21:0.120773 22:0.522433 23:-0.813914 24:-0.243393 25:0.0902439 26:0.0644308 27:-0.667057 28:-0.483603 29:0.331599 30:-0.146039 31:-0.679563 32:-0.658515 33:0.328084 34:0.0317611 35:-0.708745 36:-0.625992 +1024 1:-0.810391 2:-0.57626 3:-0.657183 4:0.261421 5:-0.921241 6:-0.563124 7:-0.677881 8:0.00415966 9:-0.86586 10:-0.688806 11:-0.58193 12:-0.0277791 13:-0.841178 14:-0.858677 15:-0.599386 16:0.0029521 17:-0.838583 18:-0.857231 19:-0.205156 20:-0.321353 21:-0.108696 22:0.175894 23:-0.733446 24:-0.358174 25:-0.12439 26:0.0315904 27:-0.665625 28:-0.496684 29:0.0923277 30:-0.333268 31:-0.636462 32:-0.700359 33:0.0839895 34:-0.262004 35:-0.638538 36:-0.686336 +-1024 1:-0.734424 2:-0.250089 3:-0.493599 4:0.380424 5:-0.798892 6:-0.182248 7:-0.507516 8:-0.093333 9:-0.655325 10:-0.411752 11:-0.41807 12:-0.082255 13:-0.65914 14:-0.672382 15:-0.427475 16:-0.140512 17:-0.637126 18:-0.690139 19:0.324024 20:0.117295 21:0.304348 22:0.349709 23:-0.469648 24:0.169654 25:0.360976 26:-0.0647326 27:-0.279633 28:-0.118976 29:0.464239 30:-0.270311 31:-0.309294 32:-0.261785 33:0.47769 34:-0.284746 35:-0.289335 36:-0.270718 +-1024 1:-0.805837 2:-0.535153 3:-0.648649 4:0.123269 5:-0.894824 6:-0.608582 7:-0.653543 8:0.275803 9:-0.901803 10:-0.579442 11:-0.574273 12:0.180232 13:-0.863561 14:-0.816319 15:-0.590177 16:0.224663 17:-0.866081 18:-0.813879 19:-0.0998926 20:-0.166122 21:0.00966184 22:0.0638426 23:-0.623891 24:-0.300773 25:0.0268293 26:0.344512 27:-0.652604 28:-0.232536 29:0.123537 30:-0.117966 31:-0.56599 32:-0.504232 33:0.120735 34:-0.0539333 35:-0.573104 36:-0.493757 +-1024 1:-0.816187 2:-0.678546 3:-0.715505 4:0.0519929 5:-0.932699 6:-0.738566 7:-0.710809 8:0.143427 9:-0.94403 10:-0.763813 11:-0.666156 12:0.0452979 13:-0.895953 14:-0.899745 15:-0.673062 16:0.272102 17:-0.925128 18:-0.878477 19:-0.32116 20:-0.450506 21:-0.285024 22:0.0468344 23:-0.783826 24:-0.521907 25:-0.202439 26:0.0180906 27:-0.756397 28:-0.621744 29:-0.118336 30:-0.221339 31:-0.725213 32:-0.759452 33:-0.125984 34:-0.0461898 35:-0.754648 36:-0.730097 +293.0204221462269 1:-0.749741 2:-0.439988 3:-0.556188 4:0.0252192 5:-0.812375 6:-0.526537 7:-0.559055 8:0.371293 9:-0.862845 10:-0.430926 11:-0.41807 12:-0.230489 13:-0.750967 14:-0.823962 15:-0.42594 16:-0.0413622 17:-0.781464 18:-0.804828 19:0.26101 20:-0.11766 21:0.164251 22:-0.134886 23:-0.462187 24:-0.267004 25:0.121951 26:0.359126 27:-0.546943 28:-0.067063 29:0.503251 30:-0.785227 31:-0.403 32:-0.647252 33:0.464567 34:-0.397597 35:-0.479187 36:-0.559999 +-81.05982282172033 1:-0.796315 2:-0.541512 3:-0.641536 4:0.175849 5:-0.912914 6:-0.614034 7:-0.64209 8:0.142641 9:-0.873705 10:-0.614033 11:-0.566616 12:0.21242 13:-0.869745 14:-0.81336 15:-0.587107 16:0.0481603 17:-0.830723 18:-0.833064 19:0.0497673 20:-0.198157 21:0.0797101 22:-0.131464 23:-0.58646 24:-0.414507 25:0.0609756 26:0.262027 27:-0.635941 28:-0.282529 29:0.204161 30:-0.234044 31:-0.568953 32:-0.569204 33:0.167979 34:-0.0960703 35:-0.579255 36:-0.525175 +-341.232595444367 1:-0.636928 2:-0.274393 3:-0.317212 4:0.249261 5:-0.813302 6:-0.377429 7:-0.337151 8:0.22594 9:-0.78532 10:-0.409952 11:-0.333844 12:0.04961 13:-0.658807 14:-0.610941 15:-0.32924 16:0.0457002 17:-0.66755 18:-0.638154 19:0.699964 20:0.0321281 21:0.502415 22:0.162753 23:-0.504129 24:-0.0807704 25:0.519512 26:0.123401 27:-0.44279 28:-0.160417 29:0.521456 30:0.109039 31:-0.42496 32:-0.161059 33:0.582677 34:-0.335685 35:-0.317045 36:-0.332893 +1024 1:-0.793832 2:-0.458186 3:-0.600284 4:0.452282 5:-0.915048 6:-0.39573 7:-0.623479 8:-0.137632 9:-0.775583 10:-0.633513 11:-0.534456 12:0.0189013 13:-0.793158 14:-0.787537 15:-0.544129 16:-0.039099 17:-0.772968 18:-0.799246 19:0.144289 20:-0.0457238 21:0.144928 22:0.466513 23:-0.638423 24:0.035274 25:0.187805 26:-0.156407 27:-0.36856 28:-0.297495 29:0.297789 30:-0.189721 31:-0.465308 32:-0.41268 33:0.301837 34:-0.214268 35:-0.443346 36:-0.420766 +1024 1:-0.803353 2:-0.559561 3:-0.640114 4:-0.0421157 5:-0.867813 6:-0.676259 7:-0.646385 8:0.357456 9:-0.923582 10:-0.579102 11:-0.595712 12:-0.0416031 13:-0.817108 14:-0.837715 15:-0.607061 16:0.161423 17:-0.84908 18:-0.814895 19:-0.361976 20:-0.35185 21:-0.217391 22:-0.117658 23:-0.673764 24:-0.500819 25:-0.192683 26:0.28149 27:-0.76692 28:-0.442636 29:-0.146944 30:-0.269736 31:-0.620327 32:-0.664078 33:-0.131234 34:-0.14558 35:-0.645922 36:-0.645527 +-1024 1:-0.724695 2:-0.169593 3:-0.355619 4:0.834719 5:-0.848735 6:0.109881 7:-0.325698 8:-0.465634 9:-0.545254 10:-0.525911 11:-0.320061 12:-0.434137 13:-0.465318 14:-0.621675 15:-0.330775 16:-0.30282 17:-0.488462 18:-0.604985 19:-0.116362 20:0.00127759 21:0.164251 22:0.810169 23:-0.706498 24:0.262485 25:0.22439 26:-0.718417 27:-0.124745 28:-0.490655 29:0.235371 30:-0.787519 31:-0.201945 32:-0.476892 33:0.257218 34:-0.539143 35:-0.277793 36:-0.433082 +-1024 1:-0.76154 2:-0.527557 3:-0.567568 4:0.1861 5:-0.912167 6:-0.620651 7:-0.570508 8:0.332928 9:-0.923101 10:-0.61468 11:-0.470138 12:0.182769 13:-0.86864 14:-0.822837 15:-0.482732 16:0.205934 17:-0.868633 18:-0.824622 19:0.112782 20:-0.248223 21:0.0966184 22:0.131833 23:-0.730849 24:-0.411463 25:0.104878 26:0.254713 27:-0.723495 28:-0.423766 29:0.172952 30:-0.00315065 31:-0.657283 32:-0.561003 33:0.165354 34:-0.033507 35:-0.641024 36:-0.570636 +-1024 1:-0.792797 2:-0.474974 3:-0.627312 4:0.0627574 5:-0.849129 6:-0.559513 7:-0.629205 8:0.20607 9:-0.853573 10:-0.524762 11:-0.558959 12:0.0463802 13:-0.801044 14:-0.787095 15:-0.576362 16:0.110646 17:-0.806473 18:-0.781334 19:-0.00465449 20:-0.116872 21:0.0966184 22:0.0687517 23:-0.596405 24:-0.264841 25:0.1 26:0.33551 27:-0.613495 28:-0.188009 29:0.185956 30:-0.144183 31:-0.517464 32:-0.455305 33:0.19685 34:-0.0633684 35:-0.528755 36:-0.439576 +1024 1:-0.666115 2:-0.251637 3:-0.325747 4:0.930988 5:-0.907906 6:-0.0140876 7:-0.305655 8:-0.533973 9:-0.6085 10:-0.644671 11:-0.232772 12:-0.715268 13:-0.528722 14:-0.778765 15:-0.240215 16:-0.422372 17:-0.581032 18:-0.736955 19:0.378446 20:-0.116698 21:0.342995 22:0.913918 23:-0.82413 24:0.05268 25:0.385366 26:-0.558037 27:-0.375046 28:-0.585734 29:0.547464 30:-0.818766 31:-0.410897 32:-0.666863 33:0.585302 34:-0.484015 35:-0.486175 36:-0.606056 +-1024 1:-0.825502 2:-0.693809 3:-0.697013 4:0.13549 5:-0.965476 6:-0.777369 7:-0.717967 8:0.374848 9:-0.977384 10:-0.725814 11:-0.589587 12:0.380363 13:-0.957085 14:-0.893298 15:-0.607061 16:0.406127 17:-0.957241 18:-0.892431 19:-0.288221 20:-0.362911 21:-0.18599 22:-0.108187 23:-0.703761 24:-0.534593 25:-0.229268 26:0.341883 27:-0.772601 28:-0.396673 29:-0.0845254 30:-0.179485 31:-0.684756 32:-0.691793 33:-0.0734908 34:-0.0513913 35:-0.710952 36:-0.675683 +1024 1:-0.837715 2:-0.836781 3:-0.732575 4:0.134003 5:-0.99622 6:-0.893212 7:-0.740873 8:0.204088 9:-0.995554 10:-0.896708 11:-0.640123 12:0.502488 13:-0.992784 14:-0.940592 15:-0.654643 16:0.521743 17:-0.992855 18:-0.94054 19:-0.20802 20:-0.556769 21:-0.137681 22:0.246498 23:-0.932563 24:-0.672429 25:-0.146341 26:0.354039 27:-0.9254 28:-0.687196 29:-0.00390117 30:0.399372 31:-0.914826 32:-0.774618 33:0.00262467 34:0.400402 35:-0.912743 36:-0.77616 +1024 1:-0.80149 2:-0.582198 3:-0.645804 4:-0.0855349 5:-0.866583 6:-0.703808 7:-0.6335 8:0.628637 9:-0.973085 10:-0.560489 11:-0.525268 12:0.0533725 13:-0.872231 14:-0.867663 15:-0.533384 16:0.173502 17:-0.885762 18:-0.857212 19:0.00322234 20:-0.24172 21:0.0289855 22:-0.219913 23:-0.539732 24:-0.425137 26:0.498175 27:-0.713782 28:-0.191794 29:0.323797 30:-0.561127 31:-0.544745 32:-0.694062 33:0.304462 34:-0.202471 35:-0.617839 36:-0.625846 +1024 1:-0.810598 2:-0.661696 3:-0.615932 4:0.15719 5:-0.962204 6:-0.769346 7:-0.662133 8:0.584886 9:-0.990139 10:-0.676853 11:-0.50536 12:0.533163 13:-0.962933 14:-0.865946 15:-0.518035 16:0.534814 17:-0.961836 18:-0.868489 19:-0.0640888 20:-0.222866 21:-0.0362319 22:-0.0809995 23:-0.593613 24:-0.378048 25:-0.0390244 26:0.713934 27:-0.791968 28:-0.133567 29:0.16775 30:0.0433064 31:-0.669571 32:-0.553143 33:0.178478 34:-0.0369084 35:-0.646265 36:-0.579161 +569.158770977262 1:-0.809563 2:-0.425032 3:-0.598862 4:0.858335 5:-0.957666 6:-0.157522 7:-0.593414 8:-0.647152 9:-0.632439 10:-0.765481 11:-0.543645 12:-0.406083 13:-0.662766 14:-0.812598 15:-0.562548 16:-0.428227 17:-0.644671 18:-0.822415 19:-0.270319 20:-0.228558 21:-0.0700483 22:0.785971 23:-0.849784 24:-0.0319355 25:0.0219512 26:-0.790693 27:-0.308093 28:-0.69304 29:0.0715215 30:-0.574379 31:-0.482177 32:-0.653945 33:0.0603675 34:-0.629035 35:-0.446161 36:-0.668458 +1024 1:-0.838336 2:-0.801051 3:-0.745377 4:0.251513 5:-0.997088 6:-0.83733 7:-0.715104 8:0.228279 9:-0.992997 10:-0.876887 11:-0.627871 12:0.578473 13:-0.99174 14:-0.92053 15:-0.640829 16:0.583401 17:-0.991236 18:-0.921646 19:-0.273183 20:-0.474513 21:-0.188406 22:0.416339 23:-0.913176 24:-0.499624 25:-0.173171 26:0.215593 27:-0.85739 28:-0.642604 29:-0.0663199 30:0.340433 31:-0.867262 32:-0.708647 33:-0.0656168 34:0.326015 35:-0.863737 36:-0.71692 +1024 1:-0.757814 2:-0.445027 3:-0.567568 4:0.011762 5:-0.809544 6:-0.530506 7:-0.570508 8:0.383855 9:-0.868535 10:-0.431824 11:-0.431853 12:-0.225018 13:-0.754427 14:-0.82625 15:-0.439754 16:-0.0390005 17:-0.784344 18:-0.80755 19:0.220909 20:-0.120986 21:0.147343 22:-0.163228 23:-0.445555 24:-0.270357 25:0.1 26:0.332644 27:-0.53511 28:-0.0722243 29:0.482445 30:-0.799825 31:-0.401383 32:-0.653592 33:0.44357 34:-0.409457 35:-0.479184 36:-0.567034 +-1024 1:-0.549783 2:-0.0840073 3:-0.165007 4:0.481142 5:-0.761334 6:-0.0703998 7:-0.173944 8:0.455802 9:-0.7409 10:-0.14968 11:-0.104135 12:-0.0586654 13:-0.549397 14:-0.526562 15:-0.115886 16:-0.050645 17:-0.546164 18:-0.536601 19:0.70068 20:0.220528 21:0.594203 22:0.370138 23:-0.405794 24:0.25629 25:0.609756 26:0.33176 27:-0.364378 28:0.13063 29:0.70091 30:-0.300054 31:-0.20845 32:-0.147441 33:0.729659 34:-0.295122 35:-0.210986 36:-0.172435 +-1024 1:-0.833782 2:-0.487251 3:-0.667141 4:0.803772 5:-0.969551 6:-0.226427 7:-0.673586 8:-0.696672 9:-0.638366 10:-0.812276 11:-0.624809 12:-0.396538 13:-0.692649 14:-0.843773 15:-0.642364 16:-0.413015 17:-0.67618 18:-0.852403 19:-0.316148 20:-0.268563 21:-0.115942 22:0.871472 23:-0.892856 24:-0.0501576 25:-0.0292683 26:-0.808231 27:-0.328501 28:-0.721834 29:0.0325098 30:-0.534929 31:-0.523781 32:-0.679298 33:0.0262467 34:-0.581027 35:-0.49451 36:-0.693588 +1024 1:-0.844753 2:-0.817957 3:-0.803698 4:0.00212353 5:-0.974567 6:-0.862556 7:-0.793844 8:0.148529 9:-0.987191 10:-0.873747 11:-0.759571 12:0.247467 13:-0.967082 14:-0.93875 15:-0.745203 16:0.418903 17:-0.98131 18:-0.929614 19:-0.510204 20:-0.595209 21:-0.437198 22:0.0685816 23:-0.884934 24:-0.654099 25:-0.407317 26:0.0115096 27:-0.850153 28:-0.743063 29:-0.318596 30:0.0630548 31:-0.862565 32:-0.81753 33:-0.32021 34:0.123227 35:-0.86831 36:-0.810312 +-1024 1:-0.779342 2:-0.484925 3:-0.59744 4:0.21477 5:-0.86922 6:-0.483036 7:-0.613457 8:0.0228335 9:-0.849715 10:-0.652351 11:-0.534456 12:-0.0485109 13:-0.80531 14:-0.824945 15:-0.548734 16:-0.0312267 17:-0.801618 18:-0.827228 19:0.0547798 20:-0.222147 21:0.0362319 22:0.300653 23:-0.708883 24:-0.228141 25:0.0609756 26:-0.253901 27:-0.486234 28:-0.500578 29:0.240572 30:-0.40932 31:-0.554364 32:-0.638936 33:0.257218 34:-0.421271 35:-0.542629 36:-0.650023 +1024 1:-0.847444 2:-0.686091 3:-0.758179 4:0.134052 5:-0.954961 6:-0.730419 7:-0.778096 8:-0.00158259 9:-0.901501 10:-0.749349 11:-0.704441 12:0.196897 13:-0.915085 14:-0.878645 15:-0.729854 16:0.080945 17:-0.886384 18:-0.889093 19:-0.218761 20:-0.353959 21:-0.171498 22:-0.157547 23:-0.673067 24:-0.532661 25:-0.163415 26:0.191468 27:-0.719354 28:-0.444277 29:-0.0403121 30:-0.0828774 31:-0.702632 32:-0.665729 33:-0.0603675 34:-0.034086 35:-0.698119 36:-0.649979 +1024 1:-0.682881 2:-0.308363 3:-0.41394 4:0.185855 5:-0.811204 6:-0.411568 7:-0.398712 8:0.735321 9:-0.898556 10:-0.275729 11:-0.254211 12:0.189643 13:-0.77764 14:-0.701249 15:-0.269378 16:0.134788 17:-0.764794 18:-0.717919 19:0.427855 20:0.113086 21:0.408213 22:0.0914623 23:-0.41592 24:-0.0174059 25:0.360976 26:0.624407 27:-0.519222 28:0.212 29:0.581274 30:-0.169759 31:-0.351334 32:-0.246196 33:0.585302 34:-0.328702 35:-0.301349 36:-0.309642 +-526.0129913832939 1:-0.855723 2:-0.760512 3:-0.798009 4:0.1547 5:-0.9801 6:-0.789071 7:-0.809592 8:0.107738 9:-0.962754 10:-0.81485 11:-0.7366 12:0.332085 13:-0.962412 14:-0.909643 15:-0.748273 16:0.333596 17:-0.960891 18:-0.913416 19:-0.56391 20:-0.510408 21:-0.461353 22:-0.139901 23:-0.769782 24:-0.627518 25:-0.478049 26:-0.118394 27:-0.701881 28:-0.640464 29:-0.412224 30:-0.0184724 31:-0.770848 32:-0.731509 33:-0.401575 34:-0.0960342 35:-0.749445 36:-0.756727 +1024 1:-0.852619 2:-0.703869 3:-0.779516 4:0.384751 5:-0.982079 6:-0.629152 7:-0.760916 8:-0.0580073 9:-0.933327 10:-0.845454 11:-0.695253 12:0.209165 13:-0.935936 14:-0.904017 15:-0.691481 16:0.299909 17:-0.94495 18:-0.899291 19:-0.513068 20:-0.397131 21:-0.345411 22:0.560444 23:-0.879559 24:-0.2397 25:-0.373171 26:-0.522028 27:-0.480135 28:-0.700366 29:-0.26658 30:-0.493631 31:-0.598547 32:-0.758687 33:-0.262467 34:-0.293702 35:-0.646616 36:-0.729821 +-1024 1:-0.806044 2:-0.581684 3:-0.604552 4:0.499985 5:-0.975342 6:-0.587769 7:-0.619184 8:0.460407 9:-0.964091 10:-0.647075 11:-0.441041 12:0.592517 13:-0.95307 14:-0.830455 15:-0.458173 16:0.593487 17:-0.951027 18:-0.83088 19:-0.233083 20:-0.140813 21:-0.0458937 22:0.342922 23:-0.635474 24:-0.0495577 25:-0.0487805 26:0.279162 27:-0.618374 28:-0.230078 29:0.0923277 30:-0.181443 31:-0.537807 32:-0.505926 33:0.112861 34:-0.125868 35:-0.543161 36:-0.498182 +1024 1:-0.83668 2:-0.738784 3:-0.711238 4:0.276445 5:-0.986447 6:-0.765863 7:-0.690766 8:0.289891 9:-0.984804 10:-0.814225 11:-0.554364 12:0.473233 13:-0.975889 14:-0.907993 15:-0.567153 16:0.494994 17:-0.976111 18:-0.907924 19:-0.384891 20:-0.468803 21:-0.277778 22:0.120577 23:-0.815235 24:-0.515997 25:-0.307317 26:0.123164 27:-0.793152 28:-0.593199 29:-0.13394 30:-0.103851 31:-0.769595 32:-0.762215 33:-0.131234 34:-0.0514003 35:-0.773778 36:-0.756771 +1024 1:-0.817636 2:-0.731176 3:-0.652916 4:0.199025 5:-0.983003 6:-0.811031 7:-0.677881 8:0.382745 9:-0.987859 10:-0.781651 11:-0.526799 12:0.497043 13:-0.976047 14:-0.903713 15:-0.541059 16:0.49975 17:-0.975131 18:-0.905728 19:-0.160043 20:-0.386898 21:-0.157005 22:-0.107748 23:-0.705046 24:-0.537558 25:-0.143902 26:0.412536 27:-0.8122 28:-0.421851 29:0.0637191 30:-0.0352975 31:-0.751403 32:-0.704972 33:0.0682415 34:-0.0891591 35:-0.73193 36:-0.717001 +-1024 1:-0.825295 2:-0.705037 3:-0.698435 4:0.150599 5:-0.970312 6:-0.783359 7:-0.719399 8:0.355164 9:-0.978522 10:-0.742699 11:-0.594181 12:0.389063 13:-0.960351 14:-0.896711 15:-0.611665 16:0.414754 17:-0.960392 18:-0.895586 19:-0.288937 20:-0.373201 21:-0.18599 22:-0.0641543 23:-0.728881 24:-0.535522 25:-0.231707 26:0.331401 27:-0.777988 28:-0.414471 29:-0.0871261 30:-0.171059 31:-0.69492 32:-0.700087 33:-0.0761155 34:-0.0299519 35:-0.723731 36:-0.681489 +1024 1:-0.824881 2:-0.739334 3:-0.669986 4:0.186553 5:-0.982866 6:-0.814066 7:-0.696492 8:0.364441 9:-0.988174 10:-0.788596 11:-0.54977 12:0.479389 13:-0.976132 14:-0.90722 15:-0.564083 16:0.481004 17:-0.975079 18:-0.90935 19:-0.213033 20:-0.409852 21:-0.21256 22:-0.136883 23:-0.700884 24:-0.55073 25:-0.2 26:0.348809 27:-0.808523 28:-0.458295 29:-0.00390117 30:-0.0591385 31:-0.754471 32:-0.720719 34:-0.129396 35:-0.731078 36:-0.735713 +-1024 1:-0.857793 2:-0.652431 3:-0.751067 4:0.269976 5:-0.956739 6:-0.632383 7:-0.759485 8:-0.356657 9:-0.816977 10:-0.830914 11:-0.765697 12:0.353053 13:-0.902497 14:-0.798924 15:-0.771297 16:-0.33239 17:-0.7655 18:-0.911956 19:-0.485141 20:-0.510451 21:-0.413043 22:0.105984 23:-0.853009 24:-0.572188 25:-0.382927 26:-0.539615 27:-0.566874 28:-0.780066 29:-0.396619 30:0.0865524 31:-0.785374 32:-0.69664 33:-0.372703 34:-0.50351 35:-0.640855 36:-0.829301 +-1024 1:-0.826537 2:-0.465387 3:-0.682788 4:0.0564541 5:-0.801798 6:-0.454856 7:-0.690766 8:0.015512 9:-0.772038 10:-0.505626 11:-0.595712 12:-0.255296 13:-0.7084 14:-0.804542 15:-0.607061 16:-0.354301 17:-0.676545 18:-0.827777 19:-0.232367 20:-0.223405 21:-0.125604 22:-0.177452 23:-0.489112 24:-0.325206 25:-0.170732 26:-0.12065 27:-0.442043 28:-0.347817 29:0.00130039 30:-0.596095 31:-0.42038 32:-0.609642 33:0.00262467 34:-0.759281 35:-0.356149 36:-0.657459 +1024 1:-0.825916 2:-0.648372 3:-0.732575 4:0.0537982 5:-0.912998 6:-0.686508 7:-0.72942 8:0.126115 9:-0.930951 10:-0.738796 11:-0.649311 12:0.0965863 13:-0.896851 14:-0.885816 15:-0.665388 16:0.102996 17:-0.892825 18:-0.888376 19:-0.18439 20:-0.37983 21:-0.18599 22:0.0975756 23:-0.752829 24:-0.444653 25:-0.202439 26:-0.120061 27:-0.647027 28:-0.582368 29:-0.0481144 30:-0.23847 31:-0.684286 32:-0.717315 33:-0.0367454 34:-0.260195 35:-0.672594 36:-0.72877 +-1024 1:-0.919892 2:-0.860321 3:-0.877667 4:-0.0768449 5:-0.975145 6:-0.894985 7:-0.881174 8:-0.028774 9:-0.977618 10:-0.913189 11:-0.839204 12:0.163525 13:-0.966886 14:-0.956727 15:-0.854183 16:0.201916 17:-0.968415 18:-0.956421 19:-0.747941 20:-0.720567 21:-0.635266 22:-0.126725 23:-0.903122 24:-0.792073 25:-0.65122 26:0.00624335 27:-0.911299 28:-0.818883 29:-0.596879 30:0.0420907 31:-0.897216 32:-0.875804 33:-0.587927 34:0.066426 35:-0.899918 36:-0.878829 +-410.0456940265869 1:-0.846616 2:-0.743727 3:-0.788051 4:0.100797 5:-0.961036 6:-0.763731 7:-0.782391 8:0.0315625 9:-0.948709 10:-0.82782 11:-0.725881 12:0.167837 13:-0.937576 14:-0.917275 15:-0.729854 16:0.222392 17:-0.942589 18:-0.916937 19:-0.592553 20:-0.556873 21:-0.47343 22:0.177707 23:-0.890282 24:-0.574366 25:-0.482927 26:-0.079116 27:-0.767285 28:-0.690372 29:-0.370611 30:-0.116518 31:-0.796049 32:-0.807217 33:-0.391076 34:-0.100422 35:-0.788109 36:-0.804035 +1024 1:-0.844132 2:-0.820144 3:-0.751067 4:0.127167 5:-0.991395 6:-0.866814 7:-0.740873 8:0.163456 9:-0.989016 10:-0.883113 11:-0.673813 12:0.445061 13:-0.984713 14:-0.929284 15:-0.693016 16:0.425111 17:-0.982171 18:-0.932751 19:-0.576799 20:-0.63084 21:-0.374396 22:0.218475 23:-0.950905 24:-0.702324 25:-0.382927 26:0.224516 27:-0.921809 28:-0.73281 29:-0.355007 30:0.358678 31:-0.910603 32:-0.768772 33:-0.354331 34:0.245938 35:-0.894073 36:-0.797201 +-1009.636541606734 1:-0.877044 2:-0.510757 3:-0.681366 4:-0.223161 5:-0.786012 6:-0.665393 7:-0.692198 8:-0.187211 9:-0.785793 10:-0.682393 11:-0.664625 12:-0.263557 13:-0.695368 14:-0.803038 15:-0.677667 16:-0.271134 17:-0.685758 18:-0.813726 19:-0.723595 20:-0.53711 21:-0.531401 22:-0.13529 23:-0.787382 24:-0.641767 25:-0.541463 26:-0.0804595 27:-0.765993 28:-0.68755 29:-0.508453 30:-0.165583 31:-0.725367 32:-0.755137 33:-0.503937 34:-0.192032 35:-0.715921 36:-0.77304 +1024 1:-0.58373 2:-0.262594 3:-0.284495 4:-0.0559278 5:-0.730068 6:-0.460675 7:-0.229778 8:-0.152738 9:-0.718811 10:-0.559421 11:-0.160796 12:-0.123566 13:-0.678464 14:-0.701835 15:-0.177283 16:-0.105267 17:-0.676603 18:-0.707591 19:-0.0118153 20:-0.381927 21:-0.120773 22:0.280727 23:-0.836061 24:-0.450263 25:-0.112195 26:0.0135644 27:-0.732119 28:-0.596595 29:0.0351105 30:-0.118699 31:-0.729056 32:-0.714238 33:0.0262467 34:-0.160886 35:-0.711635 36:-0.725894 +-1024 1:-0.764024 2:-0.565419 3:-0.519203 4:0.551549 5:-0.980816 6:-0.608032 7:-0.520401 8:0.596602 9:-0.979093 10:-0.651432 11:-0.264931 12:0.721161 13:-0.965754 14:-0.830897 15:-0.278588 16:0.739969 17:-0.966376 18:-0.830574 19:0.213033 20:-0.0882204 21:0.198068 22:0.463297 23:-0.677099 24:-0.045752 25:0.214634 26:0.427903 27:-0.642927 28:-0.163818 29:0.425228 30:-0.0249314 31:-0.577561 32:-0.461406 33:0.461942 34:0.0282421 35:-0.589989 36:-0.463845 +-1024 1:-0.837715 2:-0.797851 3:-0.728307 4:0.110026 5:-0.986301 6:-0.857866 7:-0.727989 8:0.132557 9:-0.981853 10:-0.872858 11:-0.683002 12:0.37458 13:-0.973556 14:-0.921704 15:-0.703761 16:0.312857 17:-0.966335 18:-0.929622 19:-0.556749 20:-0.61758 21:-0.364734 22:0.13801 23:-0.928319 24:-0.702644 25:-0.363415 26:0.178449 27:-0.904795 28:-0.73096 29:-0.362809 30:0.273912 31:-0.883265 32:-0.757308 33:-0.364829 34:0.147769 35:-0.860292 36:-0.787484 +-1024 1:-0.722832 2:-0.410753 3:-0.520626 4:-0.0541042 5:-0.778705 6:-0.5308 7:-0.494631 8:-0.14578 9:-0.76322 10:-0.621692 11:-0.419602 12:-0.0782304 13:-0.755166 14:-0.77677 15:-0.43208 16:-0.0676605 17:-0.752811 18:-0.783653 19:-0.168636 20:-0.415524 21:-0.21256 22:0.248241 23:-0.841115 24:-0.471253 25:-0.207317 26:-0.0103098 27:-0.734608 28:-0.612393 29:-0.0845254 30:-0.131042 31:-0.734835 32:-0.730011 33:-0.0944882 34:-0.177567 35:-0.715627 36:-0.742245 +658.871696314486 1:-0.734217 2:-0.37407 3:-0.459459 4:0.891106 5:-0.942776 6:-0.14133 7:-0.460272 8:-0.646967 9:-0.635883 10:-0.750894 11:-0.375191 12:-0.652303 13:-0.618681 14:-0.840071 15:-0.381427 16:-0.42607 17:-0.659419 18:-0.816497 19:0.321876 20:-0.155678 21:0.304348 22:0.97724 23:-0.855267 24:0.0402205 25:0.343902 26:-0.594204 27:-0.391299 28:-0.62292 29:0.547464 30:-0.800159 31:-0.456242 32:-0.700049 33:0.564304 34:-0.469867 35:-0.524442 36:-0.640485 +1024 1:-0.810805 2:-0.713813 3:-0.644381 4:0.297735 5:-0.98413 6:-0.760043 7:-0.622047 8:0.291589 9:-0.981957 10:-0.814416 11:-0.497703 12:0.512532 13:-0.974056 14:-0.896621 15:-0.514965 16:0.525728 17:-0.97341 18:-0.896341 19:-0.0748299 20:-0.366993 21:-0.0748792 22:0.376082 23:-0.841042 24:-0.390542 25:-0.095122 26:0.135558 27:-0.759773 28:-0.551245 29:0.144343 30:0.029024 31:-0.778684 32:-0.712566 33:0.144357 34:0.127126 35:-0.791482 36:-0.697656 +-345.5303565761241 1:-0.867729 2:-0.688017 3:-0.795164 4:0.247358 5:-0.964271 6:-0.657587 7:-0.802434 8:-0.350498 9:-0.826975 10:-0.843994 11:-0.784074 12:0.240424 13:-0.907023 14:-0.850246 15:-0.794321 16:-0.206385 17:-0.818808 18:-0.917755 19:-0.544576 20:-0.544372 21:-0.475845 22:0.111963 23:-0.873899 24:-0.59423 25:-0.44878 26:-0.521798 27:-0.585436 28:-0.790882 29:-0.453836 30:0.0476031 31:-0.796733 32:-0.733501 33:-0.44357 34:-0.430779 35:-0.676311 36:-0.837609 +-21.04489983944948 1:-0.732561 2:-0.276098 3:-0.4367 4:0.791037 5:-0.897304 6:-0.0696154 7:-0.40587 8:-0.528052 9:-0.608607 10:-0.648943 11:-0.388974 12:-0.344725 13:-0.581733 14:-0.700927 15:-0.410591 16:-0.371702 17:-0.564895 18:-0.715567 19:-0.0762621 20:-0.150272 21:0.0676329 22:0.76134 23:-0.805371 24:0.0127938 25:0.158537 26:-0.701835 27:-0.308755 28:-0.630675 29:0.19896 30:-0.52073 31:-0.440366 32:-0.574914 33:0.191601 34:-0.59674 35:-0.409558 36:-0.606208 +1024 1:-0.832126 2:-0.622064 3:-0.697013 4:0.484245 5:-0.980324 6:-0.583489 7:-0.693629 8:0.0445668 9:-0.91429 10:-0.757124 11:-0.595712 12:0.338502 13:-0.927652 14:-0.855474 15:-0.61627 16:0.317326 17:-0.920874 18:-0.859225 19:-0.108485 20:-0.207561 21:-0.0458937 22:0.502839 23:-0.773157 24:-0.14443 25:-0.0243902 26:-0.185979 27:-0.483844 28:-0.448581 29:0.0793238 30:-0.147774 31:-0.58968 32:-0.552541 33:0.0839895 34:-0.190006 35:-0.566656 36:-0.56516 +1024 1:-0.870213 2:-0.682119 3:-0.759602 4:0.326657 5:-0.973918 6:-0.649487 7:-0.7466 8:0.0249414 9:-0.936574 10:-0.809246 11:-0.686064 12:0.197134 13:-0.92381 14:-0.890766 15:-0.696086 16:0.300713 17:-0.934382 18:-0.882663 19:-0.553885 20:-0.446018 21:-0.36715 22:0.382932 23:-0.873854 24:-0.389308 25:-0.365854 26:-0.202115 27:-0.674002 28:-0.668764 29:-0.315995 30:-0.234749 31:-0.680777 32:-0.72556 33:-0.325459 34:0.00486684 35:-0.728395 36:-0.674833 +-1024 1:-0.793832 2:-0.415592 3:-0.58037 4:0.0619129 5:-0.821224 6:-0.510367 7:-0.58912 8:-0.00757593 9:-0.782628 10:-0.554 11:-0.557427 12:-0.00254074 13:-0.727827 14:-0.72145 15:-0.568688 16:-0.112803 17:-0.696451 18:-0.749158 19:-0.239527 20:-0.256022 21:-0.0990338 22:-0.183219 23:-0.601427 24:-0.466641 25:-0.109756 26:-0.14762 27:-0.537027 28:-0.478188 29:-0.0637191 30:-0.169073 31:-0.568386 32:-0.543064 33:-0.0524934 34:-0.323591 35:-0.51953 36:-0.5923 +1024 1:-0.691368 2:-0.337306 3:-0.41963 4:0.116574 5:-0.819371 6:-0.484869 7:-0.425913 8:0.29219 9:-0.838117 10:-0.46144 11:-0.402757 12:-0.0306961 13:-0.696751 14:-0.692428 15:-0.412126 16:-0.0451426 17:-0.688014 18:-0.703581 19:0.230218 20:-0.183388 21:0.173913 22:0.0868578 23:-0.678103 24:-0.373033 25:0.214634 26:0.225249 27:-0.68223 28:-0.391781 29:0.248375 30:-0.0562616 31:-0.594136 32:-0.503662 33:0.24147 34:-0.0566562 35:-0.583375 36:-0.506387 +1024 1:-0.718278 2:-0.392519 3:-0.477952 4:0.20187 5:-0.848606 6:-0.471325 7:-0.487473 8:0.234226 9:-0.843222 10:-0.506392 11:-0.408882 12:0.144738 13:-0.785231 14:-0.728279 15:-0.404451 16:0.104037 17:-0.78189 18:-0.751891 19:0.55102 20:-0.0306738 21:0.405797 22:0.197202 23:-0.565829 24:-0.13289 25:0.409756 26:0.182609 27:-0.519663 28:-0.207951 29:0.443433 30:0.173611 31:-0.510413 32:-0.243015 33:0.506562 34:-0.288084 35:-0.401095 36:-0.406837 +1024 1:-0.817636 2:-0.787284 3:-0.687055 4:0.118275 5:-0.985177 6:-0.856255 7:-0.697924 8:0.230407 9:-0.98749 10:-0.853582 11:-0.586524 12:0.415781 13:-0.979389 14:-0.927919 15:-0.597851 16:0.445644 17:-0.980021 18:-0.927295 19:-0.347655 20:-0.534963 21:-0.272947 22:0.190196 23:-0.898091 24:-0.617547 25:-0.236585 26:0.284723 27:-0.896464 28:-0.661908 29:-0.0975293 30:0.155635 31:-0.871992 32:-0.795178 33:-0.0682415 34:0.241904 35:-0.885018 36:-0.789743 +-1024 1:-0.798385 2:-0.471528 3:-0.631579 4:0.0268042 5:-0.842515 6:-0.574468 7:-0.639227 8:0.209836 9:-0.84873 10:-0.50875 11:-0.578867 12:-0.0385508 13:-0.782953 14:-0.798781 15:-0.590177 16:0.0207959 17:-0.788845 18:-0.795975 19:-0.16792 20:-0.1915 22:-0.128263 23:-0.581619 24:-0.40281 25:-0.0682927 26:0.308518 27:-0.640222 28:-0.234217 29:0.0715215 30:-0.286644 31:-0.534017 32:-0.561312 33:0.0813648 34:-0.173415 35:-0.559204 36:-0.546865 +-1024 1:-0.788243 2:-0.559528 3:-0.607397 4:0.348896 5:-0.940481 6:-0.567583 7:-0.609162 8:0.143758 9:-0.912432 10:-0.703874 11:-0.514548 12:0.267818 13:-0.897403 14:-0.834385 15:-0.521105 16:0.27015 17:-0.896446 18:-0.84091 19:-0.00537057 20:-0.20212 21:0.0507246 22:0.502166 23:-0.772881 24:-0.164668 25:0.0780488 26:-0.00453344 27:-0.60253 28:-0.451119 29:0.185956 30:0.0539508 31:-0.646626 32:-0.514822 33:0.183727 34:-0.0701531 35:-0.612092 36:-0.552558 +-1024 1:-0.698406 2:-0.275214 3:-0.41963 4:0.0930132 5:-0.766019 6:-0.395794 7:-0.410165 8:0.175442 9:-0.753277 10:-0.376735 11:-0.364472 12:-0.125663 13:-0.636938 14:-0.664243 15:-0.399847 16:-0.0502431 17:-0.630898 18:-0.641731 19:0.217329 20:-0.0733673 21:0.282609 22:-0.220493 23:-0.459979 24:-0.337336 25:0.25122 26:0.23788 27:-0.539526 28:-0.178987 29:0.370611 30:-0.418907 31:-0.405772 32:-0.471741 33:0.299213 34:-0.111494 35:-0.449712 36:-0.364381 +-1024 1:-0.866901 2:-0.774378 3:-0.826458 4:0.193162 5:-0.985149 6:-0.772944 7:-0.813887 8:-0.0807648 9:-0.942681 10:-0.870892 11:-0.756508 12:0.29583 13:-0.960646 14:-0.915831 15:-0.786646 16:0.15 17:-0.940054 18:-0.932874 19:-0.60759 20:-0.614782 21:-0.565217 22:0.0848389 23:-0.905308 24:-0.657816 25:-0.536585 26:-0.388819 27:-0.685101 28:-0.803524 29:-0.518856 30:0.0502387 31:-0.841767 32:-0.795412 33:-0.514436 34:-0.231546 35:-0.775238 36:-0.853548 +-1024 1:-0.867315 2:-0.808033 3:-0.822191 4:0.0240443 5:-0.978516 6:-0.858552 7:-0.83393 8:0.0832163 9:-0.972837 10:-0.85199 11:-0.816233 12:0.255981 13:-0.959535 14:-0.922818 15:-0.829624 16:0.23206 17:-0.954895 18:-0.930066 19:-0.636233 20:-0.662531 21:-0.567633 22:-0.208685 23:-0.860298 24:-0.78753 25:-0.578049 26:-0.033911 27:-0.848082 28:-0.759006 29:-0.563069 30:-0.000923387 31:-0.842805 32:-0.821194 33:-0.551181 34:-0.142785 35:-0.805503 36:-0.850439 +-1024 1:-0.821983 2:-0.655337 3:-0.658606 4:0.3989 5:-0.980757 6:-0.670739 7:-0.66786 8:0.380538 9:-0.974569 10:-0.725818 11:-0.517611 12:0.556389 13:-0.965608 14:-0.864329 15:-0.533384 16:0.578382 17:-0.965681 18:-0.862907 19:-0.326889 20:-0.24059 21:-0.205314 22:0.209429 23:-0.65144 24:-0.179424 25:-0.217073 26:0.185332 27:-0.636562 28:-0.322543 29:-0.0429129 30:-0.215706 31:-0.598209 32:-0.604562 33:-0.0262467 34:-0.0995531 35:-0.623661 36:-0.589045 +7.342509335835135 1:-0.851377 2:-0.689451 3:-0.775249 4:0.344061 5:-0.970073 6:-0.608407 7:-0.758053 8:-0.0569632 9:-0.927096 10:-0.833378 11:-0.699847 12:0.151468 13:-0.920862 14:-0.900056 15:-0.697621 16:0.253192 17:-0.932381 18:-0.894235 19:-0.515217 20:-0.383694 21:-0.345411 22:0.570354 23:-0.87356 24:-0.213867 25:-0.37561 26:-0.565006 27:-0.442191 28:-0.698152 29:-0.263979 30:-0.533945 31:-0.576993 32:-0.756559 33:-0.262467 34:-0.329706 35:-0.626717 36:-0.726636 +-1024 1:-0.717864 2:-0.244712 3:-0.401138 4:0.484294 5:-0.816958 6:-0.152329 7:-0.394417 8:-0.246907 9:-0.638 10:-0.502541 11:-0.316998 12:-0.352115 13:-0.58364 14:-0.700402 15:-0.333845 16:-0.294226 17:-0.58612 18:-0.697644 19:0.0247046 20:-0.129975 21:0.0990338 22:0.314233 23:-0.661254 24:-0.144469 25:0.163415 26:-0.290269 27:-0.399526 28:-0.435495 29:0.263979 30:-0.481057 31:-0.450102 32:-0.560514 33:0.288714 34:-0.491985 35:-0.43734 36:-0.573095 +1024 1:-0.85117 2:-0.65369 3:-0.779516 4:-0.0360572 5:-0.879889 6:-0.675027 7:-0.76378 8:0.273781 9:-0.940048 10:-0.650794 11:-0.698315 12:0.00960071 13:-0.86814 14:-0.880381 15:-0.71911 16:-0.0616333 17:-0.846805 18:-0.891767 19:-0.413534 20:-0.371776 21:-0.333333 22:-0.20447 23:-0.559363 24:-0.424011 25:-0.353659 26:-0.185576 27:-0.505358 28:-0.47341 29:-0.152146 30:-0.652454 31:-0.509285 32:-0.736818 33:-0.165354 34:-0.761154 35:-0.454168 36:-0.761445 +1024 1:-0.734424 2:-0.37689 3:-0.460882 4:0.886572 5:-0.942792 6:-0.145329 7:-0.463135 8:-0.641866 9:-0.639639 10:-0.752426 11:-0.376723 12:-0.647272 13:-0.622353 14:-0.841432 15:-0.384497 16:-0.424414 17:-0.662022 18:-0.81836 19:0.32474 20:-0.155608 21:0.306763 22:0.982326 23:-0.856656 24:0.0407417 25:0.346341 26:-0.595468 27:-0.390718 28:-0.62307 29:0.552666 30:-0.803555 31:-0.455629 32:-0.700624 33:0.566929 34:-0.474689 35:-0.523031 36:-0.64114 +-1024 1:-0.863175 2:-0.843417 3:-0.830725 4:0.0280894 5:-0.98821 6:-0.88799 7:-0.839656 8:0.114128 9:-0.987011 10:-0.880585 11:-0.797856 12:0.313281 13:-0.978395 14:-0.940896 15:-0.81274 16:0.320393 17:-0.977445 18:-0.943277 19:-0.649839 20:-0.694864 21:-0.599034 22:-0.190054 23:-0.8844 24:-0.80673 25:-0.609756 26:-0.0324956 27:-0.867819 28:-0.782943 29:-0.591678 30:0.0126908 31:-0.865013 32:-0.844898 33:-0.582677 34:-0.0861919 35:-0.838518 36:-0.864862 +-852.2934887110946 1:-0.734217 2:-0.420599 3:-0.523471 4:0.0386091 5:-0.823982 6:-0.542946 7:-0.534717 8:0.367315 9:-0.865697 10:-0.447538 11:-0.424196 12:-0.0229935 13:-0.779163 14:-0.783824 15:-0.43208 16:0.0104718 17:-0.781555 18:-0.786838 19:0.373434 20:-0.0333419 21:0.285024 22:-0.0887917 23:-0.421838 24:-0.182035 25:0.270732 26:0.451282 27:-0.586124 28:-0.0573636 29:0.427828 30:-0.24789 31:-0.451245 32:-0.425425 33:0.461942 34:-0.313667 35:-0.42856 36:-0.456143 +-1024 1:-0.854481 2:-0.749782 3:-0.786629 4:0.183505 5:-0.981119 6:-0.777642 7:-0.798139 8:0.118324 9:-0.961622 10:-0.807991 11:-0.724349 12:0.343888 13:-0.961172 14:-0.904692 15:-0.737529 16:0.332226 17:-0.958318 18:-0.909895 19:-0.546008 20:-0.495465 21:-0.442029 22:-0.12414 23:-0.764656 24:-0.610225 25:-0.45122 26:-0.133912 27:-0.685268 28:-0.633178 29:-0.391417 30:-0.0251542 31:-0.758408 32:-0.718032 33:-0.375328 34:-0.124159 35:-0.733704 36:-0.750651 +-1024 1:-0.864624 2:-0.761801 3:-0.796586 4:-0.00420423 5:-0.960412 6:-0.829039 7:-0.803865 8:0.0920709 9:-0.958637 10:-0.814165 11:-0.800919 12:0.221357 13:-0.935693 14:-0.897859 15:-0.811205 16:0.16271 17:-0.92596 18:-0.91199 19:-0.621912 20:-0.630799 21:-0.528986 22:-0.216349 23:-0.843748 24:-0.7727 25:-0.54878 26:-0.0187444 27:-0.834845 28:-0.73296 29:-0.537061 30:0.00297433 31:-0.824958 32:-0.795358 33:-0.514436 34:-0.184017 35:-0.778536 36:-0.836943 +1024 1:-0.737321 2:-0.449438 3:-0.503556 4:0.0627329 5:-0.855768 6:-0.591712 7:-0.530422 8:0.0026002 9:-0.824132 10:-0.625322 11:-0.509954 12:0.161732 13:-0.792514 14:-0.730721 15:-0.51957 16:0.0714983 17:-0.770459 18:-0.752847 19:0.00179019 20:-0.30287 21:0.0120773 22:0.167677 23:-0.771474 24:-0.440812 25:-0.0268293 26:0.195024 27:-0.72597 28:-0.462893 29:0.0247074 30:0.124351 31:-0.693543 32:-0.543026 33:0.0209974 34:0.101643 35:-0.677503 36:-0.546394 +1024 1:-0.685779 2:-0.280005 3:-0.403983 4:0.378166 5:-0.828723 6:-0.284526 7:-0.3801 8:-0.140308 9:-0.71865 10:-0.549855 11:-0.358346 12:-0.22047 13:-0.638017 14:-0.704464 15:-0.379893 16:0.0768285 17:-0.688081 18:-0.649587 19:0.0118153 20:-0.222944 21:0.031401 22:0.539675 23:-0.798078 24:-0.177865 25:0.0756098 26:-0.160962 27:-0.58062 28:-0.537152 29:0.102731 30:-0.316907 31:-0.553894 32:-0.598982 33:0.0944882 34:-0.0229049 35:-0.610983 36:-0.52609 +1024 1:-0.808114 2:-0.551791 3:-0.657183 4:0.0790419 5:-0.89321 6:-0.637409 7:-0.646385 8:0.389432 9:-0.933302 10:-0.584153 11:-0.568147 12:0.227394 13:-0.881696 14:-0.824574 15:-0.580967 16:0.271085 17:-0.884627 18:-0.82283 19:-0.0955961 20:-0.177779 21:0.00966184 22:0.0714081 23:-0.636519 24:-0.312402 25:0.0292683 26:0.368739 27:-0.673408 28:-0.2444 29:0.123537 30:-0.0887333 31:-0.583626 32:-0.510464 33:0.12336 34:-0.0318244 35:-0.589491 36:-0.502222 +1024 1:-0.68847 2:-0.58308 3:-0.439545 4:-0.0652542 5:-0.907912 6:-0.78144 7:-0.430208 8:-0.00601647 9:-0.908631 10:-0.790093 11:-0.399694 12:0.132503 13:-0.883152 14:-0.857136 15:-0.407521 16:0.0945903 17:-0.877269 18:-0.869389 19:-0.0383101 20:-0.534134 21:-0.0797101 22:0.177559 23:-0.910036 24:-0.672065 25:-0.0634146 26:0.239963 27:-0.89244 28:-0.696596 29:-0.0689207 30:0.313334 31:-0.865374 32:-0.717684 33:-0.0761155 34:0.167363 35:-0.841019 36:-0.751999 +-804.8984131612015 1:-0.850756 2:-0.657396 3:-0.780939 4:-0.0409285 5:-0.880047 6:-0.679035 7:-0.766643 8:0.271633 9:-0.940983 10:-0.65413 11:-0.701378 12:0.00502653 13:-0.868389 14:-0.882193 15:-0.720645 16:-0.0632898 17:-0.84756 18:-0.8931 19:-0.412818 20:-0.374661 21:-0.335749 22:-0.197691 23:-0.563173 24:-0.422517 25:-0.358537 26:-0.180353 27:-0.510328 28:-0.474492 29:-0.146944 30:-0.672147 31:-0.506988 32:-0.743076 33:-0.16273 34:-0.760114 35:-0.459744 36:-0.765117 +1024 1:-0.826744 2:-0.731921 3:-0.598862 4:0.136995 5:-0.983009 6:-0.85122 7:-0.722262 8:0.52755 9:-0.99697 10:-0.745801 11:-0.51608 12:0.602249 13:-0.983924 14:-0.89769 15:-0.52878 16:0.604304 17:-0.983306 18:-0.899571 19:-0.101325 20:-0.329117 21:-0.0603865 22:-0.240215 23:-0.637093 24:-0.552205 25:-0.0560976 26:0.945814 27:-0.916961 28:-0.232541 29:0.115735 30:0.1156 31:-0.749824 32:-0.63099 33:0.115486 34:0.0771729 35:-0.737337 36:-0.644238 +1024 1:-0.806458 2:-0.595824 3:-0.671408 4:-0.0263881 5:-0.886697 6:-0.698765 7:-0.66786 8:0.357701 9:-0.939992 10:-0.621309 11:-0.592649 12:0.0711366 13:-0.869973 14:-0.860661 15:-0.600921 16:0.203285 17:-0.887209 18:-0.849375 19:-0.315431 20:-0.363302 21:-0.198068 22:-0.0609807 23:-0.703987 24:-0.498159 25:-0.160976 26:0.291016 27:-0.783002 28:-0.465431 29:-0.0975293 30:-0.212309 31:-0.665296 32:-0.685046 33:-0.0761155 34:-0.0962332 35:-0.684691 36:-0.665312 +-1024 1:-0.81598 2:-0.67883 3:-0.715505 4:0.0513625 5:-0.932601 6:-0.738762 7:-0.709377 8:0.145026 9:-0.944317 10:-0.763843 11:-0.666156 12:0.0457207 13:-0.896172 14:-0.899876 15:-0.671527 16:0.27434 17:-0.92544 18:-0.878268 19:-0.322592 20:-0.451186 21:-0.285024 22:0.0456019 23:-0.783668 24:-0.52263 25:-0.204878 26:0.0174943 27:-0.756784 28:-0.622551 29:-0.120936 30:-0.221627 31:-0.725408 32:-0.759908 33:-0.125984 34:-0.0451675 35:-0.755411 36:-0.73059 +-1024 1:-0.754295 2:-0.201366 3:-0.462304 4:0.172288 5:-0.701535 6:-0.184964 7:-0.478883 8:0.284565 9:-0.727604 10:-0.220075 11:-0.427259 12:-0.175971 13:-0.541435 14:-0.58705 15:-0.43515 16:-0.27507 17:-0.507184 18:-0.619331 19:-0.119227 20:0.0578103 21:0.103865 22:0.081205 23:-0.357473 24:0.075937 25:0.095122 26:0.110922 27:-0.377548 28:-0.067038 29:0.175553 30:-0.447676 31:-0.242037 32:-0.314082 33:0.178478 34:-0.434189 35:-0.21743 36:-0.304622 +-1024 1:-0.934175 2:-0.680898 3:-0.843528 4:-0.222928 5:-0.837462 6:-0.742556 7:-0.858268 8:-0.113077 9:-0.866609 10:-0.753647 11:-0.811639 12:-0.192154 13:-0.800096 14:-0.8896 15:-0.828089 16:-0.184146 17:-0.792145 18:-0.894063 19:-0.83387 20:-0.582636 21:-0.615942 22:-0.281945 23:-0.740785 24:-0.690484 25:-0.631707 26:-0.123236 27:-0.761672 28:-0.710479 29:-0.594278 30:-0.243547 31:-0.710288 32:-0.786103 33:-0.595801 34:-0.258929 35:-0.699327 36:-0.798966 +1024 1:-0.755537 2:-0.350719 3:-0.497866 4:0.345866 5:-0.848971 6:-0.341524 7:-0.483178 8:-0.174894 9:-0.737391 10:-0.60105 11:-0.467075 12:-0.238115 13:-0.657517 14:-0.738117 15:-0.493477 16:0.0665289 17:-0.710353 18:-0.683171 19:-0.189402 20:-0.255567 21:-0.0700483 22:0.485221 23:-0.79892 24:-0.208635 25:-0.0341463 26:-0.179628 27:-0.583109 28:-0.552811 29:-0.0169051 30:-0.328424 31:-0.558504 32:-0.616633 33:-0.0262467 34:-0.0317249 35:-0.616669 36:-0.541179 +1024 1:-0.823846 2:-0.74267 3:-0.668563 4:0.249622 5:-0.988247 6:-0.802901 7:-0.680744 8:0.355719 9:-0.990888 10:-0.811646 11:-0.546708 12:0.624824 13:-0.985602 14:-0.894749 15:-0.556408 16:0.60213 17:-0.983793 18:-0.899813 19:-0.0855711 20:-0.367572 21:-0.0193237 22:0.284736 23:-0.829926 24:-0.449638 25:-0.0219512 26:0.351747 27:-0.817336 28:-0.493477 29:0.136541 30:0.431556 31:-0.831219 32:-0.605886 33:0.152231 34:0.194882 35:-0.790569 36:-0.664418 +1024 1:-0.839785 2:-0.74227 3:-0.752489 4:0.0924991 5:-0.966821 6:-0.796255 7:-0.780959 8:0.101018 9:-0.956168 10:-0.806995 11:-0.712098 12:0.28937 13:-0.950199 14:-0.902258 15:-0.728319 16:0.269625 17:-0.944492 18:-0.9064 19:-0.308271 20:-0.460341 21:-0.236715 22:0.109172 23:-0.834052 24:-0.562064 25:-0.27561 26:0.194593 27:-0.810364 28:-0.570594 29:-0.19896 30:0.20559 31:-0.809338 32:-0.673072 33:-0.191601 34:0.14549 35:-0.790772 36:-0.686401 +-1024 1:-0.855723 2:-0.644638 3:-0.773826 4:0.497108 5:-0.976999 6:-0.499236 7:-0.792412 8:-0.39411 9:-0.816974 10:-0.85416 11:-0.738132 12:-0.0825678 13:-0.852395 14:-0.894648 15:-0.759018 16:-0.073819 17:-0.845293 18:-0.89689 19:-0.47082 20:-0.371686 21:-0.285024 22:0.767914 23:-0.922066 24:-0.180555 25:-0.24878 26:-0.722591 27:-0.414834 28:-0.757141 29:-0.185956 30:-0.43846 31:-0.607196 32:-0.734587 33:-0.188976 34:-0.488539 35:-0.579745 36:-0.749416 +1024 1:-0.861105 2:-0.884683 3:-0.836415 4:0.11464 5:-0.999017 6:-0.902339 7:-0.740873 8:0.0320317 9:-0.994861 10:-0.952967 11:-0.699847 12:0.398567 13:-0.994646 14:-0.96392 15:-0.71297 16:0.418067 17:-0.994606 18:-0.964094 19:-0.466523 20:-0.696719 21:-0.36715 22:0.343546 23:-0.988512 24:-0.752079 25:-0.307317 26:-0.0273156 27:-0.931076 28:-0.880136 29:-0.16775 30:0.227613 31:-0.948228 32:-0.893809 33:-0.165354 34:0.249177 35:-0.948565 36:-0.89336 +-1024 1:-0.847237 2:-0.855575 3:-0.830725 4:0.0802964 5:-0.993819 6:-0.885415 7:-0.769506 8:0.0889916 9:-0.991513 10:-0.91927 11:-0.701378 12:0.40818 13:-0.990746 14:-0.951266 15:-0.71604 16:0.408268 17:-0.989803 18:-0.953165 19:-0.588256 20:-0.691823 21:-0.574879 22:0.142919 23:-0.959719 24:-0.73718 25:-0.560976 26:-0.185002 27:-0.831739 28:-0.829555 29:-0.495449 30:0.130689 31:-0.909335 32:-0.858799 33:-0.506562 34:0.0256188 35:-0.888119 36:-0.877735 +1024 1:-0.806251 2:-0.69108 3:-0.645804 4:0.182079 5:-0.968672 6:-0.769614 7:-0.65927 8:0.365703 9:-0.977215 10:-0.747775 11:-0.534456 12:0.396656 13:-0.956538 14:-0.89002 15:-0.539524 16:0.463742 17:-0.960964 18:-0.886117 19:-0.316864 20:-0.426756 21:-0.217391 22:0.0795403 23:-0.801304 24:-0.532223 25:-0.185366 26:0.3029 27:-0.829579 28:-0.532898 29:-0.0845254 30:-0.0563544 31:-0.758333 32:-0.72594 33:-0.0734908 34:0.0695289 35:-0.777665 36:-0.70526 +-1024 1:-0.684123 2:-0.339272 3:-0.416785 4:0.12568 5:-0.810676 6:-0.459784 7:-0.428776 8:0.467709 9:-0.859305 10:-0.37571 11:-0.350689 12:-0.0333256 13:-0.731207 14:-0.731385 15:-0.358404 16:0.0106194 17:-0.735438 18:-0.732661 19:0.506624 20:0.0359898 21:0.388889 22:-0.0175359 23:-0.402604 24:-0.0989335 25:0.392683 26:0.470155 27:-0.545152 28:0.0125469 29:0.524057 30:-0.281123 31:-0.389655 32:-0.36606 33:0.56168 34:-0.320207 35:-0.372785 36:-0.390383 +-1024 1:-0.671497 2:-0.278355 3:-0.359886 4:0.526287 5:-0.861143 6:-0.245428 7:-0.367215 8:-0.0346286 9:-0.742268 10:-0.51646 11:-0.287902 12:0.0104293 13:-0.699479 14:-0.675847 15:-0.298542 16:-0.0151869 17:-0.69145 18:-0.691423 19:0.325456 20:-0.0329016 21:0.311594 22:0.570531 23:-0.690821 24:0.0143918 25:0.4 26:-0.0235724 27:-0.492337 28:-0.337963 29:0.435631 30:0.0331816 31:-0.513436 32:-0.337905 33:0.456693 34:-0.203096 35:-0.450991 36:-0.418362 +-1024 1:-0.837094 2:-0.932329 3:-0.899004 4:-0.0431438 5:-0.997585 6:-0.949349 7:-0.865426 8:0.00874553 9:-0.997089 10:-0.959448 11:-0.81317 12:0.34207 13:-0.996585 14:-0.975025 15:-0.828089 16:0.37331 17:-0.996986 18:-0.974713 19:-0.773004 20:-0.850279 21:-0.801932 22:-0.127299 23:-0.971206 24:-0.891208 25:-0.802439 26:-0.123631 27:-0.930284 28:-0.908546 29:-0.815345 30:0.0786271 31:-0.941915 32:-0.925415 33:-0.808399 34:0.0812165 35:-0.939456 36:-0.92897 +-1024 1:-0.668806 2:-0.311147 3:-0.375533 4:0.250907 5:-0.829239 6:-0.403511 7:-0.392985 8:0.213821 9:-0.799601 10:-0.441947 11:-0.353752 12:0.0474286 13:-0.698853 14:-0.660706 15:-0.349194 16:0.040698 17:-0.705498 18:-0.685512 19:0.651987 20:0.014714 21:0.480676 22:0.187412 23:-0.529271 24:-0.093461 25:0.487805 26:0.154439 27:-0.470867 28:-0.169707 29:0.495449 30:0.141287 31:-0.453381 32:-0.180399 33:0.553806 34:-0.324577 35:-0.339295 36:-0.353544 +-1024 1:-0.833575 2:-0.732247 3:-0.766714 4:0.0392394 5:-0.949687 6:-0.779492 7:-0.752326 8:0.139502 9:-0.962824 10:-0.808446 11:-0.713629 12:0.134355 13:-0.928395 14:-0.914428 15:-0.714505 16:0.33025 17:-0.950525 18:-0.898465 19:-0.395632 20:-0.495737 21:-0.350242 22:0.0657906 23:-0.822863 24:-0.561405 25:-0.285366 26:-0.0233569 27:-0.772817 28:-0.667234 29:-0.20156 30:-0.141909 31:-0.770088 32:-0.780979 33:-0.209974 34:0.00417029 35:-0.791255 36:-0.75572 +-1024 1:-0.654109 2:-0.214629 3:-0.376956 4:0.124927 5:-0.737283 6:-0.316099 7:-0.3801 8:0.543567 9:-0.802518 10:-0.177756 11:-0.246554 12:-0.0631804 13:-0.654567 14:-0.653344 15:-0.257099 16:-0.120848 17:-0.638874 18:-0.675751 19:0.515217 20:0.15017 21:0.466184 22:0.0659252 23:-0.377186 24:0.0071148 25:0.419512 26:0.588111 27:-0.477938 28:0.234411 29:0.641092 30:-0.174065 31:-0.317931 32:-0.204168 33:0.64042 34:-0.377099 35:-0.250524 36:-0.278187 +-1024 1:-0.778307 2:-0.547484 3:-0.581792 4:0.225529 5:-0.922173 6:-0.615036 7:-0.586256 8:0.323096 9:-0.929791 10:-0.636547 11:-0.477795 12:0.379771 13:-0.906667 14:-0.812606 15:-0.485802 16:0.302279 17:-0.895515 18:-0.829667 19:0.268887 20:-0.142204 21:0.21256 22:0.221634 23:-0.651662 24:-0.225235 25:0.221951 26:0.239705 27:-0.627835 28:-0.301659 29:0.313394 30:0.259277 31:-0.64035 32:-0.38591 33:0.372703 34:-0.144115 35:-0.552586 36:-0.513346 +1024 1:-0.856758 2:-0.893827 3:-0.826458 4:0.0738524 5:-0.998927 6:-0.922568 7:-0.823908 8:0.126412 9:-0.998606 10:-0.933652 11:-0.762634 12:0.493771 13:-0.998266 14:-0.9561 15:-0.775902 16:0.509762 17:-0.998214 18:-0.956338 19:-0.52381 20:-0.668785 21:-0.454106 22:0.168258 23:-0.949376 24:-0.717459 25:-0.390244 26:0.264017 27:-0.956552 28:-0.783581 29:-0.318596 30:0.420048 31:-0.949943 32:-0.82691 33:-0.325459 34:0.419353 35:-0.948003 36:-0.827725 +1024 1:-0.810391 2:-0.405256 3:-0.581792 4:0.733861 5:-0.921311 6:-0.139331 7:-0.599141 8:-0.498072 9:-0.663786 10:-0.71461 11:-0.545176 12:-0.416855 13:-0.648608 14:-0.804523 15:-0.556408 16:-0.241359 17:-0.681405 18:-0.78493 19:-0.270319 20:-0.133365 21:-0.0120773 22:0.833531 23:-0.791368 24:0.147754 25:0.0146341 26:-0.79698 27:-0.179855 28:-0.604778 29:0.0793238 30:-0.787825 31:-0.326035 32:-0.611222 33:0.0918635 34:-0.593366 35:-0.376343 36:-0.57987 +-222.7940351402248 1:-0.86835 2:-0.78263 3:-0.807966 4:0.231985 5:-0.989075 6:-0.773558 7:-0.759485 8:0.0384876 9:-0.973262 10:-0.885917 11:-0.701378 12:0.356444 13:-0.973161 14:-0.924641 15:-0.71911 16:0.397058 17:-0.974265 18:-0.921948 19:-0.589689 20:-0.541472 21:-0.432367 22:0.463418 23:-0.945512 24:-0.486879 25:-0.453659 26:-0.144258 27:-0.76002 28:-0.725744 29:-0.383615 30:-0.048559 31:-0.79512 32:-0.776615 33:-0.385827 34:0.108183 35:-0.821173 36:-0.74889 +-1024 1:-0.832747 2:-0.848785 3:-0.736842 4:0.0139039 5:-0.989502 6:-0.913304 7:-0.789549 8:0.215262 9:-0.996404 10:-0.888228 11:-0.667688 12:0.429411 13:-0.990512 14:-0.947838 15:-0.677667 16:0.455821 17:-0.990871 18:-0.947687 19:-0.566058 20:-0.658203 21:-0.444444 22:0.0128535 23:-0.918949 24:-0.752521 25:-0.468293 26:0.326558 27:-0.950701 28:-0.720418 29:-0.339402 30:0.195466 31:-0.917082 32:-0.84873 33:-0.335958 34:0.264266 35:-0.924443 36:-0.842277 +-1024 1:-0.834196 2:-0.617425 3:-0.721195 4:0.0577025 5:-0.896835 6:-0.648664 7:-0.707946 8:-0.00767505 9:-0.883287 10:-0.726341 11:-0.68147 12:0.0116976 13:-0.841903 14:-0.850126 15:-0.693016 16:-0.00139405 17:-0.834916 18:-0.858639 19:-0.566058 20:-0.509735 21:-0.456522 22:0.111715 23:-0.840264 24:-0.536643 25:-0.460976 26:-0.121713 27:-0.719318 28:-0.663523 29:-0.378414 30:-0.198528 31:-0.730454 32:-0.768202 33:-0.383202 34:-0.246617 35:-0.707745 36:-0.780947 +-1024 1:-0.705858 2:-0.387721 3:-0.415363 4:0.518625 5:-0.916536 6:-0.406303 7:-0.428776 8:0.597171 9:-0.921231 10:-0.452568 11:-0.217458 12:0.449162 13:-0.876447 14:-0.74857 15:-0.226401 16:0.466391 17:-0.876972 18:-0.750939 19:0.475832 20:0.0888896 21:0.425121 22:0.43295 23:-0.530642 24:0.14262 25:0.429268 26:0.443803 27:-0.516413 28:0.028789 29:0.576073 30:-0.175504 31:-0.382292 32:-0.290145 33:0.606299 34:-0.167906 35:-0.382052 36:-0.305884 +-1024 1:-0.769199 2:-0.451916 3:-0.55192 4:0.761516 5:-0.951122 6:-0.260273 7:-0.57194 8:-0.643287 9:-0.667086 10:-0.794272 11:-0.48392 12:-0.521909 13:-0.68857 14:-0.864213 15:-0.490407 16:-0.353252 17:-0.717702 18:-0.850304 19:0.288221 20:-0.192154 21:0.258454 22:1 23:-0.884807 24:-0.0129364 25:0.302439 26:-0.592882 27:-0.423346 28:-0.650622 29:0.524057 30:-0.674643 31:-0.521378 32:-0.709559 33:0.543307 34:-0.407259 35:-0.572376 36:-0.663454 +1024 1:-0.844339 2:-0.841453 3:-0.785206 4:-0.0108686 5:-0.985127 6:-0.903674 7:-0.819613 8:0.186306 9:-0.992595 10:-0.873411 11:-0.722818 12:0.353062 13:-0.98393 14:-0.946083 15:-0.739064 16:0.370243 17:-0.983359 18:-0.94601 19:-0.468672 20:-0.601334 21:-0.410628 22:-0.142274 23:-0.850295 24:-0.741906 25:-0.439024 26:0.320423 27:-0.91566 28:-0.648313 29:-0.308192 30:0.137083 31:-0.882258 32:-0.816575 33:-0.314961 34:0.170611 35:-0.883146 36:-0.812706 +-1024 1:-0.820741 2:-0.717142 3:-0.685633 4:0.274468 5:-0.982456 6:-0.755652 7:-0.680744 8:0.189193 9:-0.970151 10:-0.815667 11:-0.586524 12:0.451242 13:-0.966532 14:-0.892199 15:-0.603991 16:0.442848 17:-0.96424 18:-0.895422 19:-0.116362 20:-0.356648 21:-0.0748792 22:0.417479 23:-0.845331 24:-0.365092 25:-0.0780488 26:0.103644 27:-0.747193 28:-0.55674 29:0.0507152 30:0.201034 31:-0.777861 32:-0.630138 33:0.0498688 34:0.138008 35:-0.76327 36:-0.650905 +1024 1:-0.802525 2:-0.514735 3:-0.608819 4:-0.099243 5:-0.828009 6:-0.646592 7:-0.623479 8:0.313607 9:-0.895974 10:-0.543728 11:-0.600306 12:-0.152838 13:-0.744508 14:-0.801996 15:-0.61627 16:0.141266 17:-0.797411 18:-0.758254 19:-0.422127 20:-0.348099 21:-0.246377 22:-0.159637 23:-0.650983 24:-0.503105 25:-0.219512 26:0.254181 27:-0.7538 28:-0.440342 29:-0.185956 30:-0.295748 31:-0.593602 32:-0.64976 33:-0.154856 34:-0.18655 35:-0.620238 36:-0.638064 +-1024 1:-0.841441 2:-0.602735 3:-0.742532 4:0.00126066 5:-0.864704 6:-0.620459 7:-0.739442 8:0.216636 9:-0.904666 10:-0.607446 11:-0.661562 12:-0.0452303 13:-0.834476 14:-0.86032 15:-0.680737 16:-0.127375 17:-0.809312 18:-0.874321 19:-0.350519 20:-0.318453 21:-0.26087 22:-0.203195 23:-0.528475 24:-0.389234 25:-0.297561 26:-0.14438 27:-0.489862 28:-0.421238 29:-0.0975293 30:-0.615639 31:-0.484343 32:-0.691055 33:-0.0997375 34:-0.763008 35:-0.421127 36:-0.727118 +-1024 1:-0.736079 2:-0.308885 3:-0.487909 4:0.0512524 5:-0.766623 6:-0.424247 7:-0.487473 8:0.200063 9:-0.771092 10:-0.381671 11:-0.456355 12:-0.059198 13:-0.663052 14:-0.668283 15:-0.465848 16:-0.0243712 17:-0.662004 18:-0.667548 19:0.109202 20:-0.0312155 21:0.202899 22:0.0493067 23:-0.531036 24:-0.198841 25:0.207317 26:0.274787 27:-0.526036 28:-0.123449 29:0.271782 30:-0.19245 31:-0.428819 32:-0.368958 33:0.275591 34:-0.0867799 35:-0.447493 36:-0.346064 +1024 1:-0.842476 2:-0.741682 3:-0.755334 4:0.0217127 5:-0.957031 6:-0.811926 7:-0.753758 8:0.334375 9:-0.985567 10:-0.776174 11:-0.68147 12:0.367089 13:-0.961117 14:-0.900188 15:-0.696086 16:0.398993 17:-0.961938 18:-0.898936 19:-0.302542 20:-0.387258 21:-0.214976 22:0.0620008 23:-0.773108 24:-0.501369 25:-0.190244 26:0.384566 27:-0.820757 28:-0.453258 29:-0.0871261 30:0.117753 31:-0.773852 32:-0.664556 33:-0.0813648 34:0.147778 35:-0.775755 36:-0.663698 +-1024 1:-0.844753 2:-0.8829 3:-0.813656 4:0.0221043 5:-0.994765 6:-0.921272 7:-0.841088 8:0.127701 9:-0.996889 10:-0.918738 11:-0.722818 12:0.415748 13:-0.994634 14:-0.959757 15:-0.731389 16:0.444267 17:-0.995014 18:-0.959628 19:-0.578947 20:-0.708176 21:-0.509662 22:0.0291816 23:-0.942128 24:-0.77984 25:-0.492683 26:0.0948214 27:-0.932926 28:-0.817492 29:-0.394018 30:0.255277 31:-0.942106 32:-0.869351 33:-0.409449 34:0.253193 35:-0.937555 36:-0.867792 +1024 1:-0.853032 2:-0.917277 3:-0.830725 4:-0.00890415 5:-0.998071 6:-0.948492 7:-0.849678 8:0.0851062 9:-0.999054 10:-0.947937 11:-0.774885 12:0.421429 13:-0.998158 14:-0.968721 15:-0.789716 16:0.438805 17:-0.99808 18:-0.968847 19:-0.538131 20:-0.732132 21:-0.47343 22:0.0705722 23:-0.96561 24:-0.813334 25:-0.417073 26:0.240947 27:-0.972395 28:-0.832378 29:-0.357607 30:0.396374 31:-0.966398 32:-0.871961 33:-0.367454 34:0.383648 35:-0.963178 36:-0.873251 +598.1231228392599 1:-0.829849 2:-0.656479 3:-0.685633 4:-0.0205622 5:-0.921403 6:-0.765185 7:-0.696492 8:0.543964 9:-0.982453 10:-0.643462 11:-0.588055 12:0.200626 13:-0.920079 14:-0.885692 15:-0.591711 16:0.29407 17:-0.929248 18:-0.879665 19:-0.175081 20:-0.309412 21:-0.118357 22:-0.238451 23:-0.577583 24:-0.480477 25:-0.134146 26:0.440383 27:-0.740085 28:-0.268775 29:0.139142 30:-0.425598 31:-0.61484 32:-0.715844 33:0.125984 34:-0.178381 35:-0.659324 36:-0.668897 +-1024 1:-0.842062 2:-0.925293 3:-0.890469 4:-0.0328872 5:-0.997357 6:-0.945304 7:-0.868289 8:0.0266991 9:-0.997055 10:-0.953252 11:-0.807044 12:0.349426 13:-0.996149 14:-0.9727 15:-0.81888 16:0.378771 17:-0.996554 18:-0.972772 19:-0.745077 20:-0.830501 21:-0.76087 22:-0.143259 23:-0.960669 24:-0.884231 25:-0.758537 26:-0.114672 27:-0.923127 28:-0.896249 29:-0.773732 30:0.0683631 31:-0.932871 32:-0.916334 33:-0.769029 34:0.055453 35:-0.927205 36:-0.921724 +-1024 1:-0.849928 2:-0.909178 3:-0.813656 4:0.0207886 5:-0.998262 6:-0.940947 7:-0.81675 8:0.0918528 9:-0.998229 10:-0.944056 11:-0.76876 12:0.468896 13:-0.998401 14:-0.961359 15:-0.775902 16:0.483243 17:-0.998337 18:-0.96235 19:-0.681346 20:-0.743561 21:-0.524155 22:0.1872 23:-0.98468 24:-0.797737 25:-0.521951 26:0.337572 27:-0.984935 28:-0.806855 29:-0.440832 30:0.573683 31:-0.980928 32:-0.842151 33:-0.44357 34:0.522217 35:-0.976214 36:-0.850656 +-1024 1:-0.810805 2:-0.611129 3:-0.671408 4:0.0696298 5:-0.91463 6:-0.691266 7:-0.697924 8:0.0222322 9:-0.889498 10:-0.720303 11:-0.660031 12:0.180985 13:-0.876187 14:-0.832112 15:-0.668457 16:0.0973456 17:-0.857144 18:-0.848419 19:-0.180809 20:-0.357047 21:-0.101449 22:0.110319 23:-0.777985 24:-0.483836 25:-0.141463 26:0.157442 27:-0.735954 28:-0.497232 29:-0.0897269 30:0.0889931 31:-0.712642 32:-0.59033 33:-0.0839895 34:0.0537885 35:-0.694192 36:-0.597613 +-1024 1:-0.740633 2:-0.467963 3:-0.510669 4:0.242431 5:-0.904042 6:-0.568696 7:-0.498926 8:0.812799 9:-0.970508 10:-0.462559 11:-0.312404 12:0.4796 13:-0.907009 14:-0.785865 15:-0.321566 16:0.476272 17:-0.905409 18:-0.791315 19:0.278912 20:0.00382987 21:0.275362 22:0.109738 23:-0.508232 24:-0.118429 25:0.234146 26:0.653253 27:-0.609818 28:0.104968 29:0.472042 30:-0.0879537 31:-0.474984 32:-0.359519 33:0.496063 34:-0.226344 35:-0.438585 36:-0.415762 +-1024 1:-0.862968 2:-0.569893 3:-0.705548 4:0.317746 5:-0.929778 6:-0.520441 7:-0.72083 8:-0.171914 9:-0.826595 10:-0.734209 11:-0.661562 12:-0.169308 13:-0.785599 14:-0.852714 15:-0.685342 16:0.0437813 17:-0.820956 18:-0.826818 19:-0.499463 20:-0.365831 21:-0.294686 22:0.307008 23:-0.80187 24:-0.328416 25:-0.280488 26:-0.220701 27:-0.612298 28:-0.614742 29:-0.243173 30:-0.366863 31:-0.585194 32:-0.681953 33:-0.259843 34:-0.0180833 35:-0.663286 36:-0.600391 +890.7407282342002 1:-0.699234 2:-0.377541 3:-0.486486 4:0.200432 5:-0.813111 6:-0.390419 7:-0.488905 8:-0.0132521 9:-0.773973 10:-0.549987 11:-0.407351 12:-0.261705 13:-0.690084 14:-0.775104 15:-0.424405 16:-0.109474 17:-0.712993 18:-0.756891 19:0.367705 20:-0.128747 21:0.219807 22:0.320616 23:-0.650621 24:-0.136597 25:0.253659 26:-0.0325531 27:-0.524452 28:-0.380825 29:0.412224 30:-0.403529 31:-0.498591 32:-0.566724 33:0.401575 34:-0.175767 35:-0.537633 36:-0.511516 +1024 1:-0.791555 2:-0.389793 3:-0.596017 4:0.204153 5:-0.81406 6:-0.362797 7:-0.617752 8:0.260056 9:-0.822938 10:-0.414564 11:-0.490046 12:-0.0285062 13:-0.754295 14:-0.759757 15:-0.501151 16:0.010357 17:-0.754985 18:-0.758915 19:-0.135696 20:-0.00878959 21:0.0652174 22:0.129105 23:-0.436185 24:0.0209314 25:0.0414634 26:0.189284 27:-0.464728 28:-0.103562 29:0.141743 30:-0.38173 31:-0.333796 32:-0.379575 33:0.160105 34:-0.338101 35:-0.332088 36:-0.373182 +-1024 1:-0.823639 2:-0.749699 3:-0.694168 4:0.197097 5:-0.9855 6:-0.814156 7:-0.696492 8:0.311386 9:-0.988543 10:-0.818872 11:-0.574273 12:0.490896 13:-0.978626 14:-0.90887 15:-0.582502 16:0.515749 17:-0.979408 18:-0.909462 19:-0.150734 20:-0.443469 21:-0.144928 22:0.161507 23:-0.849707 24:-0.562221 25:-0.15122 26:0.253916 27:-0.836092 28:-0.582921 29:0.00130039 30:0.16485 31:-0.822777 32:-0.716441 33:-0.0104987 34:0.159195 35:-0.815928 36:-0.718372 +1024 1:-0.858621 2:-0.866525 3:-0.829303 4:0.021474 5:-0.990786 6:-0.901683 7:-0.853973 8:0.153141 9:-0.995486 10:-0.896555 11:-0.782542 12:0.394762 13:-0.989304 14:-0.946079 15:-0.797391 16:0.403438 17:-0.988517 18:-0.947052 19:-0.523093 20:-0.638013 21:-0.456522 22:0.0767705 23:-0.920709 24:-0.713707 25:-0.482927 26:0.206548 27:-0.912253 28:-0.713058 29:-0.427828 30:0.312453 31:-0.912991 32:-0.790576 33:-0.422572 34:0.271222 35:-0.903038 36:-0.799107 +1024 1:-0.722004 2:-0.455653 3:-0.507824 4:0.261396 5:-0.875356 6:-0.480576 7:-0.526127 8:0.0385603 9:-0.830825 10:-0.614114 11:-0.421133 12:-0.10286 13:-0.777701 14:-0.8095 15:-0.430545 16:0.0174912 17:-0.794033 18:-0.798357 19:0.347655 20:-0.155933 21:0.21256 22:0.35998 23:-0.686306 24:-0.159977 25:0.236585 26:-0.0143691 27:-0.553731 28:-0.402313 29:0.412224 30:-0.344284 31:-0.542703 32:-0.58716 33:0.391076 34:-0.107559 35:-0.580771 36:-0.52856 +-1024 1:-0.633202 2:-0.214389 3:-0.317212 4:0.431817 5:-0.806497 6:-0.198452 7:-0.347173 8:0.402668 9:-0.794023 10:-0.286954 11:-0.192956 12:0.0276438 13:-0.6895 14:-0.6554 15:-0.204912 16:0.0346052 17:-0.685779 18:-0.662246 19:0.645542 20:0.182869 21:0.55314 22:0.423543 23:-0.453292 24:0.24208 25:0.560976 26:0.348737 27:-0.406391 28:0.0906257 29:0.669701 30:-0.254562 31:-0.265923 32:-0.190115 33:0.700787 34:-0.2555 35:-0.263987 36:-0.212058 +1024 1:-0.849928 2:-0.923424 3:-0.782361 4:-0.0496674 5:-0.997357 6:-0.962505 7:-0.81675 8:0.0476593 9:-0.997759 10:-0.955354 11:-0.748851 12:0.399235 13:-0.997959 14:-0.972903 15:-0.763622 16:0.421216 17:-0.997984 18:-0.972746 19:-0.649123 20:-0.785148 21:-0.521739 22:0.0516868 23:-0.983468 24:-0.865507 25:-0.570732 26:0.275721 27:-0.987159 28:-0.840955 29:-0.448635 30:0.440697 31:-0.982071 32:-0.893651 33:-0.448819 34:0.455791 35:-0.982183 36:-0.892895 +-1024 1:-0.930035 2:-0.723073 3:-0.847795 4:-0.152729 5:-0.892333 6:-0.779432 7:-0.859699 8:-0.0223445 9:-0.919598 10:-0.786876 11:-0.80245 12:-0.0402249 13:-0.877035 14:-0.910217 15:-0.81581 16:-0.0296522 17:-0.873313 18:-0.913961 19:-0.811672 20:-0.598472 21:-0.608696 22:-0.244394 23:-0.772614 24:-0.700008 25:-0.62439 26:-0.0839153 27:-0.793031 28:-0.719865 29:-0.586476 30:-0.166474 31:-0.753565 32:-0.793675 33:-0.585302 34:-0.193751 35:-0.741129 36:-0.808211 +-1024 1:-0.799213 2:-0.345943 3:-0.590327 4:-0.0292521 5:-0.721682 6:-0.398868 7:-0.593414 8:-0.0286815 9:-0.701635 10:-0.42996 11:-0.545176 12:-0.245809 13:-0.604268 14:-0.694799 15:-0.553338 16:-0.406726 17:-0.553067 18:-0.735675 19:-0.0576441 20:-0.162567 21:-0.00966184 22:-0.15851 23:-0.464711 24:-0.283884 25:-0.0634146 26:-0.10534 27:-0.414978 28:-0.305025 29:0.107932 30:-0.573748 31:-0.387786 32:-0.555189 33:0.11811 34:-0.759996 35:-0.328666 36:-0.620695 +1024 1:-0.859656 2:-0.848717 3:-0.830725 4:0.194074 5:-0.998835 6:-0.859499 7:-0.733715 8:0.143678 9:-0.995951 10:-0.922908 11:-0.690658 12:0.539064 13:-0.996117 14:-0.941728 15:-0.702226 16:0.546098 17:-0.995729 18:-0.94253 19:-0.432152 20:-0.564127 21:-0.328502 22:0.52516 23:-0.970433 24:-0.558637 25:-0.32439 26:-0.110045 27:-0.810377 28:-0.765285 29:-0.227568 30:0.212773 31:-0.880693 32:-0.784013 33:-0.217848 34:0.241822 35:-0.882467 36:-0.782881 +-1024 1:-0.789692 2:-0.493937 3:-0.608819 4:0.277491 5:-0.88579 6:-0.466678 7:-0.636364 8:-0.0682297 9:-0.799883 10:-0.624352 11:-0.528331 12:-0.166882 13:-0.7684 14:-0.826156 15:-0.553338 16:-0.163751 17:-0.754938 18:-0.826033 19:-0.157179 20:-0.280163 21:-0.0628019 22:0.170553 23:-0.701191 24:-0.31696 25:-0.0707317 26:-0.016977 27:-0.615088 28:-0.471465 29:0.118336 30:-0.361137 31:-0.590955 32:-0.661913 33:0.12336 34:-0.303807 35:-0.588495 36:-0.648793 +1024 1:-0.863175 2:-0.927361 3:-0.836415 4:-0.00290073 5:-0.999492 6:-0.955808 7:-0.83393 8:0.0658112 9:-0.999378 10:-0.95852 11:-0.782542 12:0.422106 13:-0.999082 14:-0.972595 15:-0.794321 16:0.442159 17:-0.999096 18:-0.972753 19:-0.476549 20:-0.738838 21:-0.347826 22:0.187511 23:-0.987553 24:-0.834054 25:-0.334146 26:0.335381 27:-0.987127 28:-0.841169 29:-0.206762 30:0.563178 31:-0.983932 32:-0.873465 33:-0.2021 34:0.555344 35:-0.982727 36:-0.875125 +-318.0627316383145 1:-0.780998 2:-0.562573 3:-0.570413 4:0.19881 5:-0.935187 6:-0.672487 7:-0.614889 8:0.386287 9:-0.930818 10:-0.588391 11:-0.454824 12:0.292777 13:-0.907766 14:-0.842977 15:-0.470453 16:0.270011 17:-0.901584 18:-0.848953 19:0.0612245 20:-0.174694 21:0.0555556 22:-0.181632 23:-0.497916 24:-0.345714 25:0.0512195 26:0.484877 27:-0.690836 28:-0.171732 29:0.204161 30:-0.198361 31:-0.56622 32:-0.546863 33:0.230971 34:-0.277627 35:-0.540169 36:-0.575597 +1024 1:-0.843097 2:-0.916773 3:-0.840683 4:-0.0613315 5:-0.99506 6:-0.951967 7:-0.874016 8:0.0625601 9:-0.997134 10:-0.940235 11:-0.787136 12:0.331451 13:-0.994424 14:-0.971807 15:-0.80353 16:0.353178 17:-0.994363 18:-0.971767 19:-0.651271 20:-0.781092 21:-0.615942 22:-0.144846 23:-0.944227 24:-0.86917 25:-0.658537 26:0.143051 27:-0.961679 28:-0.829191 29:-0.581274 30:0.165351 31:-0.946848 32:-0.904523 33:-0.580052 34:0.186414 35:-0.946946 36:-0.904122 +1024 1:-0.855309 2:-0.873531 3:-0.806543 4:0.0323732 5:-0.993852 6:-0.913658 7:-0.779528 8:0.0751547 9:-0.992772 10:-0.928069 11:-0.707504 12:0.332152 13:-0.989386 14:-0.962446 15:-0.72218 16:0.359484 17:-0.989541 18:-0.961954 19:-0.464375 20:-0.674965 21:-0.408213 22:0.12567 23:-0.950724 24:-0.754517 25:-0.380488 26:0.0862934 27:-0.916133 28:-0.801449 29:-0.237971 30:0.1936 31:-0.92772 32:-0.868509 33:-0.217848 34:0.234622 35:-0.931359 36:-0.867434 +-1024 1:-0.793832 2:-0.68281 3:-0.624467 4:0.230969 5:-0.974081 6:-0.763428 7:-0.624911 8:0.344875 9:-0.977657 10:-0.769179 11:-0.50536 12:0.445323 13:-0.960529 14:-0.885587 15:-0.510361 16:0.475444 17:-0.961988 18:-0.886117 19:0.0454708 20:-0.365177 21:0.0217391 22:0.238699 23:-0.834527 24:-0.49746 25:0.0463415 26:0.347947 27:-0.826946 28:-0.519758 29:0.152146 30:0.179439 31:-0.786611 32:-0.655492 33:0.149606 34:0.168259 35:-0.777374 36:-0.657345 +-1024 1:-0.741668 2:-0.515429 3:-0.556188 4:-0.0459405 5:-0.849005 6:-0.650996 7:-0.549034 8:0.251697 9:-0.897427 10:-0.608054 11:-0.496172 12:-0.166011 13:-0.788459 14:-0.843956 15:-0.510361 16:0.156437 17:-0.837938 18:-0.80233 19:-0.0870032 20:-0.353064 21:-0.120773 22:0.0264544 23:-0.720542 24:-0.459408 25:-0.0390244 26:0.112855 27:-0.724665 28:-0.52083 29:0.0637191 30:-0.311701 31:-0.654342 32:-0.711708 33:0.0682415 34:-0.0773629 35:-0.695667 36:-0.665908 +-1024 1:-0.844339 2:-0.66934 3:-0.758179 4:0.0956385 5:-0.925869 6:-0.678945 7:-0.753758 8:-0.0313973 9:-0.900992 10:-0.770081 11:-0.713629 12:0.0308567 13:-0.875652 14:-0.882545 15:-0.728319 16:0.0362617 17:-0.871367 18:-0.88661 19:-0.597565 20:-0.52925 21:-0.480676 22:0.123545 23:-0.854331 24:-0.547259 25:-0.485366 26:-0.112704 27:-0.734045 28:-0.673881 29:-0.401821 30:-0.185406 31:-0.748154 32:-0.783563 33:-0.409449 34:-0.225512 35:-0.726773 36:-0.793236 +-1024 1:-0.810805 2:-0.588142 3:-0.669986 4:0.0839927 5:-0.914554 6:-0.681 7:-0.675018 8:0.332181 9:-0.933057 10:-0.616735 11:-0.584992 12:0.17822 13:-0.890778 14:-0.852988 15:-0.597851 16:0.214798 17:-0.892752 18:-0.852955 19:-0.210884 20:-0.260947 21:-0.0797101 22:-0.109781 23:-0.633953 24:-0.450843 25:-0.12439 26:0.357042 27:-0.703726 28:-0.283656 29:0.0143043 30:-0.26556 31:-0.590771 32:-0.61932 33:0.0131234 34:-0.131667 35:-0.617937 36:-0.5983 +534.1283467611977 1:-0.810805 2:-0.944974 3:-0.817923 4:-0.0739564 5:-0.998262 6:-0.9713 7:-0.813887 8:-0.00619489 9:-0.998364 10:-0.973141 11:-0.762634 12:0.349798 13:-0.998389 14:-0.98154 15:-0.775902 16:0.372998 17:-0.998477 18:-0.981703 19:-0.706409 20:-0.853813 21:-0.678744 22:0.043165 23:-0.997073 24:-0.902974 25:-0.643902 26:0.117848 27:-0.989481 28:-0.914531 29:-0.578674 30:0.421524 31:-0.993216 32:-0.92922 33:-0.577428 34:0.389049 35:-0.990597 36:-0.933092 +1024 1:-0.771062 2:-0.268087 3:-0.519203 4:0.153213 5:-0.725359 6:-0.241076 7:-0.534717 8:0.264728 9:-0.756316 10:-0.286252 11:-0.454824 12:-0.180148 13:-0.610564 14:-0.66466 15:-0.468918 16:-0.236004 17:-0.585122 18:-0.681886 19:-0.128536 20:0.0346485 21:0.0869565 22:0.103816 23:-0.388054 24:0.0594358 25:0.0756098 26:0.119982 27:-0.39557 28:-0.0804376 29:0.175553 30:-0.444279 31:-0.270138 32:-0.34405 33:0.170604 34:-0.407946 35:-0.254203 36:-0.329161 +-1024 1:-0.823432 2:-0.912253 3:-0.796586 4:-0.018763 5:-0.997352 6:-0.951622 7:-0.770938 8:0.0404832 9:-0.996692 10:-0.955997 11:-0.713629 12:0.390712 13:-0.996813 14:-0.971492 15:-0.725249 16:0.409686 17:-0.996823 18:-0.971935 19:-0.570354 20:-0.785901 21:-0.548309 22:0.0401898 23:-0.982146 24:-0.864047 25:-0.497561 26:0.126987 27:-0.970586 28:-0.874701 29:-0.430429 30:0.333528 31:-0.974197 32:-0.907834 33:-0.422572 34:0.317774 35:-0.972373 36:-0.91341 +1024 1:-0.844132 2:-0.76226 3:-0.733997 4:0.240485 5:-0.988848 6:-0.794004 7:-0.72083 8:0.261669 9:-0.985809 10:-0.826748 11:-0.591118 12:0.462783 13:-0.97883 14:-0.915445 15:-0.605526 16:0.486047 17:-0.979102 18:-0.915115 19:-0.456498 20:-0.502742 21:-0.350242 22:0.102648 23:-0.832215 24:-0.548483 25:-0.380488 26:0.0941604 27:-0.800867 28:-0.61918 29:-0.230169 30:-0.0903573 31:-0.786385 32:-0.779769 33:-0.228346 34:-0.0201458 35:-0.795262 36:-0.772211 +-1024 1:-0.825088 2:-0.510963 3:-0.668563 4:0.0811226 5:-0.86676 6:-0.573995 7:-0.679313 8:-0.0071266 9:-0.822777 10:-0.617007 11:-0.635528 12:0.0270688 13:-0.794854 14:-0.789379 15:-0.648503 16:-0.0660041 17:-0.770066 18:-0.811878 19:-0.379162 20:-0.308812 21:-0.198068 22:-0.170354 23:-0.634546 24:-0.493335 25:-0.209756 26:-0.152657 27:-0.560968 28:-0.508478 29:-0.159948 30:-0.150642 31:-0.601826 32:-0.578285 33:-0.152231 34:-0.310257 35:-0.551877 36:-0.627785 +1024 1:-0.833161 2:-0.658618 3:-0.72404 4:0.135869 5:-0.948286 6:-0.719096 7:-0.745168 8:0.0232432 9:-0.894397 10:-0.723376 11:-0.672282 12:0.19048 13:-0.904509 14:-0.866707 15:-0.694551 16:0.0454296 17:-0.869695 18:-0.880658 19:-0.0927318 20:-0.313354 21:-0.0700483 22:-0.149429 23:-0.657557 24:-0.511326 25:-0.0658537 26:0.257206 27:-0.716172 28:-0.39593 29:0.0689207 30:-0.0840653 31:-0.683157 32:-0.638806 33:0.0419948 34:-0.0270661 35:-0.678597 36:-0.618789 +-1024 1:-0.855309 2:-0.880842 3:-0.85064 4:0.00675614 5:-0.993594 6:-0.916604 7:-0.859699 8:0.065646 9:-0.991001 10:-0.914321 11:-0.81317 12:0.30245 13:-0.985687 14:-0.95694 15:-0.821949 16:0.363232 17:-0.988546 18:-0.955032 19:-0.663444 20:-0.743265 21:-0.63285 22:-0.153226 23:-0.922152 24:-0.837525 25:-0.643902 26:-0.0271719 27:-0.899929 28:-0.822379 29:-0.641092 30:0.0633703 31:-0.900111 32:-0.871755 33:-0.632546 34:0.00494826 35:-0.884803 36:-0.884392 +-1024 1:-0.768992 2:-0.397179 3:-0.54623 4:0.220248 5:-0.829686 6:-0.397035 7:-0.577666 8:-0.137626 9:-0.726103 10:-0.556604 11:-0.482389 12:-0.277186 13:-0.676424 14:-0.772723 15:-0.513431 16:-0.240096 17:-0.662176 18:-0.762541 19:-0.0834228 20:-0.247873 21:-0.00724638 22:0.129934 23:-0.667398 24:-0.306177 25:-0.0195122 26:-0.00145846 27:-0.599686 28:-0.442148 29:0.157347 30:-0.348609 31:-0.567923 32:-0.628352 33:0.154856 34:-0.283335 35:-0.566403 36:-0.61203 +-1024 1:-0.569033 2:-0.14653 3:-0.280228 4:0.263165 5:-0.698083 6:-0.120095 7:-0.28418 8:0.0705622 9:-0.599543 10:-0.19299 11:-0.111792 12:-0.626836 13:-0.469116 14:-0.68816 15:-0.112817 16:-0.340025 17:-0.527484 18:-0.646399 19:0.633369 20:0.0339445 21:0.42029 22:-0.044511 23:-0.38481 24:-0.101849 25:0.339024 26:0.234374 27:-0.358405 28:0.062126 29:0.76593 30:-0.969514 31:-0.245914 32:-0.572857 33:0.721785 34:-0.550261 35:-0.324761 36:-0.462534 +1024 1:-0.817015 2:-0.741117 3:-0.682788 4:0.31774 5:-0.988174 6:-0.757332 7:-0.6335 8:0.00454952 9:-0.962622 10:-0.884343 11:-0.551302 12:0.274202 13:-0.958939 14:-0.92394 15:-0.557943 16:0.325067 17:-0.961606 18:-0.922326 19:-0.0447547 20:-0.449202 22:0.550081 23:-0.920392 24:-0.451438 25:0.00243902 26:-0.151119 27:-0.77062 28:-0.743766 29:0.214564 30:-0.117716 31:-0.799016 32:-0.79697 33:0.254593 34:0.0326838 35:-0.824791 36:-0.78385 +1024 1:-0.851584 2:-0.882788 3:-0.786629 4:0.0914282 5:-0.998621 6:-0.919682 7:-0.786686 8:0.158024 9:-0.999023 10:-0.93118 11:-0.724349 12:0.534795 13:-0.998784 14:-0.953426 15:-0.735994 16:0.551895 17:-0.998798 18:-0.95362 19:-0.553169 20:-0.647791 21:-0.388889 22:0.360179 23:-0.978405 24:-0.693316 25:-0.382927 26:0.360649 27:-0.968516 28:-0.761435 29:-0.240572 30:0.549239 31:-0.967086 32:-0.824614 33:-0.228346 34:0.564336 35:-0.967359 36:-0.823939 +1024 1:-0.889257 2:-0.838973 3:-0.87909 4:0.0289706 5:-0.986286 6:-0.868345 7:-0.914102 8:0.26305 9:-0.99516 10:-0.806289 11:-0.781011 12:0.372449 13:-0.986325 14:-0.944129 15:-0.797391 16:0.35955 17:-0.984073 18:-0.947388 19:-0.79019 20:-0.672453 21:-0.722222 22:-0.467434 23:-0.658937 24:-0.750781 25:-0.758537 26:-0.026748 27:-0.765899 28:-0.626661 29:-0.664499 30:-0.497956 31:-0.677235 32:-0.882388 33:-0.671916 34:-0.530694 35:-0.646054 36:-0.889862 +-1024 1:-0.923411 2:-0.796579 3:-0.860597 4:-0.106244 5:-0.942354 6:-0.84072 7:-0.868289 8:-0.0148512 9:-0.955644 10:-0.85679 11:-0.814701 12:0.0882665 13:-0.934921 14:-0.935585 15:-0.831159 16:0.107137 17:-0.933032 18:-0.936634 19:-0.775868 20:-0.642333 21:-0.615942 22:-0.190338 23:-0.821411 24:-0.721377 25:-0.631707 26:-0.0521525 27:-0.836303 28:-0.752274 29:-0.56567 30:-0.0993592 31:-0.818731 32:-0.83535 33:-0.566929 34:-0.0928318 35:-0.815849 36:-0.841281 +-1024 1:-0.689298 2:-0.313716 3:-0.458037 4:0.189239 5:-0.779008 6:-0.331395 7:-0.448819 8:-0.00363764 9:-0.739635 10:-0.48581 11:-0.378254 12:-0.351717 13:-0.62566 14:-0.744673 15:-0.401381 16:-0.175494 17:-0.650632 18:-0.717363 19:0.314715 20:-0.113175 21:0.198068 22:0.248566 23:-0.611132 24:-0.136597 25:0.239024 26:-0.0391988 27:-0.503671 28:-0.360618 29:0.383615 30:-0.427333 31:-0.473551 32:-0.552128 33:0.370079 34:-0.239968 35:-0.498702 36:-0.500776 +-1024 1:-0.851377 2:-0.859211 3:-0.780939 4:0.101575 5:-0.996133 6:-0.898737 7:-0.770938 8:0.159029 9:-0.995441 10:-0.909589 11:-0.70291 12:0.495715 13:-0.994091 14:-0.942666 15:-0.714505 16:0.4972 17:-0.993447 18:-0.944427 19:-0.60401 20:-0.666221 21:-0.415459 22:0.242807 23:-0.968157 24:-0.728099 25:-0.417073 26:0.262386 27:-0.945268 28:-0.755136 29:-0.360208 30:0.458422 31:-0.943893 32:-0.794527 33:-0.370079 34:0.368206 35:-0.931435 36:-0.811748 +-1024 1:-0.766508 2:-0.427226 3:-0.578947 4:0.0847638 5:-0.837426 6:-0.525245 7:-0.56335 8:0.195993 9:-0.82976 10:-0.493869 11:-0.502297 12:0.0357606 13:-0.777853 14:-0.762552 15:-0.5165 16:-0.0626748 17:-0.744158 18:-0.77611 19:0.177945 20:-0.128889 21:0.200483 22:-0.162647 23:-0.525108 24:-0.367265 25:0.185366 26:0.253894 27:-0.584774 28:-0.224881 29:0.305592 30:-0.289261 31:-0.494488 32:-0.505736 33:0.251969 34:-0.0932932 35:-0.51496 36:-0.438644 +-1024 1:-0.843511 2:-0.455754 3:-0.630156 4:0.247462 5:-0.863522 6:-0.42935 7:-0.630637 8:-0.232171 9:-0.755068 10:-0.666385 11:-0.603369 12:-0.318734 13:-0.663333 14:-0.7878 15:-0.634689 16:-0.00638802 17:-0.723149 18:-0.735996 19:-0.458647 20:-0.318395 21:-0.236715 22:0.324129 23:-0.780519 24:-0.285349 25:-0.214634 26:-0.221082 27:-0.584112 28:-0.584223 29:-0.183355 30:-0.375271 31:-0.555514 32:-0.649543 33:-0.19685 34:-0.0477547 35:-0.625875 36:-0.567359 +-1024 1:-0.732561 2:-0.304086 3:-0.462304 4:0.0609521 5:-0.776618 6:-0.438682 7:-0.46743 8:0.253211 9:-0.781434 10:-0.362387 11:-0.434916 12:-0.0859498 13:-0.661146 14:-0.676942 15:-0.452034 16:-0.0386479 17:-0.66449 18:-0.6762 19:-0.0519155 20:-0.110811 21:0.113527 22:-0.103583 23:-0.542663 24:-0.338786 25:0.0439024 26:0.316105 27:-0.590409 28:-0.164551 29:0.172952 30:-0.316861 31:-0.467708 32:-0.495276 33:0.183727 34:-0.203937 35:-0.493733 36:-0.480694 +1024 1:-0.863382 2:-0.812409 3:-0.836415 4:0.193015 5:-0.990047 6:-0.793701 7:-0.740873 8:0.125467 9:-0.990038 10:-0.902921 11:-0.675345 12:0.400376 13:-0.984795 14:-0.939636 15:-0.693016 16:0.441593 17:-0.985701 18:-0.936989 19:-0.64053 20:-0.589896 21:-0.512077 22:0.376755 23:-0.941033 24:-0.51939 25:-0.534146 26:-0.319374 27:-0.721123 28:-0.794996 29:-0.464239 30:-0.247352 31:-0.770821 32:-0.838797 33:-0.454068 34:-0.0634046 35:-0.810661 36:-0.816963 +-1024 1:-0.756158 2:-0.251026 3:-0.429587 4:0.896963 5:-0.892409 6:0.0621207 7:-0.430208 8:-0.541671 9:-0.568348 10:-0.612476 11:-0.382848 12:-0.504509 13:-0.526891 14:-0.714313 15:-0.398312 16:-0.351997 17:-0.550243 18:-0.692584 19:-0.169352 20:-0.0329305 21:0.118357 22:0.831711 23:-0.732215 24:0.2427 25:0.168293 26:-0.754383 27:-0.133081 28:-0.52652 29:0.188557 30:-0.773682 31:-0.240619 32:-0.511424 33:0.215223 34:-0.56544 35:-0.30216 36:-0.477937 +1024 1:-0.869178 2:-0.800319 3:-0.807966 4:0.135618 5:-0.989516 6:-0.83898 7:-0.811024 8:0.137374 9:-0.979302 10:-0.847684 11:-0.722818 12:0.389461 13:-0.978339 14:-0.92568 15:-0.748273 16:0.365396 17:-0.973672 18:-0.927665 19:-0.361976 20:-0.518571 21:-0.297101 22:-0.126031 23:-0.805091 24:-0.676033 25:-0.302439 26:0.129508 27:-0.815545 28:-0.622756 29:-0.196359 30:0.0735601 31:-0.825902 32:-0.760787 33:-0.209974 34:0.0603018 35:-0.812359 36:-0.758487 +-1024 1:-0.58787 2:-0.123774 3:-0.248933 4:0.212537 5:-0.722295 6:-0.223008 7:-0.261274 8:0.603659 9:-0.77649 10:-0.0863111 11:-0.145482 12:-0.0643049 13:-0.584192 14:-0.570503 15:-0.157329 16:-0.182842 17:-0.554272 18:-0.608017 19:0.603294 20:0.195121 21:0.545894 22:0.0619229 23:-0.342551 24:0.0448326 25:0.480488 26:0.560134 27:-0.422716 28:0.285995 29:0.685306 30:-0.201915 31:-0.259568 32:-0.146051 33:0.706037 34:-0.450517 35:-0.184498 36:-0.246092 +-1024 1:-0.637549 2:-0.0217631 3:-0.3101 4:0.356582 5:-0.661003 6:0.0617328 7:-0.308518 8:-0.0115274 9:-0.541647 10:-0.164939 11:-0.223583 12:-0.268731 13:-0.441835 14:-0.512959 15:-0.234075 16:-0.288683 17:-0.426491 18:-0.528307 19:0.51092 20:0.220586 21:0.47343 22:0.334564 23:-0.390533 24:0.254658 25:0.536585 26:-0.033135 27:-0.22067 28:-0.0241812 29:0.604681 30:-0.346298 31:-0.184881 32:-0.153368 33:0.616798 34:-0.292119 35:-0.188532 36:-0.146726 +-1024 1:-0.824674 2:-0.718376 3:-0.664296 4:0.340261 5:-0.990772 6:-0.763816 7:-0.660702 8:0.374274 9:-0.98894 10:-0.796089 11:-0.508423 12:0.636991 13:-0.984117 14:-0.889698 15:-0.521105 16:0.648618 17:-0.984076 18:-0.89046 19:-0.172932 20:-0.312616 21:-0.13285 22:0.280762 23:-0.767755 24:-0.32201 25:-0.12439 26:0.293747 27:-0.748417 28:-0.41085 29:0.0741222 30:0.111999 31:-0.746635 32:-0.627983 33:0.0944882 34:0.149606 35:-0.752596 36:-0.629485 +933.7968475005306 1:-0.85386 2:-0.833442 3:-0.853485 4:0.199636 5:-0.996051 6:-0.820303 7:-0.752326 8:0.0940268 9:-0.990787 10:-0.916559 11:-0.695253 12:0.449509 13:-0.990181 14:-0.941263 15:-0.7099 16:0.467572 17:-0.990072 18:-0.941302 19:-0.672753 20:-0.613165 21:-0.586957 22:0.416891 23:-0.961773 24:-0.519769 25:-0.590244 26:-0.452316 27:-0.67307 28:-0.834347 29:-0.537061 30:-0.170956 31:-0.797339 32:-0.840252 33:-0.540682 34:-0.148701 35:-0.794319 36:-0.840268 +-1024 1:-0.919478 2:-0.90541 3:-0.88478 4:-0.0582533 5:-0.991403 6:-0.932037 7:-0.892627 8:-0.0123006 9:-0.990607 10:-0.940291 11:-0.843798 12:0.257097 13:-0.987503 14:-0.968672 15:-0.858787 16:0.28391 17:-0.987662 18:-0.968616 19:-0.782313 20:-0.786434 21:-0.690821 22:-0.1478 23:-0.9353 24:-0.85025 25:-0.697561 26:0.0737564 27:-0.958559 28:-0.856738 29:-0.664499 30:0.108742 31:-0.935214 32:-0.904925 33:-0.658793 34:0.160126 35:-0.941581 36:-0.903531 +1024 1:-0.853032 2:-0.771657 3:-0.785206 4:0.130986 5:-0.979625 6:-0.806832 7:-0.788117 8:0.120505 9:-0.970903 10:-0.835233 11:-0.701378 12:0.331138 13:-0.967591 14:-0.920729 15:-0.714505 16:0.342641 17:-0.966487 18:-0.921948 19:-0.456498 20:-0.534769 21:-0.415459 22:-0.00406963 23:-0.827605 24:-0.613726 25:-0.426829 26:-0.0450614 27:-0.771682 28:-0.674594 29:-0.323797 30:-0.043659 31:-0.802757 32:-0.78258 33:-0.312336 34:-0.113493 35:-0.782 36:-0.799383 +1024 1:-0.673774 2:-0.253243 3:-0.42532 4:0.204575 5:-0.731121 6:-0.221384 7:-0.445956 8:0.0625337 9:-0.659715 10:-0.292652 11:-0.267994 12:-0.627775 13:-0.543368 14:-0.763628 15:-0.283193 16:-0.373187 17:-0.591123 18:-0.730391 19:0.49087 20:-0.0286169 21:0.31401 22:-0.0724494 23:-0.406776 24:-0.150001 25:0.243902 26:0.271532 27:-0.425682 28:0.0128311 29:0.672302 30:-0.91154 31:-0.306477 32:-0.606233 33:0.629921 34:-0.515225 35:-0.381441 36:-0.508439 +1024 1:-0.865245 2:-0.908575 3:-0.820768 4:0.0438904 5:-0.999573 6:-0.94194 7:-0.821045 8:0.114419 9:-0.999386 10:-0.944759 11:-0.773354 12:0.491074 13:-0.999395 14:-0.962506 15:-0.785111 16:0.507909 17:-0.999443 18:-0.963216 19:-0.447905 20:-0.680568 21:-0.311594 22:0.312356 23:-0.986621 24:-0.77037 25:-0.304878 26:0.378538 27:-0.974587 28:-0.780165 29:-0.172952 30:0.638942 31:-0.976893 32:-0.825238 33:-0.146982 34:0.643698 35:-0.978293 36:-0.832474 +-1024 1:-0.852826 2:-0.846827 3:-0.842105 4:0.126023 5:-0.995467 6:-0.866635 7:-0.801002 8:0.144227 9:-0.993397 10:-0.900593 11:-0.727412 12:0.464187 13:-0.991939 14:-0.941098 15:-0.740599 16:0.473607 17:-0.991539 18:-0.94225 19:-0.62406 20:-0.644036 21:-0.548309 22:-0.0251581 23:-0.897489 24:-0.726132 25:-0.565854 26:-0.160639 27:-0.794836 28:-0.77476 29:-0.495449 30:0.117883 31:-0.882314 32:-0.823175 33:-0.490814 34:0.113529 35:-0.878928 36:-0.829517 +1024 1:-0.855723 2:-0.889335 3:-0.84495 4:-0.035433 5:-0.989994 6:-0.922739 7:-0.871152 8:0.150339 9:-0.99853 10:-0.914329 11:-0.816233 12:0.371849 13:-0.990807 14:-0.953047 15:-0.829624 16:0.393253 17:-0.990859 18:-0.953333 19:-0.535983 20:-0.671636 21:-0.478261 22:0.107422 23:-0.943698 24:-0.739295 25:-0.485366 26:0.266898 27:-0.946578 28:-0.745766 29:-0.407022 30:0.392068 31:-0.943419 32:-0.818621 33:-0.404199 34:0.383404 35:-0.939762 36:-0.82057 +1024 1:-0.859863 2:-0.612403 3:-0.678521 4:-0.0864222 5:-0.849407 6:-0.66986 7:-0.67645 8:-0.0960158 9:-0.830084 10:-0.691853 11:-0.574273 12:-0.0883595 13:-0.819663 14:-0.854679 15:-0.587107 16:-0.068579 17:-0.817487 18:-0.85775 19:-0.253849 20:-0.318346 21:-0.125604 22:-0.138385 23:-0.640491 24:-0.479179 25:-0.12439 26:-0.125578 27:-0.565978 28:-0.49415 29:-0.0195059 30:-0.160748 31:-0.636236 32:-0.620943 33:-0.0104987 34:-0.281915 35:-0.597607 36:-0.654604 +1024 1:-0.770441 2:-0.368152 3:-0.492176 4:0.152062 5:-0.782061 6:-0.365483 7:-0.497495 8:-0.0902207 9:-0.724481 10:-0.521588 11:-0.378254 12:-0.329261 13:-0.655245 14:-0.764239 15:-0.393707 16:-0.288896 17:-0.651784 18:-0.762429 19:0.0841389 20:-0.207717 21:0.0821256 22:0.112699 23:-0.639713 24:-0.288353 25:0.097561 26:-0.00939736 27:-0.576906 28:-0.423567 29:0.276983 30:-0.360645 31:-0.550949 32:-0.609859 33:0.288714 34:-0.292987 35:-0.55325 36:-0.596421 +1024 1:-0.892155 2:-0.554618 3:-0.682788 4:-0.181694 5:-0.71281 6:-0.515368 7:-0.670723 8:-0.277012 9:-0.697428 10:-0.617543 11:-0.554364 12:-0.457685 13:-0.661494 14:-0.830413 15:-0.567153 16:-0.405906 17:-0.662001 18:-0.829204 19:-0.340494 20:-0.289182 21:-0.0797101 22:0.027439 23:-0.610526 24:-0.30544 25:-0.0195122 26:-0.0379343 27:-0.561819 28:-0.423816 29:0.237971 30:-0.438256 31:-0.554537 32:-0.652968 33:0.246719 34:-0.367338 35:-0.556265 36:-0.63892 +-1024 1:-0.733182 2:-0.31608 3:-0.435277 4:0.667603 5:-0.877971 6:-0.132561 7:-0.404438 8:-0.427943 9:-0.655756 10:-0.645734 11:-0.353752 12:-0.27246 13:-0.642739 14:-0.729393 15:-0.364543 16:-0.290766 17:-0.632184 18:-0.742631 19:-0.0383101 20:-0.138921 21:0.0917874 22:0.758351 23:-0.800499 24:0.014913 25:0.187805 26:-0.698702 27:-0.301913 28:-0.621459 29:0.211964 30:-0.48978 31:-0.447714 32:-0.565644 33:0.209974 34:-0.593203 35:-0.405098 36:-0.598571 +1024 1:-0.764852 2:-0.423715 3:-0.507824 4:0.133568 5:-0.801576 6:-0.42035 7:-0.491768 8:-0.0670865 9:-0.77176 10:-0.583323 11:-0.355283 12:-0.0769452 13:-0.748824 14:-0.767322 15:-0.369148 16:-0.0657253 17:-0.744981 18:-0.772365 19:0.162191 20:-0.0714147 21:0.224638 22:0.502853 23:-0.67513 24:-0.00817194 25:0.309756 26:-0.0100152 27:-0.497261 28:-0.33161 29:0.409623 30:-0.0519092 31:-0.52917 32:-0.411513 33:0.406824 34:-0.190621 35:-0.48596 36:-0.455786 +-1024 1:-0.870834 2:-0.6176 3:-0.672831 4:-0.182771 5:-0.806584 6:-0.668074 7:-0.689334 8:-0.101533 9:-0.810002 10:-0.661721 11:-0.57121 12:-0.192805 13:-0.78193 14:-0.85034 15:-0.584037 16:-0.163374 17:-0.781137 18:-0.852802 19:-0.212317 20:-0.33523 21:-0.057971 22:0.071741 23:-0.72827 24:-0.440881 25:-0.0585366 26:0.148734 27:-0.69652 28:-0.453214 29:0.0741222 30:0.00597185 31:-0.693288 32:-0.606543 33:0.0813648 34:0.0400745 35:-0.693822 36:-0.603148 +-1024 1:-0.645622 2:-0.377024 3:-0.369844 4:0.0861958 5:-0.837819 6:-0.551455 7:-0.403006 8:0.0537452 9:-0.811557 10:-0.577119 11:-0.364472 12:0.176241 13:-0.771342 14:-0.697784 15:-0.375288 16:0.0852419 17:-0.749949 18:-0.720354 19:0.101325 20:-0.286227 21:0.0652174 22:0.207169 23:-0.776736 24:-0.424483 25:0.0292683 26:0.238735 27:-0.734428 28:-0.44684 29:0.0845254 30:0.157398 31:-0.697127 32:-0.530178 33:0.0761155 34:0.132526 35:-0.680665 36:-0.53319 +1024 1:-0.75326 2:-0.430599 3:-0.510669 4:-0.0801067 5:-0.803596 6:-0.595912 7:-0.530422 8:0.333192 9:-0.869912 10:-0.48572 11:-0.50536 12:-0.130508 13:-0.712558 14:-0.754533 15:-0.518035 16:0.144382 17:-0.759507 18:-0.708842 19:-0.250985 20:-0.319595 21:-0.161836 22:-0.129856 23:-0.653001 24:-0.486678 25:-0.129268 26:0.306822 27:-0.758603 28:-0.416251 29:-0.10013 30:-0.246804 31:-0.600461 32:-0.626593 33:-0.0682415 34:-0.117229 35:-0.631433 36:-0.609956 +1024 1:-0.785138 2:-0.363052 3:-0.477952 4:0.13926 5:-0.768816 6:-0.352012 7:-0.46743 8:-0.150584 9:-0.714888 10:-0.550064 11:-0.330781 12:-0.284458 13:-0.675941 14:-0.765091 15:-0.339985 16:-0.269757 17:-0.671924 18:-0.771106 19:-0.170784 20:-0.148757 21:0.0410628 22:0.230616 23:-0.62985 24:-0.16368 25:0.112195 26:-0.293933 27:-0.401061 28:-0.440841 29:0.250975 30:-0.544469 31:-0.450621 32:-0.59452 33:0.262467 34:-0.557706 35:-0.435744 36:-0.607221 +1024 1:-0.661768 2:-0.200981 3:-0.358464 4:0.350787 5:-0.738898 6:-0.107101 7:-0.351467 8:0.0650248 9:-0.669026 10:-0.315064 11:-0.19755 12:-0.0934748 13:-0.619137 14:-0.62466 15:-0.204912 16:-0.068005 17:-0.619219 18:-0.629838 19:0.472252 20:0.205733 21:0.461353 22:0.382988 23:-0.408929 24:0.27909 25:0.519512 26:-0.00264391 27:-0.223105 28:0.00123674 29:0.609883 30:-0.379642 31:-0.195834 32:-0.189159 33:0.606299 34:-0.354936 35:-0.184019 36:-0.185574 +-1024 1:-0.883875 2:-0.505004 3:-0.684211 4:-0.27265 5:-0.76036 6:-0.663965 7:-0.693629 8:-0.203295 9:-0.773534 10:-0.675066 11:-0.664625 12:-0.302399 13:-0.674441 14:-0.799198 15:-0.677667 16:-0.301131 17:-0.66687 18:-0.808995 19:-0.692087 20:-0.525156 21:-0.504831 22:-0.194822 23:-0.762851 24:-0.656597 25:-0.509756 26:-0.127317 27:-0.746787 28:-0.698546 29:-0.46684 30:-0.22623 31:-0.707761 32:-0.762454 33:-0.461942 34:-0.244364 35:-0.700783 36:-0.779084 +1024 1:-0.812047 2:-0.419601 3:-0.543385 4:0.0471644 5:-0.75947 6:-0.406192 7:-0.541875 8:-0.110639 9:-0.729581 10:-0.543281 11:-0.410413 12:-0.347202 13:-0.667178 14:-0.783993 15:-0.42287 16:-0.290175 17:-0.669546 18:-0.781494 19:-0.0769782 20:-0.21562 21:0.0603865 22:0.126364 23:-0.641586 24:-0.277384 25:0.0634146 26:-0.0114306 27:-0.569372 28:-0.41483 29:0.26658 30:-0.4079 31:-0.542158 32:-0.623679 33:0.270341 34:-0.320795 35:-0.54764 36:-0.605027 +1024 1:-0.860277 2:-0.531603 3:-0.651494 4:-0.204753 5:-0.749098 6:-0.593887 7:-0.652112 8:-0.158606 9:-0.736676 10:-0.587284 11:-0.529862 12:-0.290723 13:-0.713386 14:-0.815944 15:-0.537989 16:-0.297802 17:-0.703955 18:-0.824342 19:-0.143573 20:-0.188093 21:0.0724638 22:-0.217632 23:-0.503898 24:-0.382345 25:0.0439024 26:0.150394 27:-0.552344 28:-0.258847 29:0.256177 30:-0.394073 31:-0.49961 32:-0.569997 33:0.23622 34:-0.267278 35:-0.516055 36:-0.541634 +-678.1582484599255 1:-0.805009 2:-0.527897 3:-0.605974 4:0.254561 5:-0.906569 6:-0.543338 7:-0.604868 8:-0.344961 9:-0.769955 10:-0.754273 11:-0.589587 12:0.263075 13:-0.839678 14:-0.7516 15:-0.594781 16:-0.338844 17:-0.724412 18:-0.860633 19:-0.285356 20:-0.412607 21:-0.222222 22:0.144839 23:-0.819678 24:-0.512314 25:-0.178049 26:-0.513636 27:-0.551305 28:-0.736964 29:-0.196359 30:0.0852903 31:-0.742341 32:-0.635218 33:-0.167979 34:-0.50436 35:-0.607187 36:-0.77987 +-1024 1:-0.942248 2:-0.670908 3:-0.816501 4:-0.248007 5:-0.793384 6:-0.695597 7:-0.826772 8:-0.201504 9:-0.814536 10:-0.736341 11:-0.762634 12:-0.26091 13:-0.765523 14:-0.876706 15:-0.775902 16:-0.246525 17:-0.760359 18:-0.881629 19:-0.81382 20:-0.556696 21:-0.557971 22:-0.365987 23:-0.666824 24:-0.673246 25:-0.568293 26:-0.185009 27:-0.71398 28:-0.701982 29:-0.524057 30:-0.343217 31:-0.661393 32:-0.77757 33:-0.52231 34:-0.346079 35:-0.656109 36:-0.790766 +433.4725720251357 1:-0.751397 2:-0.192215 3:-0.394026 4:0.253759 5:-0.695089 6:-0.102297 7:-0.415891 8:0.282371 9:-0.697997 10:-0.173352 11:-0.309342 12:-0.186692 13:-0.535224 14:-0.57836 15:-0.321566 16:-0.192436 17:-0.522661 18:-0.587036 19:-0.000358038 20:0.0950603 21:0.205314 22:0.0826075 23:-0.328543 24:0.106953 25:0.217073 26:0.101855 27:-0.352334 28:-0.0502224 29:0.292588 30:-0.482606 31:-0.209195 32:-0.291074 33:0.291339 34:-0.455439 35:-0.190739 36:-0.28038 +-1024 1:-0.825709 2:-0.483372 3:-0.596017 4:-0.126286 5:-0.742164 6:-0.520454 7:-0.599141 8:-0.114538 9:-0.74119 10:-0.562953 11:-0.456355 12:-0.181179 13:-0.725239 14:-0.783903 15:-0.464313 16:-0.21256 17:-0.713781 18:-0.797972 19:0.0934479 20:-0.0942259 21:0.183575 22:0.0975827 23:-0.529081 24:-0.15152 25:0.207317 26:0.0790298 27:-0.476372 28:-0.22923 29:0.381014 30:0.012598 31:-0.528166 32:-0.371624 33:0.435696 34:-0.350349 35:-0.439411 36:-0.490713 +1024 1:-0.617057 2:-0.199415 3:-0.311522 4:0.836892 5:-0.878727 6:-0.00926173 7:-0.254116 8:-0.519019 9:-0.588669 10:-0.608876 11:-0.23124 12:-0.298763 13:-0.569789 14:-0.659803 15:-0.254029 16:-0.335785 17:-0.552291 18:-0.676853 19:0.056928 20:-0.134828 21:0.120773 22:0.849222 23:-0.820899 24:0.0499216 25:0.209756 26:-0.66232 27:-0.326948 28:-0.617829 29:0.256177 30:-0.471034 31:-0.45358 32:-0.559467 33:0.251969 34:-0.556629 35:-0.421542 36:-0.593031 +-1024 1:-0.886773 2:-0.733649 3:-0.748222 4:-0.169375 5:-0.906889 6:-0.822767 7:-0.753758 8:-0.115621 9:-0.898497 10:-0.814625 11:-0.690658 12:-0.0335708 13:-0.886675 14:-0.912144 15:-0.699156 16:-0.0248059 17:-0.884802 18:-0.916993 19:-0.377014 20:-0.545633 21:-0.258454 22:-0.182057 23:-0.815085 24:-0.725675 25:-0.290244 26:-0.00423887 27:-0.800507 28:-0.690926 29:-0.23277 30:-0.00507167 31:-0.80877 32:-0.771822 33:-0.212598 34:-0.1545 35:-0.774955 36:-0.804685 +1024 1:-0.699234 2:-0.301413 3:-0.342817 4:0.470561 5:-0.804924 6:-0.150888 7:-0.291339 8:-0.457526 9:-0.643088 10:-0.641109 11:-0.168453 12:-0.508795 13:-0.610137 14:-0.772487 15:-0.191097 16:-0.361296 17:-0.627621 18:-0.75433 19:0.255997 20:-0.110716 21:0.326087 22:0.858367 23:-0.796689 24:0.0693926 25:0.382927 26:-0.508973 27:-0.381113 28:-0.560785 29:0.573472 30:-0.769014 31:-0.427296 32:-0.658759 33:0.580052 34:-0.466004 35:-0.489186 36:-0.600711 +1024 1:-0.843718 2:-0.545741 3:-0.630156 4:-0.10972 5:-0.781277 6:-0.571126 7:-0.612026 8:-0.201326 9:-0.77408 10:-0.673776 11:-0.486983 12:-0.223099 13:-0.755617 14:-0.829821 15:-0.502686 16:-0.195938 17:-0.753698 18:-0.832538 19:-0.056212 20:-0.180833 21:0.0628019 22:0.311194 23:-0.667507 24:-0.152548 25:0.146341 26:-0.0414835 27:-0.533085 28:-0.39585 29:0.313394 30:-0.123915 31:-0.577674 32:-0.518144 33:0.312336 34:-0.201042 35:-0.552752 36:-0.546443 +1024 1:-0.733596 2:-0.340448 3:-0.450925 4:-0.104175 5:-0.690776 6:-0.423714 7:-0.464567 8:0.195848 9:-0.741243 10:-0.328898 11:-0.286371 12:-0.178913 13:-0.666128 14:-0.713934 15:-0.298542 16:-0.17255 17:-0.660662 18:-0.721302 19:0.302542 20:0.100275 21:0.335749 22:0.0636513 23:-0.37577 24:0.0148885 25:0.312195 26:0.495222 27:-0.441543 28:0.208634 29:0.555267 30:-0.261662 31:-0.330979 32:-0.280169 33:0.566929 34:-0.419878 35:-0.273258 36:-0.33526 +1024 1:-0.88284 2:-0.545616 3:-0.675676 4:-0.0865079 5:-0.764039 6:-0.516659 7:-0.660702 8:-0.235726 9:-0.732075 10:-0.636471 11:-0.546708 12:-0.336101 13:-0.709526 14:-0.829337 15:-0.557943 16:-0.293578 17:-0.711065 18:-0.830899 19:-0.366989 20:-0.282487 21:-0.144928 22:0.0833726 23:-0.630569 24:-0.277005 25:-0.0658537 26:-0.306176 27:-0.436232 28:-0.490186 29:0.107932 30:-0.49675 31:-0.526669 32:-0.658808 33:0.102362 34:-0.500353 35:-0.51038 36:-0.664315 +-1024 1:-0.724074 2:-0.464535 3:-0.486486 4:-0.0579106 5:-0.817587 6:-0.606552 7:-0.478883 8:0.196072 9:-0.860775 10:-0.572842 11:-0.399694 12:-0.126534 13:-0.775614 14:-0.81432 15:-0.4198 16:0.108031 17:-0.807313 18:-0.781397 19:0.0454708 20:-0.316906 21:-0.0289855 22:0.0264473 23:-0.70577 24:-0.445503 25:0.0658537 26:0.116842 27:-0.714061 28:-0.508687 29:0.170351 30:-0.308397 31:-0.64546 32:-0.696 33:0.170604 34:-0.0661908 35:-0.686657 36:-0.646871 +1024 1:-0.753881 2:-0.316617 3:-0.443812 4:0.139076 5:-0.734385 6:-0.287523 7:-0.430208 8:-0.0873727 9:-0.696384 10:-0.476095 11:-0.277182 12:-0.326597 13:-0.637997 14:-0.740637 15:-0.295472 16:-0.247968 17:-0.64208 18:-0.731668 19:0.0812746 20:-0.104238 21:0.18599 22:0.271454 23:-0.61058 24:-0.113286 25:0.207317 26:-0.0632167 27:-0.473946 28:-0.343443 29:0.362809 30:-0.476157 31:-0.447432 32:-0.549691 33:0.341207 34:-0.278043 35:-0.478433 36:-0.499162 +-1024 1:-0.921341 2:-0.589472 3:-0.768137 4:-0.266231 5:-0.775011 6:-0.682317 7:-0.780959 8:-0.132676 9:-0.814606 10:-0.687215 11:-0.735069 12:-0.309425 13:-0.71107 14:-0.844095 15:-0.749808 16:-0.315637 17:-0.697997 18:-0.851873 19:-0.779449 20:-0.543634 21:-0.545894 22:-0.319688 23:-0.704327 24:-0.678816 25:-0.553659 26:-0.172687 27:-0.725543 28:-0.705832 29:-0.513654 30:-0.280482 31:-0.687027 32:-0.771421 33:-0.511811 34:-0.291983 35:-0.681091 36:-0.787273 +1024 1:-0.804388 2:-0.383009 3:-0.533428 4:0.0661844 5:-0.722255 6:-0.317881 7:-0.514674 8:-0.18996 9:-0.672763 10:-0.513873 11:-0.36294 12:-0.391583 13:-0.63519 14:-0.767015 15:-0.376823 16:-0.302172 17:-0.645322 18:-0.760184 19:-0.00107411 20:-0.130899 21:0.125604 22:0.248382 23:-0.604277 24:-0.117697 25:0.165854 26:-0.0651996 27:-0.472578 28:-0.34269 29:0.347204 30:-0.481326 31:-0.460973 32:-0.567885 33:0.32021 34:-0.260014 35:-0.499328 36:-0.514549 +-1024 1:-0.699648 2:-0.235706 3:-0.358464 4:0.0457018 5:-0.658159 6:-0.23949 7:-0.358626 8:0.147663 9:-0.665737 10:-0.238917 11:-0.156202 12:-0.442178 13:-0.559684 14:-0.702453 15:-0.175748 16:-0.310069 17:-0.57082 18:-0.679859 19:0.310419 20:-0.00368502 21:0.326087 22:-0.0823313 23:-0.378896 24:-0.124536 25:0.280488 26:0.299307 27:-0.423742 28:0.0396054 29:0.656697 30:-0.925377 31:-0.274229 32:-0.584256 33:0.632546 34:-0.483228 35:-0.36465 36:-0.472608 +-1024 1:-0.820534 2:-0.46221 3:-0.59175 4:-0.209832 5:-0.696362 6:-0.516617 7:-0.58912 8:0.00149008 9:-0.768192 10:-0.521609 11:-0.454824 12:-0.327857 13:-0.688441 14:-0.800027 15:-0.461243 16:-0.365847 17:-0.674479 18:-0.815477 19:-0.0325815 20:-0.162413 21:0.031401 22:-0.121023 23:-0.462594 24:-0.25008 25:0.0097561 26:-0.099556 27:-0.409532 28:-0.294882 29:0.227568 30:-0.61524 31:-0.400669 32:-0.581037 33:0.230971 34:-0.798171 35:-0.335793 36:-0.635595 +1024 1:-0.557649 2:-0.141767 3:-0.192034 4:0.469747 5:-0.767384 6:-0.0911486 7:-0.208304 8:0.453165 9:-0.760488 10:-0.190862 11:-0.0382848 12:0.106851 13:-0.650979 14:-0.573057 15:-0.0560246 16:0.111532 17:-0.645926 18:-0.579 19:0.648407 20:0.225525 21:0.599034 22:0.447068 23:-0.435597 24:0.289371 25:0.609756 26:0.353084 27:-0.373443 28:0.138509 29:0.690507 30:-0.303284 31:-0.211327 32:-0.153574 33:0.716535 34:-0.307461 35:-0.205368 36:-0.17445 +-1024 1:-0.851584 2:-0.521885 3:-0.598862 4:-0.250185 5:-0.723016 6:-0.590165 7:-0.624911 8:-0.112542 9:-0.728615 10:-0.540341 11:-0.462481 12:-0.367655 13:-0.690643 14:-0.816071 15:-0.471988 16:-0.334334 17:-0.690622 18:-0.819626 19:-0.0898675 20:-0.152639 21:0.0797101 22:-0.204937 23:-0.42543 24:-0.280176 25:0.0829268 26:0.249145 27:-0.544967 28:-0.163334 29:0.331599 30:-0.397441 31:-0.469302 32:-0.534015 33:0.375328 34:-0.447921 35:-0.456922 36:-0.566005 +-1024 1:-0.821569 2:-0.434726 3:-0.556188 4:0.0496246 5:-0.770167 6:-0.422853 7:-0.549034 8:-0.175423 9:-0.726587 10:-0.584778 11:-0.41807 12:-0.301757 13:-0.694298 14:-0.793868 15:-0.427475 16:-0.268592 17:-0.694024 18:-0.796796 19:-0.173648 20:-0.186386 21:0.0217391 22:0.172076 23:-0.625072 24:-0.207868 25:0.0878049 26:-0.27493 27:-0.422428 28:-0.449144 29:0.245774 30:-0.519078 31:-0.478703 32:-0.611401 33:0.262467 34:-0.525818 35:-0.468875 36:-0.624638 +1024 1:-0.735458 2:-0.423809 3:-0.487909 4:0.0875727 5:-0.822126 6:-0.504893 7:-0.491768 8:0.157793 9:-0.825157 10:-0.523588 11:-0.359877 12:0.00653998 13:-0.774441 14:-0.766486 15:-0.370683 16:0.0294472 17:-0.77345 18:-0.769351 19:0.157895 20:-0.178573 21:0.181159 22:0.156775 23:-0.694183 24:-0.342272 25:0.187805 26:0.244267 27:-0.674101 28:-0.363436 29:0.250975 30:-0.0453388 31:-0.604406 32:-0.51131 33:0.251969 34:-0.0629975 35:-0.592634 36:-0.521909 +-1024 1:-0.871662 2:-0.569837 3:-0.662873 4:-0.232022 5:-0.763519 6:-0.637614 7:-0.67645 8:-0.0606702 9:-0.78909 10:-0.59785 11:-0.548239 12:-0.269357 13:-0.745318 14:-0.839373 15:-0.561013 16:-0.226057 17:-0.745911 18:-0.839334 19:-0.316864 20:-0.235798 21:-0.0410628 22:-0.2189 23:-0.524543 24:-0.404929 25:-0.107317 26:0.202611 27:-0.589667 28:-0.251456 29:0.13394 30:-0.411 31:-0.524093 32:-0.612231 33:0.11811 34:-0.322966 35:-0.53237 36:-0.596118 +-1024 1:-0.777893 2:-0.403039 3:-0.513514 4:0.0332299 5:-0.792491 6:-0.486527 7:-0.517538 8:0.186848 9:-0.805686 10:-0.458236 11:-0.393568 12:-0.0854594 13:-0.736064 14:-0.757672 15:-0.410591 16:-0.0425185 17:-0.736389 18:-0.755771 19:-0.0196921 20:-0.105339 21:0.140097 22:-0.138612 23:-0.514137 24:-0.332876 25:0.0780488 26:0.299753 27:-0.58057 28:-0.168485 29:0.227568 30:-0.354205 31:-0.462082 32:-0.507131 33:0.244094 34:-0.272172 35:-0.477403 36:-0.498572 +-948.487182945004 1:-0.487477 2:-0.0300301 3:-0.083926 4:0.513081 5:-0.741824 6:-0.00611977 7:-0.0909091 8:0.53357 9:-0.731352 10:-0.0722731 11:-0.0137825 12:-0.0159843 13:-0.527841 14:-0.479032 15:-0.0253262 16:-0.0211813 17:-0.521818 18:-0.492062 19:0.712854 20:0.225033 21:0.596618 22:0.36654 23:-0.401876 24:0.258296 25:0.619512 26:0.332313 27:-0.361696 28:0.13431 29:0.703511 30:-0.297289 31:-0.205476 32:-0.141741 33:0.737533 34:-0.294118 35:-0.206443 36:-0.165882 +-1024 1:-0.592838 2:-0.232027 3:-0.274538 4:0.193743 5:-0.757082 6:-0.308706 7:-0.281317 8:0.406223 9:-0.781001 10:-0.265359 11:-0.140888 12:-0.0118328 13:-0.674125 14:-0.652534 15:-0.14505 16:0.00747046 17:-0.675001 18:-0.659923 19:0.597565 20:0.109209 21:0.492754 22:0.0409691 23:-0.372806 24:-0.01184 25:0.507317 26:0.479086 27:-0.499647 28:0.0812455 29:0.620286 30:-0.309019 31:-0.323662 32:-0.298857 33:0.658793 34:-0.345718 35:-0.305499 36:-0.322575 +-1024 1:-0.753467 2:-0.334514 3:-0.467994 4:0.0764349 5:-0.772237 6:-0.416134 7:-0.470293 8:0.119064 9:-0.745937 10:-0.400726 11:-0.346095 12:-0.109818 13:-0.691704 14:-0.716833 15:-0.359939 16:-0.126703 17:-0.674803 18:-0.720615 19:0.168636 20:-0.0680744 21:0.270531 22:-0.158779 23:-0.479687 24:-0.311217 25:0.253659 26:0.230932 27:-0.533026 28:-0.176095 29:0.36801 30:-0.414406 31:-0.414289 32:-0.479047 33:0.322835 34:-0.138895 35:-0.458356 36:-0.392203 +-1024 1:-0.636307 2:-0.186722 3:-0.359886 4:0.0463199 5:-0.687414 6:-0.292899 7:-0.355762 8:0.023719 9:-0.658898 10:-0.330681 11:-0.295559 12:-0.165461 13:-0.567388 14:-0.602765 15:-0.304682 16:-0.323444 17:-0.524385 18:-0.6479 19:0.208736 20:-0.102335 21:0.128019 22:0.00361627 23:-0.516716 24:-0.214762 25:0.0804878 26:0.014678 27:-0.448997 28:-0.245178 29:0.263979 30:-0.443676 31:-0.411912 32:-0.498262 33:0.28084 34:-0.663446 35:-0.35061 36:-0.576447 +-1024 1:-0.565928 2:-0.11178 3:-0.219061 4:0.0905775 5:-0.688591 6:-0.268628 7:-0.226915 8:0.304745 9:-0.711833 10:-0.209543 11:-0.177642 12:-0.0458982 13:-0.558394 14:-0.532769 15:-0.191097 16:0.0171632 17:-0.562567 18:-0.524499 19:0.384891 20:0.0283156 21:0.362319 22:0.0881258 23:-0.516376 24:-0.155041 25:0.363415 26:0.357581 27:-0.534912 28:-0.0737603 29:0.438231 30:-0.150326 31:-0.413326 32:-0.317763 33:0.456693 34:-0.0654491 35:-0.427586 36:-0.302071 +1024 1:-0.545436 2:-0.131238 3:-0.170697 4:0.492145 5:-0.771501 6:-0.08359 7:-0.188261 8:0.483092 9:-0.763966 10:-0.176394 11:-0.0260337 12:0.109438 13:-0.643967 14:-0.563047 15:-0.0452801 16:0.113484 17:-0.640409 18:-0.571226 19:0.654851 20:0.223787 21:0.591787 22:0.428452 23:-0.427842 24:0.28294 25:0.607317 26:0.355728 27:-0.376328 28:0.137138 29:0.685306 30:-0.287656 31:-0.216828 32:-0.150008 33:0.711286 34:-0.297682 35:-0.212631 36:-0.176844 +1024 1:-0.619333 2:-0.196418 3:-0.29872 4:0.168769 5:-0.716459 6:-0.244742 7:-0.30136 8:0.462727 9:-0.757926 10:-0.160922 11:-0.128637 12:0.0272464 13:-0.650923 14:-0.608387 15:-0.13891 16:0.0102586 17:-0.643904 18:-0.622385 19:0.528822 20:0.193811 21:0.512077 22:0.11231 23:-0.35189 24:0.0825306 25:0.47561 26:0.595209 27:-0.436088 28:0.302382 29:0.661899 30:-0.226304 31:-0.261557 32:-0.165809 33:0.677165 34:-0.387592 35:-0.205994 36:-0.2309 +-1024 1:-0.650797 2:-0.200783 3:-0.345661 4:0.170354 5:-0.718908 6:-0.241928 7:-0.331424 8:0.0261507 9:-0.691512 10:-0.386697 11:-0.264931 12:-0.375992 13:-0.546915 14:-0.670983 15:-0.283193 16:-0.205146 17:-0.570677 18:-0.641014 19:0.251701 20:-0.102172 21:0.207729 22:0.229915 23:-0.595396 24:-0.130358 25:0.246341 26:-0.0583958 27:-0.48374 28:-0.351906 29:0.39922 30:-0.445801 31:-0.456261 32:-0.541777 33:0.380577 34:-0.239127 35:-0.486937 36:-0.485774 +1024 1:-0.733596 2:-0.340448 3:-0.450925 4:-0.104175 5:-0.690776 6:-0.423714 7:-0.464567 8:0.195848 9:-0.741243 10:-0.328898 11:-0.286371 12:-0.178913 13:-0.666128 14:-0.713934 15:-0.298542 16:-0.17255 17:-0.660662 18:-0.721302 19:0.302542 20:0.100275 21:0.335749 22:0.0636513 23:-0.37577 24:0.0148885 25:0.312195 26:0.495222 27:-0.441543 28:0.208634 29:0.555267 30:-0.261662 31:-0.330979 32:-0.280169 33:0.566929 34:-0.419878 35:-0.273258 36:-0.33526 +1024 1:-0.886359 2:-0.616551 3:-0.725462 4:0.0199441 5:-0.872705 6:-0.625289 7:-0.693629 8:-0.329062 9:-0.786241 10:-0.771958 11:-0.650842 12:-0.0680336 13:-0.816269 14:-0.848318 15:-0.651573 16:-0.274857 17:-0.770824 18:-0.884216 19:-0.440029 20:-0.449579 21:-0.28744 22:0.0701047 23:-0.804204 24:-0.535827 25:-0.214634 26:-0.543905 27:-0.52681 28:-0.73682 29:-0.224967 30:-0.0088209 31:-0.740235 32:-0.681893 33:-0.2021 34:-0.529789 35:-0.61468 36:-0.800293 +-1024 1:-0.620989 2:-0.258883 3:-0.324324 4:0.414578 5:-0.832666 6:-0.279222 7:-0.302792 8:-0.0843066 9:-0.730228 10:-0.532162 11:-0.277182 12:-0.19513 13:-0.637742 14:-0.690009 15:-0.298542 16:0.0996088 17:-0.686103 18:-0.635831 19:0.180809 20:-0.190178 21:0.123188 22:0.547537 23:-0.787532 24:-0.166276 25:0.17561 26:-0.155919 27:-0.571996 28:-0.524241 29:0.222367 30:-0.314114 31:-0.54708 32:-0.584272 33:0.212598 34:-0.0279889 35:-0.60058 36:-0.5132 +-1024 1:-0.831505 2:-0.4611 3:-0.600284 4:-0.0786196 5:-0.767089 6:-0.523105 7:-0.604868 8:0.0278886 9:-0.773939 10:-0.509822 11:-0.476263 12:-0.186227 13:-0.723236 14:-0.784818 15:-0.490407 16:-0.130089 17:-0.727902 18:-0.783387 19:-0.166488 20:-0.0786544 21:0.0821256 22:0.0284378 23:-0.52138 24:-0.195536 25:0.1 26:0.207439 27:-0.509031 28:-0.152393 29:0.240572 30:-0.306773 31:-0.438167 32:-0.451169 33:0.223097 34:-0.225376 35:-0.446795 36:-0.434869 +-1024 1:-0.867729 2:-0.6042 3:-0.694168 4:-0.0832767 5:-0.842237 6:-0.65268 7:-0.677881 8:-0.128157 9:-0.835806 10:-0.721827 11:-0.611026 12:-0.147832 13:-0.804038 14:-0.859795 15:-0.623945 16:-0.13241 17:-0.801187 18:-0.864318 19:-0.392052 20:-0.462468 21:-0.31401 22:0.0660032 23:-0.808742 24:-0.542967 25:-0.307317 26:-0.17457 27:-0.682473 28:-0.659195 29:-0.196359 30:-0.243027 31:-0.716455 32:-0.762513 33:-0.204724 34:-0.289839 35:-0.694339 36:-0.774313 +-1024 1:-0.909336 2:-0.546949 3:-0.709815 4:0.0900696 5:-0.799141 6:-0.408494 7:-0.697924 8:-0.219504 9:-0.736752 10:-0.632573 11:-0.62634 12:-0.267564 13:-0.689833 14:-0.795012 15:-0.645434 16:-0.168311 17:-0.701312 18:-0.783384 19:-0.626924 20:-0.323358 21:-0.270531 22:0.23345 23:-0.697735 24:-0.218213 25:-0.209756 26:-0.347947 27:-0.454659 28:-0.544842 29:-0.152146 30:-0.536441 31:-0.453223 32:-0.626268 33:-0.173228 34:-0.258802 35:-0.518258 36:-0.561857 +-1024 1:-0.666115 2:-0.405306 3:-0.405405 4:0.0913364 5:-0.848227 6:-0.565878 7:-0.438797 8:0.0599896 9:-0.822997 10:-0.591906 11:-0.402757 12:0.169934 13:-0.783792 14:-0.716428 15:-0.409056 16:0.0946313 17:-0.76648 18:-0.736967 19:0.108485 20:-0.283886 21:0.0700483 22:0.206928 23:-0.775763 24:-0.42351 25:0.0317073 26:0.240495 27:-0.733879 28:-0.444856 29:0.0897269 30:0.15801 31:-0.696266 32:-0.528582 33:0.0813648 34:0.13704 35:-0.680454 36:-0.530293 +-1024 1:-0.731733 2:-0.217039 3:-0.369844 4:0.640352 5:-0.808078 6:0.025206 7:-0.329993 8:-0.379943 9:-0.595204 10:-0.532983 11:-0.261868 12:-0.403581 13:-0.539938 14:-0.675337 15:-0.280123 16:-0.266624 17:-0.55906 18:-0.655827 19:-0.037594 20:0.0159482 21:0.207729 22:0.794669 23:-0.695088 24:0.25839 25:0.270732 26:-0.723432 27:-0.112003 28:-0.480367 29:0.279584 30:-0.788976 31:-0.202456 32:-0.473907 33:0.304462 34:-0.555761 35:-0.270941 36:-0.432329 +1024 1:-0.79528 2:-0.662491 3:-0.641536 4:0.0168353 5:-0.936319 6:-0.780703 7:-0.65068 8:0.131163 9:-0.937207 10:-0.763405 11:-0.629403 12:0.227513 13:-0.909324 14:-0.862135 15:-0.634689 16:0.157298 17:-0.900192 18:-0.880628 19:-0.382026 20:-0.556702 21:-0.345411 22:-0.130069 23:-0.847132 24:-0.733694 25:-0.368293 26:0.0937796 27:-0.845616 28:-0.687136 29:-0.36541 30:0.130142 31:-0.832246 32:-0.743521 33:-0.354331 34:-0.0892767 35:-0.785935 36:-0.79504 +1024 1:-0.76775 2:-0.471992 3:-0.539118 4:0.0180898 5:-0.81579 6:-0.541096 7:-0.543307 8:0.0745534 9:-0.817816 10:-0.56314 11:-0.402757 12:-0.0498721 13:-0.778815 14:-0.792229 15:-0.416731 16:-0.0162776 17:-0.778725 18:-0.792823 19:0.127103 20:-0.196138 21:0.161836 22:0.150095 23:-0.695273 24:-0.347701 25:0.170732 26:0.234072 27:-0.675883 28:-0.372891 29:0.26658 30:-0.075082 31:-0.614731 32:-0.541028 33:0.265092 34:-0.0681539 35:-0.60781 36:-0.544298 +-1024 1:-0.689919 2:-0.121108 3:-0.358464 4:0.160342 5:-0.663812 6:-0.139467 7:-0.377237 8:0.298263 9:-0.698363 10:-0.166314 11:-0.335375 12:-0.15879 13:-0.496771 14:-0.524113 15:-0.33845 16:-0.265976 17:-0.460985 18:-0.559945 19:0.0977444 20:0.0989626 21:0.217391 22:0.103767 23:-0.342954 24:0.108246 25:0.207317 26:0.17434 27:-0.387428 28:-0.0262108 29:0.282185 30:-0.388978 31:-0.250389 32:-0.277406 33:0.278215 34:-0.364108 35:-0.228576 36:-0.262047 +-1024 1:-0.852412 2:-0.531804 3:-0.630156 4:-0.158029 5:-0.774969 6:-0.59916 7:-0.64209 8:-0.012294 9:-0.79357 10:-0.572195 11:-0.511485 12:-0.205978 13:-0.75183 14:-0.822023 15:-0.527245 16:-0.1592 17:-0.752607 18:-0.820556 19:-0.24812 20:-0.191111 21:0.0120773 22:-0.175348 23:-0.518249 24:-0.363592 25:-0.0487805 26:0.220127 27:-0.573589 28:-0.218388 29:0.162549 30:-0.41616 31:-0.494052 32:-0.580288 33:0.15748 34:-0.318109 35:-0.506188 36:-0.561889 +-1024 1:-0.764438 2:-0.387257 3:-0.502134 4:0.0537309 5:-0.765412 6:-0.417852 7:-0.504653 8:0.0275119 9:-0.751377 10:-0.479108 11:-0.353752 12:-0.030045 13:-0.728824 14:-0.727488 15:-0.359939 16:-0.068866 17:-0.720258 18:-0.746544 19:0.327605 20:-0.00528129 21:0.338164 22:0.165467 23:-0.505875 24:-0.0689206 25:0.385366 26:0.135579 27:-0.458976 28:-0.165812 29:0.459038 30:0.0450696 31:-0.460721 32:-0.255705 33:0.511811 34:-0.375371 35:-0.355323 36:-0.405093 +-1024 1:-0.851584 2:-0.521885 3:-0.598862 4:-0.250185 5:-0.723016 6:-0.590165 7:-0.624911 8:-0.112542 9:-0.728615 10:-0.540341 11:-0.462481 12:-0.367655 13:-0.690643 14:-0.816071 15:-0.471988 16:-0.334334 17:-0.690622 18:-0.819626 19:-0.0898675 20:-0.152639 21:0.0797101 22:-0.204937 23:-0.42543 24:-0.280176 25:0.0829268 26:0.249145 27:-0.544967 28:-0.163334 29:0.331599 30:-0.397441 31:-0.469302 32:-0.534015 33:0.375328 34:-0.447921 35:-0.456922 36:-0.566005 +1024 1:-0.892362 2:-0.49317 3:-0.671408 4:-0.26617 5:-0.650053 6:-0.495309 7:-0.67645 8:-0.277951 9:-0.658239 10:-0.564051 11:-0.54977 12:-0.522214 13:-0.609464 14:-0.810281 15:-0.561013 16:-0.472517 17:-0.609398 18:-0.809783 19:-0.493734 20:-0.124842 21:-0.149758 22:-0.120973 23:-0.357455 24:-0.110036 25:-0.131707 26:-0.0721829 27:-0.358991 28:-0.20829 29:0.0403121 30:-0.615788 31:-0.319281 32:-0.514806 33:0.0524934 34:-0.534312 35:-0.331096 36:-0.503793 +1024 1:-0.901884 2:-0.598502 3:-0.71266 4:-0.14891 5:-0.753097 6:-0.550023 7:-0.725125 8:-0.125421 9:-0.739264 10:-0.56343 11:-0.623277 12:-0.294823 13:-0.703447 14:-0.817275 15:-0.639294 16:-0.225147 17:-0.708083 18:-0.811527 19:-0.526674 20:-0.361141 21:-0.200483 22:-0.137011 23:-0.614783 24:-0.44185 25:-0.2 26:0.158943 27:-0.666845 28:-0.390983 29:-0.0585176 30:-0.312963 31:-0.590135 32:-0.646725 33:-0.0551181 34:-0.155178 35:-0.620336 36:-0.616558 +682.5816162773539 1:-0.702546 2:-0.310673 3:-0.411095 4:0.133428 5:-0.761492 6:-0.352664 7:-0.421618 8:0.14652 9:-0.750372 10:-0.392795 11:-0.260337 12:0.045188 13:-0.713067 14:-0.677453 15:-0.264774 16:-0.00655203 17:-0.704678 18:-0.702173 19:0.540279 20:0.041219 21:0.468599 22:0.202869 23:-0.508047 24:-0.0478024 25:0.495122 26:0.177961 27:-0.453543 28:-0.126845 29:0.513654 30:0.0509812 31:-0.417192 32:-0.189735 33:0.582677 34:-0.330882 35:-0.329156 36:-0.344293 +-1024 1:-0.806458 2:-0.520912 3:-0.571835 4:-0.116568 5:-0.813936 6:-0.636864 7:-0.567645 8:0.0664984 9:-0.846626 10:-0.621658 11:-0.476263 12:-0.168234 13:-0.781544 14:-0.836875 15:-0.496546 16:0.0189509 17:-0.807232 18:-0.814316 19:-0.0970283 20:-0.338199 21:-0.0869565 22:-0.0202986 23:-0.698232 24:-0.46672 25:0.00243902 26:0.0562908 27:-0.695953 28:-0.524086 29:0.120936 30:-0.324313 31:-0.650717 32:-0.710861 33:0.12336 34:-0.122449 35:-0.682899 36:-0.670581 +1024 1:-0.699648 2:-0.235706 3:-0.358464 4:0.0457018 5:-0.658159 6:-0.23949 7:-0.358626 8:0.147663 9:-0.665737 10:-0.238917 11:-0.156202 12:-0.442178 13:-0.559684 14:-0.702453 15:-0.175748 16:-0.310069 17:-0.57082 18:-0.679859 19:0.310419 20:-0.00368502 21:0.326087 22:-0.0823313 23:-0.378896 24:-0.124536 25:0.280488 26:0.299307 27:-0.423742 28:0.0396054 29:0.656697 30:-0.925377 31:-0.274229 32:-0.584256 33:0.632546 34:-0.483228 35:-0.36465 36:-0.472608 +1024 1:-0.741047 2:-0.317884 3:-0.475107 4:0.192935 5:-0.743088 6:-0.247986 7:-0.450251 8:-0.0865665 9:-0.678388 10:-0.445696 11:-0.304747 12:-0.171211 13:-0.654599 14:-0.69949 15:-0.315426 16:-0.156133 17:-0.651055 18:-0.705556 19:0.275331 20:0.112471 21:0.311594 22:0.340868 23:-0.446166 24:0.195723 25:0.368293 26:-0.0455643 27:-0.255468 28:-0.073486 29:0.511053 30:-0.396309 31:-0.270427 32:-0.293896 33:0.514436 34:-0.379035 35:-0.260719 36:-0.297029 +-1024 1:-0.833161 2:-0.481155 3:-0.607397 4:-0.206839 5:-0.694398 6:-0.510708 7:-0.606299 8:-0.001761 9:-0.762871 10:-0.513116 11:-0.473201 12:-0.319267 13:-0.687078 14:-0.797199 15:-0.478127 16:-0.359427 17:-0.672233 18:-0.812774 19:-0.0361618 20:-0.170276 21:0.031401 22:-0.123198 23:-0.462056 24:-0.251339 25:0.0146341 26:-0.108127 27:-0.405414 28:-0.297539 29:0.248375 30:-0.637967 31:-0.401323 32:-0.591822 33:0.254593 34:-0.806665 35:-0.338872 36:-0.640431 +1024 1:-0.81598 2:-0.548512 3:-0.615932 4:0.0305617 5:-0.866131 6:-0.622471 7:-0.617752 8:0.0157895 9:-0.844881 10:-0.647632 11:-0.520674 12:0.0180811 13:-0.826234 14:-0.82553 15:-0.534919 16:0.0278482 17:-0.822659 18:-0.829543 19:-0.195847 20:-0.27186 21:-0.0869565 22:-0.117325 23:-0.630981 24:-0.452579 25:-0.0926829 26:-0.125808 27:-0.545152 28:-0.470832 29:-0.0455137 30:-0.145612 31:-0.600743 32:-0.569476 33:-0.023622 34:-0.27675 35:-0.563026 36:-0.613622 +-1024 1:-0.699648 2:-0.235706 3:-0.358464 4:0.0457018 5:-0.658159 6:-0.23949 7:-0.358626 8:0.147663 9:-0.665737 10:-0.238917 11:-0.156202 12:-0.442178 13:-0.559684 14:-0.702453 15:-0.175748 16:-0.310069 17:-0.57082 18:-0.679859 19:0.310419 20:-0.00368502 21:0.326087 22:-0.0823313 23:-0.378896 24:-0.124536 25:0.280488 26:0.299307 27:-0.423742 28:0.0396054 29:0.656697 30:-0.925377 31:-0.274229 32:-0.584256 33:0.632546 34:-0.483228 35:-0.36465 36:-0.472608 +1024 1:-0.860277 2:-0.531603 3:-0.651494 4:-0.204753 5:-0.749098 6:-0.593887 7:-0.652112 8:-0.158606 9:-0.736676 10:-0.587284 11:-0.529862 12:-0.290723 13:-0.713386 14:-0.815944 15:-0.537989 16:-0.297802 17:-0.703955 18:-0.824342 19:-0.143573 20:-0.188093 21:0.0724638 22:-0.217632 23:-0.503898 24:-0.382345 25:0.0439024 26:0.150394 27:-0.552344 28:-0.258847 29:0.256177 30:-0.394073 31:-0.49961 32:-0.569997 33:0.23622 34:-0.267278 35:-0.516055 36:-0.541634 +-1024 1:-0.766922 2:-0.364894 3:-0.452347 4:0.288782 5:-0.775525 6:-0.230448 7:-0.378669 8:-0.512411 9:-0.639661 10:-0.674057 11:-0.269525 12:-0.563872 13:-0.611897 14:-0.798571 15:-0.283193 16:-0.44589 17:-0.626209 18:-0.78798 19:0.177945 20:-0.138921 21:0.2657 22:0.725284 23:-0.762801 24:0.0277216 25:0.34878 26:-0.514427 27:-0.389453 28:-0.572873 29:0.555267 30:-0.727624 31:-0.455953 32:-0.668546 33:0.577428 34:-0.485526 35:-0.504894 36:-0.626794 +-647.3231951641866 1:-0.814324 2:-0.432149 3:-0.536273 4:0.14683 5:-0.749455 6:-0.293406 7:-0.465999 8:-0.479623 9:-0.648489 10:-0.672198 11:-0.359877 12:-0.528031 13:-0.625342 14:-0.805 15:-0.373753 16:-0.438592 17:-0.633964 18:-0.798682 19:0.119227 20:-0.174033 21:0.190821 22:0.61914 23:-0.732623 24:0.00132265 25:0.35122 26:-0.55831 27:-0.368384 28:-0.581535 29:0.589077 30:-0.747456 31:-0.460499 32:-0.679667 33:0.587927 34:-0.571429 35:-0.488816 36:-0.64979 +-1024 1:-0.83668 2:-0.702653 3:-0.692745 4:-0.0660131 5:-0.92925 6:-0.808388 7:-0.695061 8:-0.0373775 9:-0.923762 10:-0.821186 11:-0.660031 12:0.136139 13:-0.909152 14:-0.889503 15:-0.669992 16:0.0969274 17:-0.901485 18:-0.900276 19:-0.24454 20:-0.555445 21:-0.169082 22:0.0972001 23:-0.90058 24:-0.694516 25:-0.146341 26:0.152973 27:-0.879004 28:-0.718408 29:-0.16775 30:0.254423 31:-0.860542 32:-0.733577 33:-0.165354 34:0.113005 35:-0.835944 36:-0.768014 +-1024 1:-0.654523 2:-0.577754 3:-0.394026 4:-0.000954671 5:-0.918946 6:-0.771925 7:-0.390122 8:0.0724455 9:-0.920541 10:-0.778132 11:-0.353752 12:0.1745 13:-0.887707 14:-0.85103 15:-0.364543 16:0.137388 17:-0.881651 18:-0.86232 19:0.0447547 20:-0.517633 21:-0.0289855 22:0.181448 23:-0.905529 24:-0.665187 25:-0.0097561 26:0.242183 27:-0.887943 28:-0.690826 29:-0.00650195 30:0.310504 31:-0.860121 32:-0.711545 33:-0.0131234 34:0.167743 35:-0.836725 36:-0.745803 +1024 1:-0.588905 2:-0.225194 3:-0.278805 4:0.428923 5:-0.822805 6:-0.250374 7:-0.244094 8:-0.0789344 9:-0.718656 10:-0.511026 11:-0.215926 12:-0.206671 13:-0.620976 14:-0.674385 15:-0.240215 16:0.0973948 17:-0.669683 18:-0.616105 19:0.19155 20:-0.190891 21:0.123188 22:0.546199 23:-0.786152 24:-0.164643 25:0.180488 26:-0.154489 27:-0.573103 28:-0.524515 29:0.222367 30:-0.316341 31:-0.546497 32:-0.584739 33:0.223097 34:-0.0204534 35:-0.602018 36:-0.510638 +1024 1:-0.739805 2:-0.322685 3:-0.438122 4:0.654323 5:-0.876648 6:-0.140725 7:-0.40587 8:-0.435872 9:-0.65626 10:-0.651211 11:-0.355283 12:-0.282809 13:-0.644248 14:-0.734929 15:-0.364543 16:-0.307543 17:-0.632753 18:-0.749591 19:-0.0196921 20:-0.138635 21:0.101449 22:0.753888 23:-0.797734 24:0.0143968 25:0.197561 26:-0.689988 27:-0.30654 28:-0.619165 29:0.224967 30:-0.495348 31:-0.446477 32:-0.566441 33:0.223097 34:-0.585423 35:-0.410992 36:-0.599411 +-1024 1:-0.923411 2:-0.657343 3:-0.756757 4:-0.230969 5:-0.78531 6:-0.669532 7:-0.748031 8:-0.251559 9:-0.787936 10:-0.729801 11:-0.655436 12:-0.333911 13:-0.75669 14:-0.879357 15:-0.666922 16:-0.301943 17:-0.753935 18:-0.880471 19:-0.606158 20:-0.475698 21:-0.338164 22:0.000577328 23:-0.773831 24:-0.536806 25:-0.317073 26:-0.225745 27:-0.640973 28:-0.649017 29:-0.183355 30:-0.328526 31:-0.683624 32:-0.763517 33:-0.170604 34:-0.355017 35:-0.667904 36:-0.773571 +1024 1:-0.830263 2:-0.459593 3:-0.603129 4:-0.0760739 5:-0.715552 6:-0.4299 7:-0.57194 8:-0.299776 9:-0.667607 10:-0.587459 11:-0.445636 12:-0.366133 13:-0.656216 14:-0.783423 15:-0.455104 16:-0.346339 17:-0.651098 18:-0.787663 19:0.0304332 20:-0.0412479 21:0.125604 22:0.2 23:-0.487555 24:0.0118695 25:0.173171 26:-0.169239 27:-0.288338 28:-0.219166 29:0.39922 30:-0.467006 31:-0.364803 32:-0.451251 33:0.406824 34:-0.466475 35:-0.349596 36:-0.457665 +1024 1:-0.642103 2:-0.290689 3:-0.341394 4:0.137295 5:-0.800147 6:-0.437552 7:-0.354331 8:0.364745 9:-0.828009 10:-0.394382 11:-0.295559 12:-0.0091695 13:-0.690833 14:-0.673905 15:-0.312356 16:-0.0112262 17:-0.683153 18:-0.680684 19:0.267454 20:-0.175389 21:0.200483 22:0.106324 23:-0.683406 24:-0.367437 25:0.243902 26:0.247449 27:-0.689728 28:-0.387771 29:0.269181 30:-0.0470927 31:-0.5925 32:-0.49602 33:0.265092 34:-0.0418114 35:-0.58516 36:-0.499801 +-1024 1:-0.728214 2:-0.21525 3:-0.366999 4:0.650829 5:-0.807825 6:0.03632 7:-0.325698 8:-0.368406 9:-0.59655 10:-0.526813 11:-0.258806 12:-0.388658 13:-0.541034 14:-0.670083 15:-0.278588 16:-0.253167 17:-0.559229 18:-0.650077 19:-0.0340136 20:0.01556 21:0.205314 22:0.797468 23:-0.69559 24:0.261015 25:0.265854 26:-0.727584 27:-0.108542 28:-0.480816 29:0.279584 30:-0.794943 31:-0.200001 32:-0.474916 33:0.304462 34:-0.55937 35:-0.269586 36:-0.433082 +1024 1:-0.892983 2:-0.736012 3:-0.751067 4:-0.199998 5:-0.899829 6:-0.82868 7:-0.756621 8:-0.163786 9:-0.886159 10:-0.820982 11:-0.686064 12:-0.0914371 13:-0.876699 14:-0.917384 15:-0.696086 16:-0.0776731 17:-0.875204 18:-0.92165 19:-0.392052 20:-0.543671 21:-0.258454 22:-0.18958 23:-0.810737 24:-0.724568 25:-0.292683 26:-0.0121419 27:-0.792716 28:-0.685565 29:-0.219766 30:-0.0153171 31:-0.80742 32:-0.774265 33:-0.199475 34:-0.164269 35:-0.773827 36:-0.8069 +1024 1:-0.901884 2:-0.598502 3:-0.71266 4:-0.14891 5:-0.753097 6:-0.550023 7:-0.725125 8:-0.125421 9:-0.739264 10:-0.56343 11:-0.623277 12:-0.294823 13:-0.703447 14:-0.817275 15:-0.639294 16:-0.225147 17:-0.708083 18:-0.811527 19:-0.526674 20:-0.361141 21:-0.200483 22:-0.137011 23:-0.614783 24:-0.44185 25:-0.2 26:0.158943 27:-0.666845 28:-0.390983 29:-0.0585176 30:-0.312963 31:-0.590135 32:-0.646725 33:-0.0551181 34:-0.155178 35:-0.620336 36:-0.616558 +1024 1:-0.879321 2:-0.609381 3:-0.71266 4:0.0302925 5:-0.873539 6:-0.621273 7:-0.683608 8:-0.328626 9:-0.784833 10:-0.769187 11:-0.641654 12:-0.0422457 13:-0.818561 14:-0.8415 15:-0.642364 16:-0.273939 17:-0.768782 18:-0.881379 19:-0.417114 20:-0.443515 21:-0.277778 22:0.0786902 23:-0.803449 24:-0.52917 25:-0.204878 26:-0.544443 27:-0.528264 28:-0.737543 29:-0.217165 30:0.00567488 31:-0.741863 32:-0.676563 33:-0.191601 34:-0.534185 35:-0.612817 36:-0.799519 +206.2136386116447 1:-0.641275 2:-0.0980127 3:-0.248933 4:0.861793 5:-0.82831 6:0.16265 7:-0.19685 8:-0.455451 9:-0.522396 10:-0.482469 11:-0.192956 12:-0.419214 13:-0.439587 14:-0.579793 15:-0.204912 16:-0.285304 17:-0.462339 18:-0.561626 19:0.0297172 20:0.0248015 21:0.2343 22:0.871918 23:-0.713706 24:0.296422 25:0.295122 26:-0.685641 27:-0.137676 28:-0.47336 29:0.305592 30:-0.739095 31:-0.214598 32:-0.454887 33:0.330709 34:-0.504577 35:-0.282853 36:-0.412047 +-1024 1:-0.791969 2:-0.50173 3:-0.578947 4:0.0825179 5:-0.862971 6:-0.581613 7:-0.577666 8:0.0568311 9:-0.840364 10:-0.615135 11:-0.496172 12:0.0323194 13:-0.808494 14:-0.799618 15:-0.507291 16:0.0371145 17:-0.805312 18:-0.806042 19:-0.157179 20:-0.247039 21:-0.057971 22:-0.133101 23:-0.613562 24:-0.4442 25:-0.0634146 26:-0.11057 27:-0.545219 28:-0.459552 29:-0.0221066 30:-0.136851 31:-0.583209 32:-0.541549 33:-0.00262467 34:-0.291784 35:-0.537429 36:-0.59159 +-1024 1:-0.878286 2:-0.605563 3:-0.675676 4:-0.194722 5:-0.793193 6:-0.65537 7:-0.682176 8:-0.0923881 9:-0.816825 10:-0.667057 11:-0.57121 12:-0.232856 13:-0.77552 14:-0.856974 15:-0.588642 16:-0.113836 17:-0.790465 18:-0.845741 19:-0.32116 20:-0.366883 21:-0.144928 22:-0.0201569 23:-0.700626 24:-0.465609 25:-0.0731707 26:-0.0294925 27:-0.669681 28:-0.548288 29:0.0871261 30:-0.327951 31:-0.658584 32:-0.722526 33:0.0839895 34:-0.171814 35:-0.677556 36:-0.688774 +1024 1:-0.632581 2:-0.26247 3:-0.29872 4:0.418042 5:-0.817214 6:-0.242163 7:-0.298497 8:0.107751 9:-0.759931 10:-0.451032 11:-0.173047 12:0.0654801 13:-0.708386 14:-0.662608 15:-0.180353 16:0.0506532 17:-0.703859 18:-0.676633 19:0.389187 20:-0.0041949 21:0.371981 22:0.579266 23:-0.675904 24:0.0416661 25:0.443902 26:-0.00417421 27:-0.474459 28:-0.302083 29:0.495449 30:0.0287735 31:-0.49562 32:-0.315266 33:0.503937 34:-0.206072 35:-0.429676 36:-0.392333 +-1024 1:-0.903333 2:-0.632451 3:-0.726885 4:-0.184509 5:-0.816711 6:-0.68369 7:-0.713672 8:-0.223482 9:-0.811191 10:-0.743673 11:-0.624809 12:-0.29796 13:-0.77757 14:-0.882737 15:-0.636224 16:-0.26031 17:-0.777928 18:-0.88425 19:-0.492302 20:-0.463841 21:-0.311594 22:0.0210211 23:-0.785753 24:-0.541929 25:-0.278049 26:-0.192653 27:-0.67014 28:-0.657579 29:-0.146944 30:-0.278199 31:-0.707265 32:-0.765113 33:-0.146982 34:-0.356844 35:-0.674854 36:-0.779772 +-1024 1:-0.551853 2:-0.0916535 3:-0.193457 4:0.0876951 5:-0.679137 6:-0.255425 7:-0.20544 8:0.288444 9:-0.697957 10:-0.197692 11:-0.150077 12:-0.0492972 13:-0.544529 14:-0.517516 15:-0.163469 16:0.0115378 17:-0.547673 18:-0.5091 19:0.377014 20:0.0272495 21:0.357488 22:0.0842722 23:-0.515661 24:-0.15713 25:0.358537 26:0.352688 27:-0.533503 28:-0.0757201 29:0.430429 30:-0.153305 31:-0.413093 32:-0.319532 33:0.451444 34:-0.0632599 35:-0.428371 36:-0.301767 +1024 1:-0.533844 2:-0.148813 3:-0.180654 4:0.245051 5:-0.7432 6:-0.245846 7:-0.19685 8:0.533345 9:-0.782386 10:-0.175382 11:-0.104135 12:-0.0476231 13:-0.611429 14:-0.593722 15:-0.108212 16:0.00849549 17:-0.619338 18:-0.593854 19:0.618332 20:0.118639 21:0.512077 22:0.0366267 23:-0.374801 24:-0.0194465 25:0.504878 26:0.459781 27:-0.489254 28:0.0789416 29:0.620286 30:-0.314699 31:-0.312501 32:-0.288718 33:0.656168 34:-0.325644 35:-0.299835 36:-0.303235 +1024 1:-0.660112 2:-0.203725 3:-0.331437 4:0.177765 5:-0.702254 6:-0.203287 7:-0.319971 8:0.0102918 9:-0.671929 10:-0.365804 11:-0.20827 12:-0.408121 13:-0.551122 14:-0.684305 15:-0.227936 16:-0.247476 17:-0.572159 18:-0.657959 19:0.255281 20:-0.0968333 21:0.214976 22:0.240179 23:-0.596504 24:-0.12342 25:0.258537 26:-0.058403 27:-0.480229 28:-0.347956 29:0.412224 30:-0.436558 31:-0.456637 32:-0.536762 33:0.383202 34:-0.239163 35:-0.484383 36:-0.482632 +-1024 1:-0.651418 2:-0.248153 3:-0.342817 4:0.135692 5:-0.76951 6:-0.375817 7:-0.350036 8:0.337917 9:-0.78282 10:-0.314851 11:-0.284839 12:-0.0444862 13:-0.65685 14:-0.64908 15:-0.297007 16:-0.0205827 17:-0.657424 18:-0.654934 19:0.158611 20:-0.069071 21:0.236715 22:-0.047557 23:-0.547029 24:-0.304102 25:0.153659 26:0.369529 27:-0.591629 28:-0.129124 29:0.292588 30:-0.277253 31:-0.465809 32:-0.464994 33:0.307087 34:-0.184813 35:-0.484451 36:-0.453527 +1024 1:-0.786794 2:-0.313845 3:-0.458037 4:0.412051 5:-0.78697 6:-0.13138 7:-0.411596 8:-0.357001 9:-0.639236 10:-0.580085 11:-0.310873 12:-0.396149 13:-0.599362 14:-0.731955 15:-0.333845 16:-0.260121 17:-0.616117 18:-0.713073 19:-0.137129 20:-0.0189495 21:0.147343 22:0.699109 23:-0.675144 24:0.210032 25:0.25122 26:-0.744583 27:-0.114177 28:-0.4982 29:0.26658 30:-0.865362 31:-0.207739 32:-0.522953 33:0.301837 34:-0.670918 35:-0.266145 36:-0.49549 +1024 1:-0.988201 2:-0.849748 3:-0.907539 4:-0.559352 5:-0.707747 6:-0.851983 7:-0.931281 8:-0.496651 9:-0.694131 10:-0.826174 11:-0.882083 12:-0.555087 13:-0.682886 14:-0.940494 15:-0.89716 16:-0.500414 17:-0.684203 18:-0.940084 19:-0.913355 20:-0.692663 21:-0.594203 22:-0.434091 23:-0.692011 24:-0.748298 25:-0.626829 26:-0.153404 27:-0.735733 28:-0.703054 29:-0.464239 30:-0.351022 31:-0.737892 32:-0.848117 33:-0.469816 34:-0.29818 35:-0.739164 36:-0.842272 +-1024 1:-0.998137 2:-0.895874 3:-0.950213 4:-0.585697 5:-0.681266 6:-0.869726 7:-0.964209 8:-0.525422 9:-0.693269 10:-0.862237 11:-0.937213 12:-0.553024 13:-0.662175 14:-0.949499 15:-0.949348 16:-0.488384 17:-0.67478 18:-0.950125 19:-0.973505 20:-0.774081 21:-0.695652 22:-0.330915 23:-0.814574 24:-0.806607 25:-0.702439 26:-0.228612 27:-0.778758 28:-0.802701 29:-0.596879 30:-0.202946 31:-0.816945 32:-0.877965 33:-0.606299 34:-0.140578 35:-0.828745 36:-0.877741 +-1024 1:-0.87456 2:-0.541935 3:-0.650071 4:-0.300318 5:-0.67704 6:-0.563959 7:-0.647817 8:-0.309272 9:-0.669049 10:-0.60074 11:-0.503828 12:-0.521808 13:-0.643143 14:-0.83116 15:-0.514965 16:-0.472697 17:-0.643843 18:-0.831489 19:-0.170068 20:-0.157042 21:-0.00241546 22:-0.0912568 23:-0.415689 24:-0.162701 25:0.0243902 26:-0.0330273 27:-0.409519 28:-0.237099 29:0.349805 30:-0.45381 31:-0.456265 32:-0.548361 33:0.370079 34:-0.423216 35:-0.45673 36:-0.552996 +1024 1:-0.69054 2:-0.338332 3:-0.396871 4:0.0514115 5:-0.756529 6:-0.415043 7:-0.40587 8:0.19226 9:-0.766996 10:-0.391007 11:-0.226646 12:-0.109362 13:-0.703043 14:-0.725234 15:-0.237145 16:-0.0970586 17:-0.700506 18:-0.731985 19:0.475832 20:0.0484876 21:0.400966 22:0.00619477 23:-0.39503 24:-0.0682027 25:0.392683 26:0.393453 27:-0.487908 28:0.0274176 29:0.563069 30:-0.331811 31:-0.367086 32:-0.367639 33:0.590551 34:-0.386471 35:-0.344174 36:-0.395528 +1024 1:-0.858828 2:-0.610774 3:-0.654339 4:-0.23906 5:-0.78649 6:-0.677995 7:-0.662133 8:-0.19526 9:-0.787457 10:-0.690112 11:-0.532925 12:-0.30141 13:-0.760342 14:-0.861591 15:-0.545664 16:-0.256611 17:-0.761844 18:-0.862156 19:-0.0504834 20:-0.309154 21:0.0410628 22:0.0395877 23:-0.703263 24:-0.436904 25:0.0487805 26:0.185239 27:-0.70342 28:-0.442547 29:0.302991 30:-0.101122 31:-0.683048 32:-0.6426 33:0.322835 34:-0.0936822 35:-0.680303 36:-0.649373 +-1024 1:-0.730905 2:-0.475653 3:-0.504979 4:0.0968012 5:-0.866996 6:-0.590344 7:-0.526127 8:0.0975224 9:-0.852714 10:-0.617075 11:-0.465544 12:0.148872 13:-0.818649 14:-0.769554 15:-0.475058 16:0.101987 17:-0.805685 18:-0.782275 19:0.0418904 20:-0.289799 21:0.0507246 22:0.180803 23:-0.769121 24:-0.430659 25:0.0121951 26:0.206038 27:-0.72354 28:-0.453852 29:0.0611183 30:0.139803 31:-0.693758 32:-0.534857 33:0.0524934 34:0.115384 35:-0.676764 36:-0.537393 +-1024 1:-0.973711 2:-0.74983 3:-0.853485 4:-0.672909 5:-0.493166 6:-0.715532 7:-0.888332 8:-0.383009 9:-0.618811 10:-0.634705 11:-0.819296 12:-0.723207 13:-0.519046 14:-0.88328 15:-0.831159 16:-0.70151 17:-0.509243 18:-0.888876 19:-0.829574 20:-0.547351 21:-0.475845 22:-0.704252 23:-0.299917 24:-0.596758 25:-0.531707 26:-0.283193 27:-0.440765 28:-0.49627 29:-0.342003 30:-0.856258 31:-0.425483 32:-0.786369 33:-0.338583 34:-0.846903 35:-0.414716 36:-0.795727 +-1024 1:-0.710205 2:-0.326437 3:-0.45377 4:0.230743 5:-0.802658 6:-0.346372 7:-0.480315 8:-0.0739322 9:-0.715373 10:-0.495354 11:-0.379786 12:-0.27421 13:-0.646915 14:-0.735788 15:-0.401381 16:-0.223564 17:-0.641532 18:-0.727688 19:0.114214 20:-0.212228 21:0.089372 22:0.180279 23:-0.671411 24:-0.279213 25:0.0853659 26:0.0294709 27:-0.598201 28:-0.420246 29:0.271782 30:-0.306606 31:-0.569852 32:-0.60492 33:0.257218 34:-0.234947 35:-0.566671 36:-0.583049 +1024 1:-0.823018 2:-0.326812 3:-0.524893 4:0.175066 5:-0.684805 6:-0.133819 7:-0.528991 8:0.149606 9:-0.687044 10:-0.254376 11:-0.405819 12:-0.147807 13:-0.594967 14:-0.630365 15:-0.418266 16:-0.109925 17:-0.595794 18:-0.631694 19:-0.255281 20:0.0450372 21:0.0917874 22:0.123113 23:-0.326503 24:0.164004 25:0.121951 26:0.143418 27:-0.333353 28:0.0206106 29:0.222367 30:-0.478996 31:-0.192916 32:-0.275251 33:0.217848 34:-0.440196 35:-0.182702 36:-0.266212 +-1024 1:-0.608363 2:-0.214074 3:-0.253201 4:0.89435 5:-0.88281 6:0.0141814 7:-0.226915 8:-0.496764 9:-0.602438 10:-0.610744 11:-0.134763 12:-0.638944 13:-0.537628 14:-0.752643 15:-0.152724 16:-0.371145 17:-0.579045 18:-0.710608 19:0.413534 20:-0.10865 21:0.359903 22:0.939257 23:-0.829745 24:0.0594063 25:0.402439 26:-0.527071 27:-0.38412 28:-0.574015 29:0.576073 30:-0.790943 31:-0.419057 32:-0.660588 33:0.60105 34:-0.447035 35:-0.49096 36:-0.592522 +-1024 1:-0.527841 2:0.0824441 3:-0.136558 4:0.482819 5:-0.643675 6:0.201432 7:-0.133858 8:0.176672 9:-0.544896 10:-0.0122657 11:-0.0520674 12:-0.189659 13:-0.378748 14:-0.395561 15:-0.0606293 16:-0.161119 17:-0.375114 18:-0.397987 19:0.553169 20:0.25371 21:0.514493 22:0.29063 23:-0.349541 24:0.265145 25:0.590244 26:-0.0442998 27:-0.193772 28:-0.00355063 29:0.630689 30:-0.380106 31:-0.136177 32:-0.116084 33:0.648294 34:-0.320045 35:-0.140677 36:-0.106583 +-1024 1:-0.983854 2:-0.856221 3:-0.891892 4:-0.566738 5:-0.691472 6:-0.835668 7:-0.902649 8:-0.537752 9:-0.68351 10:-0.831178 11:-0.865237 12:-0.574736 13:-0.668918 14:-0.933654 15:-0.878741 16:-0.526999 17:-0.670742 18:-0.935212 19:-0.838167 20:-0.686127 21:-0.478261 22:-0.342986 23:-0.748246 24:-0.742245 25:-0.485366 26:-0.210241 27:-0.730246 28:-0.735478 29:-0.326398 30:-0.19644 31:-0.780767 32:-0.820695 33:-0.314961 34:-0.202182 35:-0.776348 36:-0.830026 +628.219546997753 1:-0.777893 2:-0.378957 3:-0.522048 4:0.311823 5:-0.847042 6:-0.361297 7:-0.510379 8:-0.133344 9:-0.753303 10:-0.59768 11:-0.477795 12:-0.222195 13:-0.672084 14:-0.747148 15:-0.498081 16:0.0351628 17:-0.715599 18:-0.703387 19:-0.118511 20:-0.239002 21:-0.0241546 22:0.411479 23:-0.77285 24:-0.233829 25:0.0317073 26:-0.251854 27:-0.544333 28:-0.560201 29:0.0559168 30:-0.375373 31:-0.541503 32:-0.617692 33:0.0446194 34:-0.0783851 35:-0.59975 36:-0.544537 +-1024 1:-0.701511 2:-0.267203 3:-0.403983 4:0.787475 5:-0.889003 6:-0.0587699 7:-0.37151 8:-0.524457 9:-0.606951 10:-0.642041 11:-0.336907 12:-0.355167 13:-0.589461 14:-0.708615 15:-0.353799 16:-0.388349 17:-0.573043 18:-0.72488 19:0.0132474 20:-0.137012 21:0.108696 22:0.796858 23:-0.809692 24:0.0275545 25:0.195122 26:-0.671337 27:-0.320385 28:-0.618966 29:0.23277 30:-0.472018 31:-0.452681 32:-0.560368 33:0.228346 34:-0.555525 35:-0.421372 36:-0.593897 +-1024 1:-0.636721 2:-0.429324 3:-0.423898 4:0.132179 5:-0.850758 6:-0.539113 7:-0.390122 8:0.0439986 9:-0.835341 10:-0.628122 11:-0.309342 12:-0.04359 13:-0.784383 14:-0.794011 15:-0.323101 16:-0.0467088 17:-0.779559 18:-0.801688 19:0.0712496 20:-0.361347 21:-0.0652174 22:0.267834 23:-0.824329 24:-0.446211 25:-0.0512195 26:0.0135356 27:-0.723922 28:-0.588162 29:0.107932 30:-0.118245 31:-0.722061 32:-0.70367 33:0.0944882 34:-0.162478 35:-0.704911 36:-0.716628 +1024 1:-0.982405 2:-0.832449 3:-0.891892 4:-0.649525 5:-0.63106 6:-0.84037 7:-0.905512 8:-0.541889 9:-0.686509 10:-0.837782 11:-0.85758 12:-0.644321 13:-0.652874 14:-0.942362 15:-0.872602 16:-0.576537 17:-0.652265 18:-0.938146 19:-0.842463 20:-0.659515 21:-0.536232 22:-0.347052 23:-0.722221 24:-0.717621 25:-0.502439 26:-0.277696 27:-0.697204 28:-0.745412 29:-0.352406 30:-0.295906 31:-0.760608 32:-0.839959 33:-0.343832 34:-0.300849 35:-0.741099 36:-0.835231 +1024 1:-0.562202 2:-0.183563 3:-0.207681 4:0.507916 5:-0.812613 6:-0.165626 7:-0.199714 8:0.130238 9:-0.735986 10:-0.396607 11:-0.114855 12:0.0689636 13:-0.658581 14:-0.599528 15:-0.123561 16:0.0399928 17:-0.651212 18:-0.617807 19:0.457214 20:0.00116461 21:0.384058 22:0.587193 23:-0.679279 24:0.0412039 25:0.480488 26:-0.0129537 27:-0.475665 28:-0.311069 29:0.518856 30:0.0390375 31:-0.492078 32:-0.303693 33:0.535433 34:-0.208514 35:-0.424058 36:-0.385936 +1024 1:-0.984061 2:-0.842522 3:-0.886202 4:-0.685534 5:-0.636427 6:-0.865194 7:-0.908375 8:-0.59016 9:-0.663865 10:-0.849909 11:-0.863706 12:-0.696591 13:-0.634245 14:-0.949166 15:-0.877206 16:-0.654465 17:-0.629246 18:-0.94986 19:-0.833154 20:-0.664845 21:-0.461353 22:-0.544761 23:-0.656852 24:-0.777848 25:-0.534146 26:-0.184599 27:-0.74185 28:-0.731733 29:-0.313394 30:-0.405784 31:-0.739107 32:-0.857447 33:-0.314961 34:-0.373507 35:-0.736088 36:-0.856261 +-1024 1:-0.937901 2:-0.677599 3:-0.792319 4:-0.376134 5:-0.667893 6:-0.628486 7:-0.732283 8:-0.725575 9:-0.612786 10:-0.81954 11:-0.672282 12:-0.793908 13:-0.604289 14:-0.911788 15:-0.683807 16:-0.722396 17:-0.609929 18:-0.91047 19:-0.465091 20:-0.489132 21:-0.241546 22:-0.0622983 23:-0.724985 24:-0.52473 25:-0.0780488 26:-0.474596 27:-0.597669 28:-0.748619 29:0.123537 30:-0.570389 31:-0.661194 32:-0.818513 33:0.12336 34:-0.465181 35:-0.67605 36:-0.808904 +1024 1:-0.943904 2:-0.785472 3:-0.807966 4:-0.37507 5:-0.835016 6:-0.842497 7:-0.819613 8:-0.342767 9:-0.818267 10:-0.831361 11:-0.750383 12:-0.34191 13:-0.805962 14:-0.929948 15:-0.763622 16:-0.29275 17:-0.808757 18:-0.930327 19:-0.608306 20:-0.581796 21:-0.311594 22:-0.293683 23:-0.764086 24:-0.729667 25:-0.356098 26:-0.116691 27:-0.744532 28:-0.691255 29:-0.206762 30:-0.159783 31:-0.776819 32:-0.796476 33:-0.188976 34:-0.234965 35:-0.755313 36:-0.814629 +1024 1:-0.678534 2:-0.238267 3:-0.374111 4:0.135839 5:-0.751685 6:-0.335675 7:-0.370079 8:0.304547 9:-0.765044 10:-0.300945 11:-0.300153 12:-0.0538883 13:-0.644257 14:-0.6391 15:-0.316961 16:0.0142193 17:-0.648432 18:-0.629637 19:0.276763 20:0.0137667 21:0.321256 22:0.0821825 23:-0.518661 24:-0.160793 25:0.331707 26:0.316241 27:-0.521477 28:-0.0890449 29:0.383615 30:-0.191215 31:-0.404805 32:-0.334079 33:0.404199 34:-0.088164 35:-0.427548 36:-0.317896 +-1024 1:-0.613124 2:-0.205369 3:-0.284495 4:0.123716 5:-0.752347 6:-0.357729 7:-0.30136 8:0.310204 9:-0.758715 10:-0.292788 11:-0.245023 12:-0.074544 13:-0.622052 14:-0.621139 15:-0.254029 16:-0.0430515 17:-0.624616 18:-0.626328 19:0.219477 20:-0.0630017 21:0.26087 22:-0.0364992 23:-0.548057 24:-0.297528 25:0.178049 26:0.387663 27:-0.596346 28:-0.122382 29:0.328999 30:-0.266794 31:-0.467407 32:-0.459545 33:0.343832 34:-0.174293 35:-0.485111 36:-0.446952 +1024 1:-0.811633 2:-0.426618 3:-0.566145 4:-0.023163 5:-0.769664 6:-0.484336 7:-0.564782 8:0.00113986 9:-0.74498 10:-0.483099 11:-0.437979 12:-0.164768 13:-0.711315 14:-0.762698 15:-0.447429 16:-0.171681 17:-0.700748 18:-0.76921 19:-0.0075188 20:-0.102905 21:0.166667 22:-0.144003 23:-0.493374 24:-0.312771 25:0.15122 26:0.198817 27:-0.527121 28:-0.189126 29:0.318596 30:-0.38946 31:-0.451655 32:-0.510236 33:0.278215 34:-0.21567 35:-0.470577 36:-0.455834 +1024 1:-0.982198 2:-0.857997 3:-0.894737 4:-0.529378 5:-0.720854 6:-0.838307 7:-0.90408 8:-0.51479 9:-0.707548 10:-0.839041 11:-0.869832 12:-0.51813 13:-0.694938 14:-0.932686 15:-0.883346 16:-0.470417 17:-0.697811 18:-0.93439 19:-0.836019 20:-0.674918 21:-0.5 22:-0.309395 23:-0.750363 24:-0.72267 25:-0.5 26:-0.197567 27:-0.722284 28:-0.718927 29:-0.352406 30:-0.175392 31:-0.775435 32:-0.807359 33:-0.328084 34:-0.188314 35:-0.772273 36:-0.820706 +1024 1:-0.869178 2:-0.510915 3:-0.641536 4:0.133666 5:-0.794516 6:-0.375335 7:-0.570508 8:-0.513581 9:-0.66955 10:-0.726818 11:-0.502297 12:-0.422554 13:-0.671535 14:-0.821405 15:-0.514965 16:-0.399616 17:-0.666891 18:-0.825447 19:-0.292517 20:-0.231435 21:-0.0531401 22:0.533781 23:-0.756073 24:-0.0775301 25:0.102439 26:-0.71435 27:-0.304929 28:-0.639332 29:0.183355 30:-0.627806 31:-0.466561 32:-0.655893 33:0.175853 34:-0.655639 35:-0.441034 36:-0.666969 +-751.7575540944858 1:-0.456013 2:-0.0575875 3:-0.135135 4:0.265974 5:-0.655274 6:-0.0489006 7:-0.155333 8:0.188447 9:-0.593777 10:-0.0892345 11:0.0444104 12:-0.580063 13:-0.42961 14:-0.624312 15:0.0437452 16:-0.34866 17:-0.473909 18:-0.589597 19:0.752238 20:0.061953 21:0.492754 22:-0.0449218 23:-0.373788 24:-0.09115 25:0.392683 26:0.241048 27:-0.347707 28:0.0795649 29:0.825748 30:-0.970294 31:-0.229711 32:-0.554896 33:0.787402 34:-0.536085 35:-0.311932 36:-0.437891 +-1024 1:-0.998137 2:-0.895874 3:-0.950213 4:-0.585697 5:-0.681266 6:-0.869726 7:-0.964209 8:-0.525422 9:-0.693269 10:-0.862237 11:-0.937213 12:-0.553024 13:-0.662175 14:-0.949499 15:-0.949348 16:-0.488384 17:-0.67478 18:-0.950125 19:-0.973505 20:-0.774081 21:-0.695652 22:-0.330915 23:-0.814574 24:-0.806607 25:-0.702439 26:-0.228612 27:-0.778758 28:-0.802701 29:-0.596879 30:-0.202946 31:-0.816945 32:-0.877965 33:-0.606299 34:-0.140578 35:-0.828745 36:-0.877741 +-1024 1:-0.984061 2:-0.842522 3:-0.886202 4:-0.685534 5:-0.636427 6:-0.865194 7:-0.908375 8:-0.59016 9:-0.663865 10:-0.849909 11:-0.863706 12:-0.696591 13:-0.634245 14:-0.949166 15:-0.877206 16:-0.654465 17:-0.629246 18:-0.94986 19:-0.833154 20:-0.664845 21:-0.461353 22:-0.544761 23:-0.656852 24:-0.777848 25:-0.534146 26:-0.184599 27:-0.74185 28:-0.731733 29:-0.313394 30:-0.405784 31:-0.739107 32:-0.857447 33:-0.314961 34:-0.373507 35:-0.736088 36:-0.856261 +-475.6591579268793 1:-0.971434 2:-0.744687 3:-0.847795 4:-0.657671 5:-0.509349 6:-0.714649 7:-0.884037 8:-0.354179 9:-0.638825 10:-0.631445 11:-0.81317 12:-0.697132 13:-0.534508 14:-0.880719 15:-0.826554 16:-0.672833 17:-0.525669 18:-0.886162 19:-0.822413 20:-0.533109 21:-0.47343 22:-0.666644 23:-0.317694 24:-0.580783 25:-0.52439 26:-0.274492 27:-0.433369 28:-0.480442 29:-0.3342 30:-0.837419 31:-0.426999 32:-0.777787 33:-0.330709 34:-0.849924 35:-0.405521 36:-0.789017 +-772.9549713359188 1:-0.874974 2:-0.488863 3:-0.611664 4:-0.449815 5:-0.580096 6:-0.553382 7:-0.652112 8:-0.0973043 9:-0.666011 10:-0.425581 11:-0.490046 12:-0.63563 13:-0.566078 14:-0.808026 15:-0.510361 16:-0.504481 17:-0.584635 18:-0.79512 19:-0.269603 20:-0.181186 21:0.0241546 22:-0.355694 23:-0.350718 24:-0.324178 25:-0.0390244 26:0.245567 27:-0.495231 28:-0.083335 29:0.362809 30:-0.786795 31:-0.392637 32:-0.647431 33:0.341207 34:-0.484305 35:-0.453168 36:-0.582746 +1024 1:-0.558684 2:-0.124508 3:-0.219061 4:0.174546 5:-0.65612 6:-0.128954 7:-0.23121 8:0.185599 9:-0.627605 10:-0.147693 11:-0.0321593 12:-0.539606 13:-0.483134 14:-0.661824 15:-0.0437452 16:-0.377738 17:-0.504138 18:-0.635884 19:0.634801 20:0.0491076 21:0.456522 22:-0.043158 23:-0.378665 24:-0.0943313 25:0.37561 26:0.257752 27:-0.365274 28:0.0730871 29:0.797139 30:-0.95578 31:-0.240943 32:-0.559836 33:0.745407 34:-0.530477 35:-0.320716 36:-0.44608 +1024 1:-0.994411 2:-0.880505 3:-0.944523 4:-0.523142 5:-0.681907 6:-0.819613 7:-0.92985 8:-0.651467 9:-0.652529 10:-0.888521 11:-0.914242 12:-0.595663 13:-0.648868 14:-0.94648 15:-0.927859 16:-0.545737 17:-0.648548 18:-0.946462 19:-0.919799 20:-0.724657 21:-0.644928 22:-0.24166 23:-0.783916 24:-0.709901 25:-0.57561 26:-0.394574 27:-0.681541 28:-0.807129 29:-0.495449 30:-0.305966 31:-0.756746 32:-0.850901 33:-0.493438 34:-0.269169 35:-0.757214 36:-0.849648 +1024 1:-0.961292 2:-0.743451 3:-0.866287 4:-0.306945 5:-0.794013 6:-0.747326 7:-0.869721 8:-0.316098 9:-0.799123 10:-0.798136 11:-0.805513 12:-0.338815 13:-0.769099 14:-0.91121 15:-0.821949 16:-0.288871 17:-0.77228 18:-0.911911 19:-0.871106 20:-0.595424 21:-0.599034 22:-0.384171 23:-0.658105 24:-0.679047 25:-0.6 26:-0.244856 27:-0.690849 28:-0.721002 29:-0.516255 30:-0.416958 31:-0.66715 32:-0.816526 33:-0.511811 34:-0.402319 35:-0.66664 36:-0.825271 +1024 1:-0.976402 2:-0.806224 3:-0.881935 4:-0.489606 5:-0.629128 6:-0.706775 7:-0.892627 8:-0.475169 9:-0.626501 10:-0.724873 11:-0.836141 12:-0.565284 13:-0.610678 14:-0.888077 15:-0.848043 16:-0.527721 17:-0.608071 18:-0.890366 19:-0.815968 20:-0.619101 21:-0.495169 22:-0.318852 23:-0.651535 24:-0.620487 25:-0.504878 26:-0.16102 27:-0.661867 28:-0.626631 29:-0.347204 30:-0.252419 31:-0.708156 32:-0.766367 33:-0.330709 34:-0.268825 35:-0.697942 36:-0.777032 +-1024 1:-0.895674 2:-0.616242 3:-0.705548 4:-0.331393 5:-0.732374 6:-0.669592 7:-0.717967 8:-0.236334 9:-0.742789 10:-0.654126 11:-0.600306 12:-0.391575 13:-0.710663 14:-0.853903 15:-0.614735 16:-0.354843 17:-0.708089 18:-0.854722 19:-0.398496 20:-0.254087 21:-0.123188 22:-0.0936299 23:-0.562978 24:-0.343964 25:-0.131707 26:0.104384 27:-0.557484 28:-0.293565 29:0.118336 30:-0.31403 31:-0.550927 32:-0.59332 33:0.110236 34:-0.258721 35:-0.552579 36:-0.58508 +1024 1:-0.703581 2:-0.342971 3:-0.438122 4:0.130037 5:-0.812479 6:-0.457167 7:-0.443092 8:0.124357 9:-0.793615 10:-0.49084 11:-0.390505 12:0.00358071 13:-0.716538 14:-0.700833 15:-0.405986 16:-0.057566 17:-0.698814 18:-0.720391 19:-0.0254207 20:-0.207491 21:0.031401 22:-0.115299 23:-0.611937 24:-0.432159 25:0.0121951 26:-0.0591143 27:-0.560262 28:-0.439111 29:0.0663199 30:-0.113048 31:-0.569108 32:-0.507001 33:0.0787402 34:-0.253157 35:-0.529264 36:-0.556295 +1024 1:-0.962327 2:-0.782287 3:-0.837838 4:-0.456853 5:-0.733315 6:-0.782574 7:-0.843951 8:-0.438859 9:-0.731439 10:-0.795429 11:-0.784074 12:-0.496713 13:-0.704666 14:-0.910794 15:-0.795856 16:-0.452016 17:-0.70635 18:-0.912453 19:-0.75367 20:-0.576347 21:-0.381643 22:-0.166557 23:-0.753259 24:-0.630768 25:-0.380488 26:-0.0718812 27:-0.732272 28:-0.645855 29:-0.243173 30:-0.114588 31:-0.744823 32:-0.739781 33:-0.225722 34:-0.17726 35:-0.729753 36:-0.7638 +1024 1:-0.484165 2:-0.00556113 3:-0.0910384 4:0.242285 5:-0.66876 6:-0.104147 7:-0.115247 8:0.681038 9:-0.730496 10:0.06912 11:-0.00765697 12:-0.0459236 13:-0.497683 14:-0.457759 15:-0.0176516 16:-0.151836 17:-0.474583 18:-0.502001 19:0.649123 20:0.212425 21:0.586957 22:0.0449785 23:-0.326652 24:0.0476155 25:0.509756 26:0.542044 27:-0.403586 28:0.293585 29:0.70091 30:-0.208523 31:-0.236457 32:-0.120279 33:0.740157 34:-0.454443 35:-0.16684 36:-0.226697 +-653.6212581299109 1:-0.62782 2:-0.236364 3:-0.256046 4:0.746645 5:-0.851799 6:-0.0325088 7:-0.232641 8:-0.501911 9:-0.606951 10:-0.619595 11:-0.116386 12:-0.598698 13:-0.561154 14:-0.7575 15:-0.137375 16:-0.385053 17:-0.592141 18:-0.72731 19:0.35768 20:-0.108132 21:0.352657 22:0.928935 23:-0.825745 24:0.0612059 25:0.382927 26:-0.531526 27:-0.379322 28:-0.573262 29:0.550065 30:-0.79086 31:-0.416729 32:-0.659823 33:0.585302 34:-0.462151 35:-0.488715 36:-0.598116 +-1024 1:-0.896295 2:-0.525156 3:-0.688478 4:-0.0169332 5:-0.732043 6:-0.389937 7:-0.632069 8:-0.4792 9:-0.65113 10:-0.692661 11:-0.552833 12:-0.498193 13:-0.632844 14:-0.820951 15:-0.568688 16:-0.395984 17:-0.647186 18:-0.81373 19:-0.476549 20:-0.206935 21:-0.164251 22:0.395137 23:-0.645812 24:0.0142689 25:-0.0365854 26:-0.747672 27:-0.163647 28:-0.565372 29:0.0559168 30:-0.862234 31:-0.317657 32:-0.643865 33:0.0603675 34:-0.674917 35:-0.362375 36:-0.613248 +1024 1:-0.951149 2:-0.730705 3:-0.809388 4:-0.471467 5:-0.715366 6:-0.766498 7:-0.803865 8:-0.514506 9:-0.705977 10:-0.805965 11:-0.724349 12:-0.643358 13:-0.681643 14:-0.925391 15:-0.735994 16:-0.583081 17:-0.684224 18:-0.924368 19:-0.715002 20:-0.550039 21:-0.42029 22:-0.24518 23:-0.721873 24:-0.646945 25:-0.402439 26:-0.176926 27:-0.702916 28:-0.683471 29:-0.193758 30:-0.369359 31:-0.723682 32:-0.821553 33:-0.186352 34:-0.270589 35:-0.740296 36:-0.812945 +1024 1:-0.983647 2:-0.836199 3:-0.897582 4:-0.530706 5:-0.71838 6:-0.83797 7:-0.922691 8:-0.449782 9:-0.720128 10:-0.814978 11:-0.8683 12:-0.520692 13:-0.698201 14:-0.934745 15:-0.883346 16:-0.467982 17:-0.698464 18:-0.934028 19:-0.899749 20:-0.657058 21:-0.611111 22:-0.357395 23:-0.684627 24:-0.686329 25:-0.612195 26:-0.190232 27:-0.683274 28:-0.673033 29:-0.435631 30:-0.398527 31:-0.707035 32:-0.835839 33:-0.446194 34:-0.352113 35:-0.702711 36:-0.828499 +-1024 1:-0.862968 2:-0.700292 3:-0.705548 4:-0.133574 5:-0.908341 6:-0.806589 7:-0.706514 8:-0.105624 9:-0.902512 10:-0.817816 11:-0.650842 12:0.0493056 13:-0.893438 14:-0.895447 15:-0.659248 16:-0.000442815 17:-0.882206 18:-0.906232 19:-0.218045 20:-0.541475 21:-0.108696 22:0.0958046 23:-0.894861 24:-0.689875 25:-0.095122 26:0.141744 27:-0.870646 28:-0.714254 29:-0.10013 30:0.239528 31:-0.854097 32:-0.731162 33:-0.0918635 34:0.100937 35:-0.829847 36:-0.764521 +-1024 1:-0.87456 2:-0.541935 3:-0.650071 4:-0.300318 5:-0.67704 6:-0.563959 7:-0.647817 8:-0.309272 9:-0.669049 10:-0.60074 11:-0.503828 12:-0.521808 13:-0.643143 14:-0.83116 15:-0.514965 16:-0.472697 17:-0.643843 18:-0.831489 19:-0.170068 20:-0.157042 21:-0.00241546 22:-0.0912568 23:-0.415689 24:-0.162701 25:0.0243902 26:-0.0330273 27:-0.409519 28:-0.237099 29:0.349805 30:-0.45381 31:-0.456265 32:-0.548361 33:0.370079 34:-0.423216 35:-0.45673 36:-0.552996 +1024 1:-0.956324 2:-0.70863 3:-0.846373 4:-0.170225 5:-0.756383 6:-0.563234 7:-0.829635 8:-0.336728 9:-0.731464 10:-0.721924 11:-0.779479 12:-0.322294 13:-0.707467 14:-0.853659 15:-0.792786 16:-0.270552 17:-0.709807 18:-0.852179 19:-0.82671 20:-0.468264 21:-0.502415 22:0.143422 23:-0.692952 24:-0.243634 25:-0.44878 26:-0.344347 27:-0.450059 28:-0.551898 29:-0.378414 30:-0.481112 31:-0.496083 32:-0.66701 33:-0.380577 34:-0.313052 35:-0.537101 36:-0.634441 +-1024 1:-0.900228 2:-0.61366 3:-0.692745 4:-0.378258 5:-0.671515 6:-0.623042 7:-0.699356 8:-0.359227 9:-0.669747 10:-0.64259 11:-0.584992 12:-0.467484 13:-0.653815 14:-0.831332 15:-0.594781 16:-0.473247 17:-0.643291 18:-0.841014 19:-0.254565 20:-0.289915 21:-0.0289855 22:-0.182985 23:-0.534406 24:-0.387916 25:-0.0268293 26:-0.0388827 27:-0.541672 28:-0.399929 29:0.235371 30:-0.0891231 31:-0.624707 32:-0.562137 33:0.265092 34:-0.340778 35:-0.556869 36:-0.625646 +1024 1:-0.919271 2:-0.701949 3:-0.728307 4:-0.454919 5:-0.711398 6:-0.735415 7:-0.735147 8:-0.407121 9:-0.72242 10:-0.744818 11:-0.630934 12:-0.568843 13:-0.688409 14:-0.894472 15:-0.643899 16:-0.515453 17:-0.689957 18:-0.894526 19:-0.271035 20:-0.445865 21:-0.0338164 22:-0.17476 23:-0.704055 24:-0.588281 25:-0.0121951 26:-0.00378625 27:-0.718553 28:-0.593972 29:0.297789 30:-0.197888 31:-0.725807 32:-0.738006 33:0.317585 34:-0.167879 35:-0.726327 36:-0.738909 +450.7108435250891 1:-0.564893 2:-0.0343954 3:-0.210526 4:0.50679 5:-0.706048 6:0.0983875 7:-0.208304 8:0.202693 9:-0.62357 10:-0.127289 11:-0.0765697 12:-0.0737999 13:-0.518096 14:-0.496727 15:-0.0867229 16:-0.0586894 17:-0.512954 18:-0.501658 19:0.540279 20:0.252919 21:0.514493 22:0.357437 23:-0.375272 24:0.297312 25:0.585366 26:-0.031303 27:-0.199543 28:0.00162072 29:0.628088 30:-0.365833 31:-0.143743 32:-0.115459 33:0.64042 34:-0.323654 35:-0.142096 36:-0.111235 +-757.5672573947348 1:-0.897537 2:-0.566886 3:-0.697013 4:-0.351668 5:-0.653134 6:-0.576604 7:-0.67645 8:-0.443484 9:-0.643479 10:-0.666317 11:-0.552833 12:-0.641869 13:-0.622733 14:-0.85996 15:-0.568688 16:-0.567845 17:-0.626798 18:-0.856383 19:-0.256713 20:-0.311413 21:-0.0942029 22:-0.0802061 23:-0.584786 24:-0.362466 25:-0.0268293 26:-0.1786 27:-0.534682 28:-0.498843 29:0.253576 30:-0.485075 31:-0.572191 32:-0.692054 33:0.217848 34:-0.318009 35:-0.594423 36:-0.658184 +1024 1:-0.897537 2:-0.566886 3:-0.697013 4:-0.351668 5:-0.653134 6:-0.576604 7:-0.67645 8:-0.443484 9:-0.643479 10:-0.666317 11:-0.552833 12:-0.641869 13:-0.622733 14:-0.85996 15:-0.568688 16:-0.567845 17:-0.626798 18:-0.856383 19:-0.256713 20:-0.311413 21:-0.0942029 22:-0.0802061 23:-0.584786 24:-0.362466 25:-0.0268293 26:-0.1786 27:-0.534682 28:-0.498843 29:0.253576 30:-0.485075 31:-0.572191 32:-0.692054 33:0.217848 34:-0.318009 35:-0.594423 36:-0.658184 +1024 1:-0.888015 2:-0.598276 3:-0.682788 4:-0.330482 5:-0.698266 6:-0.620259 7:-0.693629 8:-0.305631 9:-0.6937 10:-0.634769 11:-0.58193 12:-0.38388 13:-0.679769 14:-0.823576 15:-0.590177 16:-0.392211 17:-0.671057 18:-0.834524 19:-0.225922 20:-0.243577 21:-0.00724638 22:-0.100714 23:-0.548156 24:-0.337744 25:-0.0121951 26:0.0285944 27:-0.534079 28:-0.335823 29:0.219766 30:-0.0423134 31:-0.60709 32:-0.513688 33:0.259843 34:-0.325273 35:-0.53469 36:-0.593166 +1024 1:-0.847237 2:-0.476704 3:-0.571835 4:-0.334661 5:-0.63832 6:-0.533848 7:-0.609162 8:-0.02923 9:-0.680644 10:-0.393327 11:-0.444104 12:-0.419172 13:-0.616672 14:-0.767116 15:-0.455104 16:-0.397091 17:-0.611342 18:-0.771428 19:-0.00179019 20:-0.0969289 21:0.149758 22:-0.266007 23:-0.343732 24:-0.240285 25:0.0902439 26:0.268048 27:-0.451554 28:-0.0129009 29:0.435631 30:-0.408754 31:-0.414319 32:-0.472783 33:0.448819 34:-0.459781 35:-0.390089 36:-0.49608 +-40.9241348298578 1:-0.79259 2:-0.399611 3:-0.506401 4:0.41109 5:-0.840824 6:-0.254871 7:-0.453114 8:-0.434637 9:-0.684572 10:-0.688542 11:-0.388974 12:-0.2984 13:-0.678801 14:-0.776188 15:-0.399847 16:-0.308585 17:-0.668776 18:-0.785815 19:-0.00322234 20:-0.147986 21:0.103865 22:0.698762 23:-0.777962 24:0.00332384 25:0.246341 26:-0.712971 27:-0.29513 28:-0.620946 29:0.282185 30:-0.550844 31:-0.446597 32:-0.591632 33:0.272966 34:-0.646213 35:-0.403042 36:-0.619006 +1024 1:-0.939971 2:-0.660338 3:-0.770982 4:-0.449155 5:-0.663121 6:-0.680429 7:-0.779528 8:-0.430467 9:-0.679022 10:-0.716737 11:-0.683002 12:-0.634514 13:-0.63988 14:-0.890204 15:-0.694551 16:-0.583844 17:-0.639866 18:-0.890284 19:-0.655567 20:-0.428404 21:-0.323671 22:-0.251818 23:-0.572172 24:-0.479902 25:-0.304878 26:-0.172342 27:-0.580912 28:-0.5456 29:-0.076723 30:-0.513296 31:-0.599829 32:-0.752032 33:-0.0761155 34:-0.464666 35:-0.596524 36:-0.745121 +1024 1:-0.98965 2:-0.869365 3:-0.910384 4:-0.599791 5:-0.702821 6:-0.875494 7:-0.92126 8:-0.561006 9:-0.698217 10:-0.86676 11:-0.892802 12:-0.587808 13:-0.677181 14:-0.949901 15:-0.904835 16:-0.538513 17:-0.677586 18:-0.949819 19:-0.889008 20:-0.712154 21:-0.538647 22:-0.42474 23:-0.7385 24:-0.784344 25:-0.52439 26:-0.383287 27:-0.673277 28:-0.789291 29:-0.446034 30:-0.349091 31:-0.741683 32:-0.849262 33:-0.435696 34:-0.372449 35:-0.726044 36:-0.856868 +-145.4579486029693 1:-0.976402 2:-0.806224 3:-0.881935 4:-0.489606 5:-0.629128 6:-0.706775 7:-0.892627 8:-0.475169 9:-0.626501 10:-0.724873 11:-0.836141 12:-0.565284 13:-0.610678 14:-0.888077 15:-0.848043 16:-0.527721 17:-0.608071 18:-0.890366 19:-0.815968 20:-0.619101 21:-0.495169 22:-0.318852 23:-0.651535 24:-0.620487 25:-0.504878 26:-0.16102 27:-0.661867 28:-0.626631 29:-0.347204 30:-0.252419 31:-0.708156 32:-0.766367 33:-0.330709 34:-0.268825 35:-0.697942 36:-0.777032 +-1024 1:-0.701097 2:-0.126604 3:-0.355619 4:0.140557 5:-0.652876 6:-0.138159 7:-0.377237 8:0.356016 9:-0.709733 10:-0.136953 11:-0.321593 12:-0.198326 13:-0.493359 14:-0.539325 15:-0.32924 16:-0.278859 17:-0.461481 18:-0.566122 19:0.0870032 20:0.101309 21:0.222222 22:0.0731011 23:-0.325014 24:0.100458 25:0.212195 26:0.154489 27:-0.377193 28:-0.0320354 29:0.292588 30:-0.419668 31:-0.239397 32:-0.284283 33:0.288714 34:-0.382572 35:-0.219294 36:-0.263298 +-1024 1:-0.943076 2:-0.736864 3:-0.783784 4:-0.468701 5:-0.682373 6:-0.721138 7:-0.779528 8:-0.501548 9:-0.677791 10:-0.762894 11:-0.704441 12:-0.599848 13:-0.651538 14:-0.891419 15:-0.71911 16:-0.52768 17:-0.661318 18:-0.891457 19:-0.52381 20:-0.467022 21:-0.251208 22:-0.132449 23:-0.666045 24:-0.500465 25:-0.156098 26:-0.118696 27:-0.655206 28:-0.591389 29:0.0793238 30:-0.254822 31:-0.679615 32:-0.714335 33:0.0551181 34:-0.159547 35:-0.696142 36:-0.706034 +1024 1:-0.689712 2:-0.287641 3:-0.382646 4:0.214795 5:-0.747129 6:-0.253157 7:-0.390122 8:0.154529 9:-0.729651 10:-0.35014 11:-0.205207 12:-0.0494071 13:-0.679944 14:-0.675682 15:-0.220261 16:-0.0315629 17:-0.676332 18:-0.679067 19:0.485141 20:0.157723 21:0.463768 22:0.377612 23:-0.429538 24:0.241436 25:0.5 26:0.318777 27:-0.390894 28:0.0880426 29:0.638492 30:-0.31726 31:-0.268581 32:-0.235704 33:0.671916 34:-0.310591 35:-0.268609 36:-0.255261 +-1024 1:-1 2:-0.887642 3:-0.97155 4:-0.543379 5:-0.703444 6:-0.870374 7:-0.972799 8:-0.597587 9:-0.681139 10:-0.903325 11:-0.949464 12:-0.561217 13:-0.673333 14:-0.961344 15:-0.964697 16:-0.505014 17:-0.675801 18:-0.961103 19:-1 20:-0.780677 21:-0.741546 22:-0.513103 23:-0.717271 24:-0.834511 25:-0.741463 26:-0.322844 27:-0.773964 28:-0.858369 29:-0.651495 30:-0.38057 31:-0.774149 32:-0.91051 33:-0.653543 34:-0.318715 35:-0.785456 36:-0.909857 +1024 1:-0.599255 2:-0.203948 3:-0.267425 4:0.229911 5:-0.753726 6:-0.270786 7:-0.275591 8:0.250581 9:-0.743375 10:-0.312451 11:-0.169985 12:0.100315 13:-0.660792 14:-0.588865 15:-0.165004 16:0.0436337 17:-0.655486 18:-0.6219 19:0.719298 20:0.0633725 21:0.543478 22:0.205462 23:-0.504581 24:-0.0457766 25:0.553659 26:0.161616 27:-0.439095 28:-0.124242 29:0.555267 30:0.119609 31:-0.40796 32:-0.128975 33:0.608924 34:-0.319511 35:-0.298756 36:-0.299747 +1024 1:-0.887394 2:-0.506934 3:-0.633001 4:-0.480616 5:-0.567073 6:-0.56511 7:-0.672155 8:-0.13676 9:-0.65216 10:-0.437389 11:-0.511485 12:-0.676281 13:-0.555777 14:-0.817215 15:-0.530315 16:-0.553142 17:-0.573385 18:-0.806605 19:-0.312567 20:-0.217692 21:-0.00966184 22:-0.465649 23:-0.300659 24:-0.364718 25:-0.0658537 26:0.186654 27:-0.498116 28:-0.14212 29:0.305592 30:-0.831424 31:-0.381401 32:-0.661962 33:0.291339 34:-0.54524 35:-0.441713 36:-0.605065 +1024 1:-0.817843 2:-0.443051 3:-0.536273 4:-0.2885 5:-0.649228 6:-0.510546 7:-0.570508 8:0.0466153 9:-0.704008 10:-0.372097 11:-0.402757 12:-0.360849 13:-0.62716 14:-0.751364 15:-0.412126 16:-0.335433 17:-0.62461 18:-0.756152 19:0.0640888 20:-0.0295005 21:0.200483 22:-0.129835 23:-0.367983 24:-0.14916 25:0.143902 26:0.371835 27:-0.448304 28:0.0909 29:0.464239 30:-0.34524 31:-0.393994 32:-0.411546 33:0.493438 34:-0.414595 35:-0.363107 36:-0.438049 +-1024 1:-0.561374 2:-0.356791 3:-0.29303 4:-0.0249316 5:-0.79426 6:-0.551946 7:-0.295634 8:0.297457 9:-0.849062 10:-0.499056 11:-0.199081 12:-0.1954 13:-0.723263 14:-0.776125 15:-0.206447 16:0.116657 17:-0.769715 18:-0.730589 19:0.26817 20:-0.287582 21:0.057971 22:0.0830255 23:-0.712878 24:-0.418794 25:0.158537 26:0.199895 27:-0.731867 28:-0.480117 29:0.287386 30:-0.290848 31:-0.641753 32:-0.679884 33:0.293963 34:-0.02997 35:-0.68577 36:-0.625927 +-323.1574186197279 1:-0.960878 2:-0.778414 3:-0.864865 4:-0.346833 5:-0.793165 6:-0.777586 7:-0.849678 8:-0.442784 9:-0.757231 10:-0.826744 11:-0.788668 12:-0.404815 13:-0.761903 14:-0.922398 15:-0.80353 16:-0.383068 17:-0.756852 18:-0.925944 19:-0.750806 20:-0.585745 21:-0.47343 22:-0.112926 23:-0.798336 24:-0.645308 25:-0.42439 26:-0.424196 27:-0.601504 28:-0.74449 29:-0.310793 30:-0.241719 31:-0.74727 32:-0.801838 33:-0.304462 34:-0.376574 35:-0.70928 36:-0.832122 +1024 1:-0.962327 2:-0.782287 3:-0.837838 4:-0.456853 5:-0.733315 6:-0.782574 7:-0.843951 8:-0.438859 9:-0.731439 10:-0.795429 11:-0.784074 12:-0.496713 13:-0.704666 14:-0.910794 15:-0.795856 16:-0.452016 17:-0.70635 18:-0.912453 19:-0.75367 20:-0.576347 21:-0.381643 22:-0.166557 23:-0.753259 24:-0.630768 25:-0.380488 26:-0.0718812 27:-0.732272 28:-0.645855 29:-0.243173 30:-0.114588 31:-0.744823 32:-0.739781 33:-0.225722 34:-0.17726 35:-0.729753 36:-0.7638 +-873.4049111445971 1:-0.976609 2:-0.780114 3:-0.899004 4:-0.414021 5:-0.666446 6:-0.685485 7:-0.863994 8:-0.688914 9:-0.588914 10:-0.827774 11:-0.830015 12:-0.673145 13:-0.600315 14:-0.915362 15:-0.843438 16:-0.601433 17:-0.607161 18:-0.913099 19:-0.854637 20:-0.584241 21:-0.582126 22:-0.184522 23:-0.657956 24:-0.510033 25:-0.492683 26:-0.692143 27:-0.354719 28:-0.734227 29:-0.386216 30:-0.69893 31:-0.541879 32:-0.814583 33:-0.385827 34:-0.602602 35:-0.55697 36:-0.803992 +-1024 1:-0.926309 2:-0.653457 3:-0.728307 4:-0.465837 5:-0.666224 6:-0.68945 7:-0.760916 8:-0.328679 9:-0.675336 10:-0.634152 11:-0.638591 12:-0.584891 13:-0.642666 14:-0.869182 15:-0.650038 16:-0.546582 17:-0.641237 18:-0.871853 19:-0.437164 20:-0.360625 21:-0.125604 22:-0.499729 23:-0.410368 24:-0.503454 25:-0.178049 26:0.00933989 27:-0.560779 28:-0.377887 29:0.16775 30:-0.527709 31:-0.5482 32:-0.691343 33:0.173228 34:-0.547248 35:-0.530649 36:-0.70162 +-1024 1:-0.714552 2:-0.230991 3:-0.371266 4:0.378888 5:-0.773458 6:-0.156443 7:-0.354331 8:-0.108895 9:-0.665766 10:-0.444785 11:-0.261868 12:-0.261299 13:-0.597192 14:-0.673935 15:-0.278588 16:-0.23944 17:-0.592031 18:-0.677391 19:0.00537057 20:-0.119277 21:0.113527 22:0.298592 23:-0.651784 24:-0.145325 25:0.178049 26:-0.313224 27:-0.38195 28:-0.434259 29:0.279584 30:-0.498049 31:-0.438016 32:-0.555504 33:0.304462 34:-0.511896 35:-0.425892 36:-0.570685 +1024 1:-0.954875 2:-0.732853 3:-0.819346 4:-0.509317 5:-0.65134 6:-0.726407 7:-0.813887 8:-0.588025 9:-0.598986 10:-0.749877 11:-0.753446 12:-0.628417 13:-0.617546 14:-0.889548 15:-0.762087 16:-0.655481 17:-0.592173 18:-0.89835 19:-0.601862 20:-0.497255 21:-0.243961 22:-0.440381 23:-0.576036 24:-0.626215 25:-0.27561 26:-0.230429 27:-0.591102 28:-0.599163 29:-0.0481144 30:-0.36987 31:-0.655437 32:-0.743955 33:-0.0524934 34:-0.353461 35:-0.644232 36:-0.741422 +1024 1:-0.814324 2:-0.448962 3:-0.560455 4:-0.150624 5:-0.765328 6:-0.580641 7:-0.581961 8:0.235389 9:-0.840817 10:-0.483342 11:-0.50536 12:-0.226058 13:-0.703166 14:-0.781323 15:-0.52571 16:-0.0276514 17:-0.734241 18:-0.751958 19:-0.277479 20:-0.31513 21:-0.144928 22:-0.214791 23:-0.615607 24:-0.506444 25:-0.126829 26:0.21846 27:-0.728923 28:-0.440632 29:-0.076723 30:-0.333287 31:-0.576459 32:-0.642915 33:-0.0498688 34:-0.211997 35:-0.603667 36:-0.627059 +1024 1:-0.925481 2:-0.632327 3:-0.766714 4:-0.318365 5:-0.649079 6:-0.546889 7:-0.722262 8:-0.593675 9:-0.58199 10:-0.708669 11:-0.655436 12:-0.616969 13:-0.59064 14:-0.846372 15:-0.665388 16:-0.581326 17:-0.589142 18:-0.850286 19:-0.411386 20:-0.330212 21:-0.173913 22:-0.057028 23:-0.564693 24:-0.310125 25:-0.0560976 26:-0.490466 27:-0.353468 28:-0.544921 29:0.141743 30:-0.456315 31:-0.527741 32:-0.638263 33:0.15748 34:-0.478941 35:-0.51147 36:-0.651306 +-1024 1:-0.957566 2:-0.781084 3:-0.813656 4:-0.535185 5:-0.659259 6:-0.753146 7:-0.822477 8:-0.502453 9:-0.661933 10:-0.757937 11:-0.75804 12:-0.59978 13:-0.641821 14:-0.896718 15:-0.771297 16:-0.554897 17:-0.640878 18:-0.898014 19:-0.589689 20:-0.544593 21:-0.241546 22:-0.240179 23:-0.705024 24:-0.628206 25:-0.253659 26:-0.0665503 27:-0.713813 28:-0.623304 29:-0.0273082 30:-0.111359 31:-0.748421 32:-0.736568 33:-0.00524934 34:-0.150465 35:-0.734806 36:-0.749567 +-1024 1:-0.962741 2:-0.772946 3:-0.83357 4:-0.508503 5:-0.63907 6:-0.716619 7:-0.849678 8:-0.440973 9:-0.641404 10:-0.698521 11:-0.784074 12:-0.574415 13:-0.614385 14:-0.877763 15:-0.797391 16:-0.526876 17:-0.615123 18:-0.879161 19:-0.690655 20:-0.542481 21:-0.364734 22:-0.312568 23:-0.63846 24:-0.60197 25:-0.363415 26:-0.146873 27:-0.641847 28:-0.594256 29:-0.146944 30:-0.289883 31:-0.684688 32:-0.745584 33:-0.141732 34:-0.261543 35:-0.685895 36:-0.74914 +-1024 1:-0.957566 2:-0.781084 3:-0.813656 4:-0.535185 5:-0.659259 6:-0.753146 7:-0.822477 8:-0.502453 9:-0.661933 10:-0.757937 11:-0.75804 12:-0.59978 13:-0.641821 14:-0.896718 15:-0.771297 16:-0.554897 17:-0.640878 18:-0.898014 19:-0.589689 20:-0.544593 21:-0.241546 22:-0.240179 23:-0.705024 24:-0.628206 25:-0.253659 26:-0.0665503 27:-0.713813 28:-0.623304 29:-0.0273082 30:-0.111359 31:-0.748421 32:-0.736568 33:-0.00524934 34:-0.150465 35:-0.734806 36:-0.749567 +1024 1:-0.982405 2:-0.832449 3:-0.891892 4:-0.649525 5:-0.63106 6:-0.84037 7:-0.905512 8:-0.541889 9:-0.686509 10:-0.837782 11:-0.85758 12:-0.644321 13:-0.652874 14:-0.942362 15:-0.872602 16:-0.576537 17:-0.652265 18:-0.938146 19:-0.842463 20:-0.659515 21:-0.536232 22:-0.347052 23:-0.722221 24:-0.717621 25:-0.502439 26:-0.277696 27:-0.697204 28:-0.745412 29:-0.352406 30:-0.295906 31:-0.760608 32:-0.839959 33:-0.343832 34:-0.300849 35:-0.741099 36:-0.835231 +1024 1:-0.517698 2:-0.0818411 3:-0.16074 4:0.275343 5:-0.704444 6:-0.138888 7:-0.165354 8:0.652908 9:-0.758227 10:-0.0157805 11:-0.0260337 12:0.0571688 13:-0.588049 14:-0.517321 15:-0.0299309 16:-0.0130221 17:-0.573493 18:-0.548624 19:0.631221 20:0.214531 21:0.584541 22:0.0910939 23:-0.346053 24:0.0657885 25:0.507317 26:0.570595 27:-0.416491 28:0.303738 29:0.690507 30:-0.195688 31:-0.243101 32:-0.120279 33:0.71916 34:-0.429965 35:-0.172972 36:-0.218492 +-1024 1:-0.560753 2:-0.174462 3:-0.217639 4:0.234996 5:-0.750997 6:-0.266817 7:-0.224052 8:0.277276 9:-0.742448 10:-0.294818 11:-0.166922 12:0.0915809 13:-0.626751 14:-0.55031 15:-0.157329 16:0.0742946 17:-0.63107 18:-0.578675 19:0.767275 20:0.0605566 21:0.550725 22:0.182531 23:-0.496396 24:-0.0551384 25:0.573171 26:0.148167 27:-0.437852 28:-0.134889 29:0.570871 30:0.100872 31:-0.39848 32:-0.128334 33:0.637795 34:-0.332519 35:-0.296402 36:-0.304167 +-1024 1:-0.661975 2:-0.221586 3:-0.341394 4:0.122951 5:-0.745169 6:-0.33793 7:-0.337151 8:0.237464 9:-0.738309 10:-0.305724 11:-0.260337 12:-0.0969583 13:-0.62723 14:-0.637187 15:-0.281658 16:-0.0570986 17:-0.620082 18:-0.628363 19:0.230218 20:-0.0622688 21:0.297101 22:-0.193901 23:-0.466815 24:-0.324557 25:0.268293 26:0.259297 27:-0.544008 28:-0.167747 29:0.394018 30:-0.398852 31:-0.408866 32:-0.462845 33:0.322835 34:-0.0935103 35:-0.451429 36:-0.354454 +1024 1:-0.815152 2:-0.309224 3:-0.512091 4:0.103814 5:-0.703147 6:-0.247458 7:-0.526127 8:0.030241 9:-0.692014 10:-0.369684 11:-0.388974 12:-0.28094 13:-0.597979 14:-0.690546 15:-0.401381 16:-0.240482 17:-0.597828 18:-0.69127 19:-0.24096 20:0.0566543 21:0.0990338 22:0.0348416 23:-0.322675 24:0.0745652 25:0.12439 26:0.03103 27:-0.329626 28:-0.0845169 29:0.237971 30:-0.611556 31:-0.183132 32:-0.350417 33:0.230971 34:-0.556421 35:-0.179118 36:-0.340361 +-77.8620931327799 1:-0.919271 2:-0.701949 3:-0.728307 4:-0.454919 5:-0.711398 6:-0.735415 7:-0.735147 8:-0.407121 9:-0.72242 10:-0.744818 11:-0.630934 12:-0.568843 13:-0.688409 14:-0.894472 15:-0.643899 16:-0.515453 17:-0.689957 18:-0.894526 19:-0.271035 20:-0.445865 21:-0.0338164 22:-0.17476 23:-0.704055 24:-0.588281 25:-0.0121951 26:-0.00378625 27:-0.718553 28:-0.593972 29:0.297789 30:-0.197888 31:-0.725807 32:-0.738006 33:0.317585 34:-0.167879 35:-0.726327 36:-0.738909 +-83.32573196451483 1:-0.700683 2:-0.280471 3:-0.450925 4:0.0696237 5:-0.72817 6:-0.338408 7:-0.453114 8:0.118509 9:-0.726697 10:-0.366893 11:-0.367534 12:-0.235435 13:-0.613327 14:-0.685749 15:-0.375288 16:-0.35955 17:-0.579876 18:-0.721407 19:0.18439 20:-0.1044 21:0.128019 22:-0.00385712 23:-0.509522 24:-0.211807 25:0.0756098 26:-0.000495732 27:-0.44072 28:-0.24803 29:0.256177 30:-0.447416 31:-0.411863 32:-0.500748 33:0.272966 34:-0.669742 35:-0.349331 36:-0.579128 +1024 1:-0.97516 2:-0.792819 3:-0.896159 4:-0.331748 5:-0.692609 6:-0.636011 7:-0.875447 8:-0.466936 9:-0.674255 10:-0.76263 11:-0.839204 12:-0.470494 13:-0.649751 14:-0.880344 15:-0.852648 16:-0.427153 17:-0.648338 18:-0.880804 19:-0.858933 20:-0.594453 21:-0.562802 22:-0.0612499 23:-0.680564 24:-0.424075 25:-0.5 26:-0.363609 27:-0.517606 28:-0.634759 29:-0.401821 30:-0.367401 31:-0.61372 32:-0.727406 33:-0.396325 34:-0.324721 35:-0.613096 36:-0.722553 +-869.4298332816035 1:-0.98965 2:-0.869365 3:-0.910384 4:-0.599791 5:-0.702821 6:-0.875494 7:-0.92126 8:-0.561006 9:-0.698217 10:-0.86676 11:-0.892802 12:-0.587808 13:-0.677181 14:-0.949901 15:-0.904835 16:-0.538513 17:-0.677586 18:-0.949819 19:-0.889008 20:-0.712154 21:-0.538647 22:-0.42474 23:-0.7385 24:-0.784344 25:-0.52439 26:-0.383287 27:-0.673277 28:-0.789291 29:-0.446034 30:-0.349091 31:-0.741683 32:-0.849262 33:-0.435696 34:-0.372449 35:-0.726044 36:-0.856868 +1024 1:-0.573173 2:0.114151 3:-0.157895 4:-0.624808 5:-0.303954 6:-0.306392 7:-0.158196 8:-0.594633 9:-0.309434 10:-0.313822 11:-0.145482 12:-0.245311 13:-0.294364 14:-0.336498 15:-0.158864 16:-0.187114 17:-0.307982 18:-0.342526 19:0.539563 20:-0.208381 21:0.429952 22:-0.0508439 23:-0.682641 24:-0.491506 25:0.47561 26:0.0402118 27:-0.671675 28:-0.517165 29:0.513654 30:0.00384667 31:-0.651274 32:-0.546309 33:0.524934 34:-0.0951114 35:-0.628988 36:-0.581441 +508.1963325723727 1:-0.398054 2:0.698706 3:0.11522 4:-0.557326 5:0.305653 6:0.578471 7:0.1267 8:-0.655901 9:0.340679 10:0.475921 11:0.136294 12:-0.357272 13:0.426195 14:0.41024 15:0.126631 16:-0.326781 17:0.422716 18:0.393234 19:0.659864 20:0.569803 21:0.710145 22:0.0679866 23:0.0794495 24:0.586226 25:0.756098 26:-0.152384 27:0.203675 28:0.343219 29:0.752926 30:-0.504192 31:0.2772 32:0.297837 33:0.782152 34:-0.423849 35:0.24843 36:0.294337 +1024 1:-0.51894 2:0.285206 3:-0.056899 4:-0.432393 5:-0.226344 6:-0.0237053 7:-0.0579814 8:-0.433203 9:-0.216488 10:-0.0533245 11:-0.0306279 12:-0.203272 13:-0.156879 14:-0.151826 15:-0.0406754 16:-0.195249 17:-0.153681 18:-0.16943 19:0.34121 20:0.0107422 21:0.362319 22:-0.118267 23:-0.464512 24:-0.262402 25:0.34878 26:-0.0361669 27:-0.425223 28:-0.266352 29:0.412224 30:-0.166047 31:-0.42672 32:-0.345629 33:0.435696 34:-0.267106 35:-0.394115 36:-0.388271 +580.0275962902034 1:1 2:0.997494 3:0.975818 4:-0.991383 5:0.990544 6:0.991585 7:0.977094 8:-0.977791 9:0.989638 10:0.99794 11:0.98928 12:-0.476057 13:0.991687 14:0.994314 15:0.975441 16:-0.437862 17:0.993185 18:0.984119 19:0.911207 20:0.982261 21:0.968599 22:-0.461406 23:0.945526 24:0.941061 25:0.965854 26:-0.324755 27:0.952433 28:0.96006 29:0.958388 30:-0.66592 31:0.942847 32:0.970261 33:0.979003 34:-0.670367 35:0.973358 36:0.95045 +-1024 1:-0.50238 2:0.0165491 3:-0.083926 4:-0.357714 5:-0.487401 6:-0.323691 7:-0.0980673 8:-0.211878 9:-0.5161 10:-0.294375 11:-0.0382848 12:-0.261747 13:-0.425441 14:-0.482692 15:-0.0544896 16:-0.0296686 17:-0.468973 18:-0.435185 19:0.539563 20:-0.181067 21:0.275362 22:0.059819 23:-0.649146 24:-0.358852 25:0.397561 26:0.171602 27:-0.671724 28:-0.425347 29:0.539662 30:-0.322503 31:-0.582054 32:-0.618066 33:0.548556 34:-0.0813251 35:-0.622778 36:-0.566114 +-1024 1:-0.490168 2:0.25679 3:-0.0625889 4:-0.236483 5:-0.28691 6:0.0838543 7:-0.0150322 8:-0.484539 9:-0.242561 10:-0.130332 11:0.00459418 12:-0.334097 13:-0.165741 14:-0.23835 15:-0.0115119 16:-0.14321 17:-0.203334 18:-0.191916 19:0.624776 20:0.0666317 21:0.516908 22:0.341966 23:-0.559802 24:-0.00194219 25:0.631707 26:-0.181718 27:-0.382742 28:-0.332961 29:0.685306 30:-0.409617 31:-0.357794 32:-0.397786 33:0.671916 34:-0.182407 35:-0.397405 36:-0.332979 +-1024 1:-0.324984 2:0.775234 3:0.214794 4:-0.801679 5:0.498516 6:0.549643 7:0.208304 8:-0.774579 9:0.49904 10:0.557213 11:0.222052 12:-0.387854 13:0.544555 14:0.525182 15:0.211051 16:-0.357319 17:0.548609 18:0.515313 19:0.71715 20:0.632714 21:0.792271 22:-0.22026 23:0.265359 24:0.484214 25:0.780488 26:-0.025893 27:0.261598 28:0.544852 29:0.820546 30:-0.471331 31:0.329656 32:0.393596 33:0.84252 34:-0.408869 35:0.320188 36:0.398615 +1024 1:-0.54585 2:0.0319708 3:-0.14936 4:-0.152203 5:-0.534647 6:-0.22005 7:-0.156764 8:-0.037351 9:-0.547185 10:-0.202368 11:-0.114855 12:-0.0866178 13:-0.429201 14:-0.400958 15:-0.122026 16:-0.0796412 17:-0.428391 18:-0.41653 19:0.388471 20:-0.111414 21:0.297101 22:0.111176 23:-0.645201 24:-0.314044 25:0.346341 26:0.251056 27:-0.651812 28:-0.335155 29:0.381014 30:-0.030249 31:-0.561681 32:-0.443293 33:0.388451 34:-0.0269938 35:-0.556378 36:-0.451025 +693.004603336698 1:-0.423515 2:0.654293 3:0.0853485 4:-0.691696 5:0.302401 6:0.41517 7:0.0765927 8:-0.643188 9:0.298641 10:0.430909 11:0.0903522 12:-0.362083 13:0.374037 14:0.344839 15:0.0867229 16:-0.297031 17:0.35847 18:0.341824 19:0.708557 20:0.498002 21:0.722222 22:-0.178494 23:0.0964931 24:0.3371 25:0.719512 26:0.122597 27:0.0391947 28:0.44142 29:0.768531 30:-0.448177 31:0.149293 32:0.188394 33:0.771654 34:-0.401505 35:0.156796 36:0.200408 +-1024 1:-0.479611 2:0.257616 3:0.0312945 4:-0.558428 5:-0.222353 6:-0.132045 7:0.0307802 8:-0.539841 9:-0.221559 10:-0.146544 11:0.0474732 12:-0.300598 13:-0.173183 14:-0.224725 15:0.0391404 16:-0.262516 17:-0.17724 18:-0.232799 19:0.45077 20:-0.0711337 21:0.437198 22:-0.12149 23:-0.557626 24:-0.381765 25:0.45122 26:-0.0640501 27:-0.538189 28:-0.423437 29:0.53186 30:-0.252131 31:-0.512387 32:-0.499972 33:0.535433 34:-0.273755 35:-0.500121 36:-0.515827 +1024 1:-0.541503 2:0.0286113 3:-0.133713 4:-0.163849 5:-0.535116 6:-0.231385 7:-0.133858 8:-0.185308 9:-0.514704 10:-0.271635 11:-0.0872894 12:-0.0772496 13:-0.445695 14:-0.414463 15:-0.103607 16:-0.114025 17:-0.42849 18:-0.434315 19:0.159327 20:-0.130013 21:0.18599 22:-0.0886713 23:-0.580171 24:-0.377379 25:0.158537 26:-0.0290758 27:-0.530924 28:-0.383936 29:0.222367 30:-0.120537 31:-0.530027 32:-0.456597 33:0.24147 34:-0.235969 35:-0.496238 36:-0.500218 +-1024 1:-0.49969 2:0.467355 3:-0.0142248 4:-0.64313 5:0.0526509 6:0.138367 7:-0.00644238 8:-0.700227 9:0.0781187 10:0.0872473 11:0.00306279 12:-0.346839 13:0.10173 14:0.0465232 15:-0.00844206 16:-0.331357 17:0.109402 18:0.0334715 19:0.62048 20:0.206747 21:0.582126 22:-0.101202 23:-0.278209 24:-0.0265367 25:0.626829 26:-0.158175 27:-0.216782 28:-0.130495 29:0.713914 30:-0.438367 31:-0.215441 32:-0.246722 33:0.732283 34:-0.45874 35:-0.198806 36:-0.26677 +-1024 1:-0.492652 2:-0.00706099 3:-0.13229 4:0.0446003 5:-0.589596 6:-0.134654 7:-0.11811 8:-0.245308 9:-0.511215 10:-0.313013 11:-0.0168453 12:-0.299347 13:-0.448487 14:-0.524162 15:-0.046815 16:-0.24336 17:-0.443955 18:-0.514256 19:0.538131 20:-0.11987 21:0.326087 22:0.293102 23:-0.667032 24:-0.199077 25:0.334146 26:0.077751 27:-0.571609 28:-0.3578 29:0.56567 30:-0.292973 31:-0.538672 32:-0.552025 33:0.56168 34:-0.229682 35:-0.534652 36:-0.532892 +1024 1:-0.496171 2:-0.0318771 3:-0.0910384 4:-0.291003 5:-0.542982 6:-0.350285 7:-0.138153 8:-0.0490272 9:-0.574762 10:-0.257418 11:-0.0566616 12:-0.256065 13:-0.455049 14:-0.512614 15:-0.0652341 16:-0.0380083 17:-0.496345 18:-0.471625 19:0.400644 20:-0.166484 21:0.251208 22:-0.0305205 23:-0.624402 24:-0.393015 25:0.302439 26:0.351007 27:-0.703897 28:-0.333694 29:0.357607 30:-0.245941 31:-0.555999 32:-0.554755 33:0.409449 34:-0.141301 35:-0.578568 36:-0.543605 +1024 1:0.382116 2:0.903637 3:0.566145 4:-0.929305 5:0.7813 6:0.781078 7:0.557623 8:-0.935712 9:0.789938 10:0.771604 11:0.574273 12:-0.47484 13:0.809909 14:0.773162 15:0.562548 16:-0.425267 17:0.804171 18:0.765203 19:0.778016 20:0.797541 21:0.816425 22:-0.280401 23:0.582175 24:0.769288 25:0.84878 26:-0.228525 27:0.605074 28:0.701214 29:0.851756 30:-0.624622 31:0.644065 32:0.641466 33:0.88189 34:-0.558149 35:0.629381 36:0.641633 +1024 1:-0.465121 2:0.305811 3:-0.0113798 4:-0.0732343 5:-0.322549 6:0.197272 7:-0.0136006 8:-0.0565998 9:-0.30853 10:0.161254 11:0.0199081 12:-0.123507 13:-0.152838 14:-0.095291 15:0.0176516 16:-0.101634 17:-0.158081 18:-0.112486 19:0.727175 20:0.301361 21:0.649758 22:0.343602 23:-0.337846 24:0.325279 25:0.678049 26:0.299911 27:-0.284535 28:0.206081 29:0.742523 30:-0.285234 31:-0.141445 32:-0.0513723 33:0.774278 34:-0.289649 35:-0.13152 36:-0.0686767 +-1024 1:-0.476713 2:0.592142 3:0.027027 4:-0.814237 5:0.272736 6:0.236399 7:0.023622 8:-0.811279 9:0.278576 10:0.228147 11:0.0321593 12:-0.363766 13:0.288557 14:0.243901 15:0.0161167 16:-0.30847 17:0.285357 18:0.246294 19:0.586108 20:0.270128 21:0.584541 22:-0.284077 23:-0.127956 24:-0.0189056 25:0.595122 26:-0.203171 27:-0.106422 28:-0.0481629 29:0.625488 30:-0.336331 31:-0.119008 32:-0.0641116 33:0.619423 34:-0.3898 35:-0.0901514 36:-0.0971103 +1024 1:-0.483751 2:0.165836 3:-0.0881935 4:-0.191008 5:-0.373561 6:-0.00351498 7:-0.0751611 8:-0.405549 9:-0.311236 10:-0.158897 11:-0.00459418 12:-0.363538 13:-0.257087 14:-0.353266 15:-0.0222563 16:-0.296153 17:-0.259554 18:-0.344334 19:0.667741 20:-0.0215336 21:0.456522 22:0.241617 23:-0.585125 24:-0.126645 25:0.473171 26:0.0402693 27:-0.488187 28:-0.284808 29:0.711313 30:-0.335449 31:-0.462409 32:-0.479237 33:0.703412 34:-0.260249 35:-0.464582 36:-0.461191 +1024 1:1 2:0.9966 3:0.970128 4:-1 5:0.993701 6:0.984576 7:0.969936 8:-0.983751 9:0.987369 10:0.987966 11:0.975498 12:-0.470232 13:0.990088 14:0.996925 15:0.972371 16:-0.453074 17:0.997339 18:0.975602 19:0.878267 20:0.977148 21:0.963768 22:-0.43509 23:0.904443 24:0.930194 25:0.931707 26:-0.330007 27:0.959788 28:0.960729 29:0.937581 30:-0.693259 31:0.950635 32:0.95065 33:0.958005 34:-0.641057 35:0.95433 36:0.956061 +1024 1:-0.447319 2:0.67469 3:0.0753912 4:-0.552577 5:0.257006 6:0.515589 7:0.0880458 8:-0.84488 9:0.365666 10:0.307069 11:0.0918836 12:-0.411224 13:0.390929 14:0.326559 15:0.085188 16:-0.392318 17:0.397503 18:0.311191 19:0.657 20:0.474621 21:0.681159 22:0.178763 23:-0.0855122 24:0.498291 25:0.768293 26:-0.4249 27:0.19001 28:0.0620213 29:0.778934 30:-0.549564 31:0.132812 32:0.090122 33:0.790026 34:-0.583279 35:0.161158 36:0.0619285 +1024 1:-0.52101 2:0.209337 3:-0.0440967 4:-0.571628 5:-0.272205 6:-0.212674 7:-0.0536865 8:-0.533689 9:-0.266835 10:-0.204683 11:-0.0382848 12:-0.20148 13:-0.240183 14:-0.245593 15:-0.0452801 16:-0.201161 17:-0.237921 18:-0.267372 19:0.208736 20:-0.215449 21:0.275362 22:-0.149301 23:-0.66671 24:-0.532818 25:0.229268 26:0.0885206 27:-0.670212 28:-0.475849 29:0.284785 30:-0.0174237 31:-0.645806 32:-0.551748 33:0.312336 34:-0.15127 35:-0.61636 36:-0.598122 +1024 1:1 2:0.996955 3:0.965861 4:-0.992803 5:0.991412 6:0.990331 7:0.965641 8:-1 9:0.997604 10:0.981856 11:0.975498 12:-0.494836 13:1 14:0.987492 15:0.972371 16:-0.43719 17:0.989016 18:0.979889 19:0.858933 20:0.98623 21:0.925121 22:-0.495358 23:0.969605 24:0.92364 25:0.946341 26:-0.328742 27:0.955661 28:0.958215 29:0.940182 30:-0.738937 31:0.972155 32:0.931044 33:0.939633 34:-0.61865 35:0.971581 36:0.998549 +-1024 1:1 2:0.969945 3:0.780939 4:-0.973049 5:0.923044 6:0.918595 7:0.799571 8:-0.967886 9:0.918874 10:0.91127 11:0.794793 12:-0.491116 13:0.934813 14:0.910149 15:0.777437 16:-0.416681 17:0.922902 18:0.915612 19:0.834586 20:0.936758 21:0.905797 22:-0.438915 23:0.864099 24:0.882392 25:0.909756 26:-0.274004 27:0.848785 28:0.910805 29:0.929779 30:-0.646644 31:0.850047 32:0.874811 33:0.937008 34:-0.57511 35:0.854584 36:0.901316 +-1024 1:-0.442972 2:0.613477 3:0.0853485 4:-0.729999 5:0.245716 6:0.300304 7:0.0737294 8:-0.740423 9:0.271154 10:0.29532 11:0.0949464 12:-0.319182 13:0.283593 14:0.275465 15:0.0836531 16:-0.296219 17:0.287172 18:0.262149 19:0.577515 20:0.304721 21:0.625604 22:-0.0743691 23:-0.20432 24:0.0871919 25:0.6 26:0.0323088 27:-0.168297 28:0.0983005 29:0.643693 30:-0.18381 31:-0.150673 32:0.00779174 33:0.671916 34:-0.179874 35:-0.142719 36:-0.00481205 +1024 1:-0.453529 2:0.619875 3:0.0554765 4:-0.641496 5:0.234129 6:0.381031 7:0.0622763 8:-0.618659 9:0.224701 10:0.359676 11:0.0781011 12:-0.335568 13:0.297119 14:0.277528 15:0.0652341 16:-0.288576 17:0.299378 18:0.280505 19:0.706409 20:0.412091 21:0.729469 22:-0.216951 23:-0.0239208 24:0.160066 25:0.721951 26:0.137203 27:-0.0994045 28:0.283282 29:0.773732 30:-0.422702 31:0.0291705 32:0.0613108 33:0.755906 34:-0.296778 35:0.0230878 36:0.118601 +1024 1:-0.449803 2:0.384602 3:-0.00426743 4:-0.395375 5:-0.0962321 6:0.198747 7:0.00501074 8:-0.495455 9:-0.0719973 10:0.0873622 11:0.0336907 12:-0.36402 13:0.0151009 14:-0.0580635 15:0.0299309 16:-0.282082 17:-0.00284311 18:-0.0538777 19:0.725027 20:0.150675 21:0.541063 22:0.192661 23:-0.406645 24:0.0825749 25:0.590244 26:-0.0258356 27:-0.305186 28:-0.118851 29:0.708713 30:-0.459146 31:-0.261207 32:-0.313588 33:0.713911 34:-0.296913 35:-0.285117 36:-0.26501 +1024 1:-0.46657 2:0.605471 3:0.056899 4:-0.712179 5:0.229031 6:0.295998 7:0.0465283 8:-0.707833 9:0.237873 10:0.283963 11:0.0612557 12:-0.342011 13:0.281426 14:0.25402 15:0.046815 16:-0.311217 17:0.282533 18:0.243202 19:0.528822 20:0.330018 21:0.584541 22:-0.252987 23:-0.0834943 24:0.0596669 25:0.597561 26:-0.131973 27:-0.0737038 28:0.0532345 29:0.638492 30:-0.331709 31:-0.0828788 32:-0.0152062 33:0.671916 34:-0.393581 35:-0.0521069 36:-0.0517086 +1024 1:-0.257711 2:0.793156 3:0.263158 4:-0.81693 5:0.543651 6:0.59297 7:0.267001 8:-0.813612 9:0.546206 10:0.579404 11:0.271057 12:-0.396199 13:0.588634 14:0.571246 15:0.263239 16:-0.379394 17:0.592264 18:0.549487 19:0.829574 20:0.627135 21:0.850242 22:-0.194262 23:0.255216 24:0.500224 25:0.863415 26:-0.0755597 27:0.25549 28:0.482342 29:0.823147 30:-0.314921 31:0.309267 32:0.504596 33:0.874016 34:-0.472056 35:0.35281 36:0.38494 +1024 1:-0.484786 2:0.168536 3:-0.0981508 4:-0.165415 5:-0.373598 6:0.0220725 7:-0.0722978 8:-0.279622 9:-0.357554 10:-0.117051 11:-0.0168453 12:-0.353476 13:-0.247648 14:-0.338493 15:-0.0268611 16:-0.229805 17:-0.267878 18:-0.316187 19:0.665593 20:0.021157 21:0.432367 22:0.261126 23:-0.533271 24:-0.0285821 25:0.495122 26:0.00893755 27:-0.438159 28:-0.248419 29:0.656697 30:-0.44401 31:-0.388395 32:-0.453525 33:0.64042 34:-0.22638 35:-0.421549 36:-0.390713 +-491.9111493345974 1:-0.519768 2:0.208906 3:-0.0853485 4:-0.34982 5:-0.318291 6:-0.0749656 7:-0.0966356 8:-0.240702 9:-0.334353 10:-0.0495076 11:-0.0566616 12:-0.156693 13:-0.239756 14:-0.219429 15:-0.0683039 16:-0.142373 17:-0.236923 18:-0.232004 19:0.441461 20:-0.0397241 21:0.369565 22:0.0835001 23:-0.582221 24:-0.251053 25:0.421951 26:0.232815 27:-0.595428 28:-0.272481 29:0.456437 30:-0.0601501 31:-0.505619 32:-0.383999 33:0.459318 34:-0.0650782 35:-0.493993 36:-0.389798 +-1024 1:-0.436556 2:0.714482 3:0.086771 4:-0.702351 5:0.379442 6:0.502148 7:0.0923407 8:-0.785958 9:0.409529 10:0.421845 11:0.101072 12:-0.428253 13:0.464259 14:0.395433 15:0.0867229 16:-0.318417 17:0.443153 18:0.420126 19:0.687075 20:0.553889 21:0.700483 22:-0.120803 23:0.158546 24:0.471814 25:0.756098 26:-0.237765 27:0.244013 28:0.299599 29:0.797139 30:-0.588912 31:0.265317 32:0.216972 33:0.790026 34:-0.438993 35:0.236273 36:0.267111 +-1024 1:1 2:0.998736 3:0.960171 4:-0.98355 5:0.985781 6:0.994415 7:0.957051 8:-0.982542 9:0.992155 10:0.994489 11:0.961715 12:-0.4813 13:0.995629 14:0.993433 15:0.944743 16:-0.426251 17:0.995271 18:0.995448 19:0.906194 20:0.996413 21:0.968599 22:-0.449115 23:0.956267 24:0.967396 25:0.968293 26:-0.340769 27:1 28:0.99056 29:0.955787 30:-0.697807 31:0.979014 32:0.981697 33:0.981627 34:-0.688604 35:1 36:0.963708 +-1024 1:1 2:0.97391 3:0.783784 4:-0.981971 5:0.932991 6:0.920134 7:0.780959 8:-0.972538 9:0.934408 10:0.923857 11:0.787136 12:-0.44682 13:0.929541 14:0.940933 15:0.778972 16:-0.450286 17:0.942712 18:0.909145 19:0.863946 20:0.927832 21:0.932367 22:-0.416077 23:0.817909 24:0.861702 25:0.934146 26:-0.285111 27:0.840665 28:0.888993 29:0.914174 30:-0.617207 31:0.849645 32:0.902206 33:0.96063 34:-0.591339 35:0.832741 36:0.860155 +-803.8390317288354 1:-0.507141 2:0.293889 3:-0.0426743 4:-0.309528 5:-0.262117 6:0.0469822 7:-0.0608447 8:-0.202403 9:-0.267756 10:0.0849877 11:-0.0183767 12:-0.159061 13:-0.157853 14:-0.124905 15:-0.0299309 16:-0.102446 17:-0.163872 18:-0.121452 19:0.558897 20:0.177658 21:0.565217 22:0.0634742 23:-0.391519 24:-0.0194858 25:0.55122 26:0.328915 27:-0.416639 28:0.0577924 29:0.617685 30:-0.230703 31:-0.276327 32:-0.188904 33:0.645669 34:-0.103479 35:-0.304733 36:-0.161576 +97.62801833793745 1:-0.225212 2:0.72655 3:0.274538 4:-0.760341 5:0.43328 6:0.520283 7:0.267001 8:-0.6688 9:0.413079 10:0.566498 11:0.294028 12:-0.384895 13:0.484561 14:0.464169 15:0.280123 16:-0.355614 17:0.484264 18:0.448807 19:0.709273 20:0.567456 21:0.751208 22:-0.161755 23:0.1615 24:0.429469 25:0.717073 26:0.2192 27:0.0914783 28:0.614862 29:0.794538 30:-0.383883 31:0.220069 32:0.330073 33:0.813648 34:-0.463851 35:0.262663 36:0.279427 +1024 1:-0.45415 2:0.210413 3:-0.056899 4:0.19192 5:-0.437341 6:0.288989 7:0.0207588 8:-0.623338 9:-0.250436 10:-0.250406 11:0.058193 12:-0.51003 13:-0.185417 14:-0.35354 15:0.04835 16:-0.318073 17:-0.227465 18:-0.31867 19:0.662012 20:0.0110725 21:0.504831 22:0.871252 23:-0.743486 24:0.170475 25:0.570732 26:-0.453279 27:-0.323433 28:-0.46579 29:0.729519 30:-0.726742 31:-0.348728 32:-0.554983 33:0.784777 34:-0.422031 35:-0.422458 36:-0.497754 +309.8333383034536 1:-0.429104 2:0.760831 3:0.109531 4:-0.794831 5:0.46636 6:0.506556 7:0.105225 8:-0.790339 9:0.477973 10:0.503388 11:0.114855 12:-0.387296 13:0.515859 14:0.486102 15:0.103607 16:-0.354055 17:0.515895 18:0.473989 19:0.650555 20:0.607331 21:0.753623 22:-0.286755 23:0.267192 24:0.414684 25:0.714634 26:-0.0210147 27:0.227944 28:0.512148 29:0.768531 30:-0.54123 31:0.323308 32:0.323538 33:0.805774 34:-0.500932 35:0.309831 36:0.304308 +1024 1:-0.34113 2:0.798839 3:0.194879 4:-0.81816 5:0.54947 6:0.592126 7:0.19685 8:-0.80479 9:0.541315 10:0.576127 11:0.205207 12:-0.443421 13:0.601786 14:0.543927 15:0.195702 16:-0.392384 17:0.598653 18:0.541496 19:0.714286 20:0.657658 21:0.801932 22:-0.334556 23:0.353446 24:0.457486 25:0.792683 26:-0.055558 27:0.301531 28:0.558057 29:0.812744 30:-0.581645 31:0.406103 32:0.391479 33:0.829396 34:-0.399135 35:0.364979 36:0.462112 +-1024 1:-0.466363 2:0.450441 3:0.0056899 4:-0.511184 5:-0.0038349 6:0.204135 7:0.0193271 8:-0.512431 9:0.0176431 10:0.191433 11:0.0413476 12:-0.333438 13:0.0671828 14:0.0197896 15:0.0406754 16:-0.385545 17:0.0895776 18:-0.0216123 19:0.721446 20:0.242505 21:0.615942 22:-0.0109976 23:-0.253523 24:0.0869903 25:0.587805 26:-0.00265828 27:-0.166217 28:0.0678309 29:0.758127 30:-0.502837 31:-0.134669 32:-0.191825 33:0.76378 34:-0.630012 35:-0.0860613 36:-0.250007 +-1024 1:1 2:0.994023 3:0.967283 4:-0.990117 5:0.984964 6:0.985765 7:0.962777 8:-0.992038 9:0.993071 10:0.985162 11:0.987749 12:-0.480894 13:0.982196 14:0.979455 15:0.964697 16:-0.415148 17:0.975534 18:0.983358 19:0.885428 20:0.980877 21:0.956522 22:-0.484768 23:0.955552 24:0.922686 25:0.956098 26:-0.340209 27:0.961206 28:0.950206 29:0.940182 30:-0.772717 31:1 32:0.930463 33:0.950131 34:-0.615194 35:0.957832 36:0.986325 +1024 1:1 2:0.998619 3:0.974395 4:-0.982265 5:0.98725 6:0.99864 7:0.971367 8:-0.99702 9:0.99998 10:0.988485 11:0.967841 12:-0.476522 13:0.99769 14:1 15:0.970837 16:-0.437379 17:0.99261 18:0.983727 19:0.941282 20:1 21:0.949275 22:-0.459458 23:1 24:1 25:0.982927 26:-0.327255 27:0.988959 28:0.995886 29:0.973992 30:-0.712813 31:0.996469 32:0.989036 33:1 34:-0.627081 35:0.976244 36:1 +-514.0771937465009 1:-0.492445 2:0.0959732 3:-0.0938834 4:-0.102015 5:-0.484682 6:-0.0945975 7:-0.0765927 8:-0.131196 9:-0.449512 10:-0.127642 11:-0.00918836 12:-0.200871 13:-0.366777 14:-0.386417 15:-0.0130468 16:-0.334678 17:-0.327459 18:-0.436018 19:0.382743 20:-0.0333188 21:0.26087 22:0.087382 23:-0.514806 24:-0.146721 25:0.217073 26:0.0469365 27:-0.423202 28:-0.190058 29:0.407022 30:-0.388161 31:-0.393318 32:-0.438142 33:0.440945 34:-0.639691 35:-0.326485 36:-0.528505 +-1024 1:-0.0192507 2:0.847901 3:0.406828 4:-0.846592 5:0.650932 6:0.704972 7:0.408733 8:-0.859774 9:0.662829 10:0.68647 11:0.41807 12:-0.425708 13:0.69607 14:0.677032 15:0.410591 16:-0.376393 17:0.690032 18:0.670102 19:0.762263 20:0.739122 21:0.823671 22:-0.153962 23:0.400953 24:0.713673 25:0.829268 26:-0.0767882 27:0.438429 28:0.690786 29:0.862159 30:-0.489186 31:0.492499 32:0.581401 33:0.860892 34:-0.495242 35:0.521152 36:0.568155 +1024 1:-0.505278 2:0.149983 3:-0.0753912 4:-0.0683263 5:-0.472544 6:-0.0430132 7:-0.0894775 8:0.081789 9:-0.476509 10:0.0178784 11:-0.0520674 12:-0.175785 13:-0.311172 14:-0.311857 15:-0.0575595 16:-0.0571232 17:-0.337604 18:-0.296863 19:0.692803 20:0.169126 21:0.570048 22:0.0303576 23:-0.338927 24:0.0187482 25:0.563415 26:0.43835 27:-0.440166 28:0.127608 29:0.687906 30:-0.31971 31:-0.269235 32:-0.236415 33:0.711286 34:-0.320985 35:-0.259837 36:-0.250056 +1024 1:-0.409439 2:0.274806 3:0.0056899 4:-0.174638 5:-0.286803 6:0.147358 7:-0.00644238 8:-0.21659 9:-0.224355 10:0.136617 11:0.0842266 12:-0.489915 13:-0.105671 14:-0.259308 15:0.0713738 16:-0.31348 17:-0.1408 18:-0.221941 19:0.950591 20:0.169641 21:0.625604 22:-0.057623 23:-0.285434 24:0.00307308 25:0.54878 26:0.266007 27:-0.284819 28:0.179641 29:0.919376 30:-0.902882 31:-0.147372 32:-0.436633 33:0.895013 34:-0.529282 35:-0.221735 36:-0.329963 +879.7883031795573 1:1 2:0.989392 3:0.944523 4:-0.984168 5:0.978136 6:0.983297 7:0.944166 8:-0.981769 9:0.975853 10:0.974558 11:0.95559 12:-0.475094 13:0.979225 14:0.979834 15:0.949348 16:-0.430605 17:0.972465 18:0.966054 19:0.901182 20:0.978649 21:0.939614 22:-0.507018 23:0.975315 24:0.915567 25:0.958537 26:-0.281087 27:0.937045 28:0.997317 29:0.955787 30:-0.719857 31:0.965488 32:0.943376 33:0.965879 34:-0.655332 35:0.969158 36:0.959803 +1024 1:-0.47071 2:0.201199 3:-0.0384068 4:-0.0589632 5:-0.429693 6:0.0360429 7:-0.0665712 8:0.222213 9:-0.46548 10:0.169786 11:0.0153139 12:-0.0805724 13:-0.283923 14:-0.223525 15:-0.00076746 16:-0.185285 17:-0.248719 18:-0.268074 19:0.66058 20:0.250217 21:0.60628 22:0.0456444 23:-0.294429 24:0.0892521 25:0.531707 26:0.532639 27:-0.369671 28:0.333644 29:0.719116 30:-0.205052 31:-0.203291 32:-0.0743866 33:0.766404 34:-0.422936 35:-0.145326 36:-0.179248 +1024 1:-0.252122 2:0.743709 3:0.257468 4:-0.699168 5:0.433077 6:0.589598 7:0.255548 8:-0.705665 9:0.445584 10:0.567851 11:0.267994 12:-0.377209 13:0.507119 14:0.494083 15:0.263239 16:-0.391482 17:0.521923 18:0.461461 19:0.722879 20:0.660989 21:0.758454 22:-0.0521685 23:0.272332 24:0.683074 25:0.812195 26:-0.021647 27:0.284967 28:0.576299 29:0.820546 30:-0.55 31:0.404576 32:0.417375 33:0.839895 34:-0.507454 35:0.400933 36:0.410151 +1024 1:-0.158559 2:0.80913 3:0.342817 4:-0.854192 5:0.591284 6:0.616017 7:0.340014 8:-0.872587 9:0.60694 10:0.597582 11:0.352221 12:-0.454049 13:0.631619 14:0.578345 15:0.339985 16:-0.413007 17:0.629944 18:0.568832 19:0.732188 20:0.646921 21:0.76087 22:-0.166409 23:0.301044 24:0.585424 25:0.782927 26:-0.14382 27:0.335819 28:0.499791 29:0.79974 30:-0.566333 31:0.399041 32:0.395305 33:0.829396 34:-0.535624 35:0.400431 36:0.384133 +1024 1:-0.302008 2:0.702825 3:0.211949 4:-0.748664 5:0.399365 6:0.485338 7:0.21403 8:-0.780995 9:0.419032 10:0.450942 11:0.226646 12:-0.442 13:0.469292 14:0.399465 15:0.221796 16:-0.349504 17:0.442249 18:0.40323 19:0.712854 20:0.478902 21:0.688406 22:-0.0940479 23:0.0500722 24:0.372477 25:0.714634 26:-0.100009 27:0.0953131 28:0.275134 29:0.776333 30:-0.57579 31:0.164846 32:0.107654 33:0.774278 34:-0.378085 35:0.119733 36:0.174184 +-1024 1:1 2:0.998315 3:0.98862 4:-0.992412 5:0.989898 6:0.990271 7:0.981389 8:-0.997132 9:0.999068 10:0.987822 11:0.992343 12:-0.486838 13:0.995959 14:0.990219 15:0.976976 16:-0.406578 17:0.983312 18:1 19:0.902614 20:0.994927 21:0.961353 22:-0.471918 23:0.979323 24:0.963207 25:0.956098 26:-0.325811 27:0.987123 28:0.995228 29:0.950585 30:-0.677622 31:0.977645 32:1 33:0.973753 34:-0.680245 35:0.994838 36:0.965511 +1024 1:1 2:0.932494 3:0.677098 4:-0.926447 5:0.836659 6:0.861289 7:0.680744 8:-0.931959 9:0.844672 10:0.852233 11:0.686064 12:-0.453854 13:0.859836 14:0.851874 15:0.683807 16:-0.429293 17:0.856284 18:0.825903 19:0.82671 20:0.880492 21:0.89372 22:-0.306993 23:0.69659 24:0.862808 25:0.892683 26:-0.270016 27:0.763369 28:0.823795 29:0.911573 30:-0.624975 31:0.754287 32:0.778488 33:0.918635 34:-0.591963 35:0.767356 36:0.777698 +-1024 1:-0.518733 2:0.0624139 3:-0.0853485 4:-0.0798069 5:-0.54408 6:-0.172383 7:-0.103794 8:0.0629896 9:-0.550773 10:-0.125685 11:-0.0444104 12:-0.0841827 13:-0.423277 14:-0.39079 15:-0.0590944 16:-0.0687758 17:-0.42014 18:-0.399272 19:0.36126 20:0.00205979 21:0.381643 22:-0.0330777 23:-0.508409 24:-0.248423 25:0.3 26:0.383733 27:-0.560415 28:-0.0827864 29:0.46684 30:-0.28619 31:-0.427017 32:-0.416724 33:0.47769 34:-0.191716 35:-0.444622 36:-0.402997 +-1024 1:-0.50238 2:0.294595 3:-0.029872 4:-0.500125 5:-0.193558 6:-0.0430047 7:-0.0450966 8:-0.511671 9:-0.172675 10:-0.0634137 11:-0.0199081 12:-0.167347 13:-0.146642 14:-0.117224 15:-0.0314658 16:-0.168114 17:-0.1408 18:-0.137232 19:0.509488 20:-0.0107074 21:0.463768 22:0.115434 23:-0.575896 24:-0.221159 25:0.45122 26:0.215744 27:-0.550985 28:-0.225465 29:0.503251 30:0.0727155 31:-0.513098 32:-0.312443 33:0.511811 34:0.0371074 35:-0.490567 36:-0.320523 +-825.4842703902377 1:-0.438212 2:0.348937 3:0.00426743 4:0.0878359 5:-0.303047 6:0.408132 7:0.0780243 8:-0.62156 9:-0.122035 10:-0.0853196 11:0.0811639 12:-0.387888 13:-0.0528612 14:-0.143898 15:0.0775134 16:-0.293045 17:-0.0738844 18:-0.136418 19:0.725027 20:0.250266 21:0.63285 22:0.732368 23:-0.509929 24:0.466061 25:0.746341 26:-0.583075 27:-0.0197369 28:-0.27277 29:0.755527 30:-0.724487 31:-0.0757906 32:-0.26851 33:0.80315 34:-0.519675 35:-0.135169 36:-0.230472 +-1024 1:1 2:0.994745 3:1 4:-0.982326 5:0.97935 6:0.990237 7:1 8:-0.991905 9:0.989157 10:0.982617 11:1 12:-0.483084 13:0.995398 14:0.99299 15:1 16:-0.40493 17:0.973652 18:0.99118 19:0.845328 20:0.983985 21:0.927536 22:-0.461073 23:0.948602 24:0.944011 25:0.921951 26:-0.321184 27:0.965194 28:0.977115 29:0.916775 30:-0.679497 31:0.958234 32:0.97197 33:0.963255 34:-0.631812 35:0.941833 36:0.950926 +350.7049499478137 1:1 2:1 3:0.974395 4:-0.995012 5:1 6:0.998708 7:0.97423 8:-0.988496 9:1 10:0.998357 11:0.98928 12:-0.479786 13:0.997117 14:0.997341 15:0.987721 16:-0.429498 17:0.987475 18:0.985288 19:0.918367 20:0.993821 21:0.956522 22:-0.484952 23:0.995815 24:0.964151 25:0.973171 26:-0.326803 27:0.979075 28:0.985822 29:0.973992 30:-0.691041 31:0.969008 32:0.977865 33:0.986877 34:-0.667879 35:0.983459 36:0.965668 +-1024 1:-0.486235 2:-0.0512992 3:-0.140825 4:0.711347 5:-0.766729 6:0.146062 7:-0.0393701 8:-0.481962 9:-0.528923 10:-0.501184 11:0.0336907 12:-0.57433 13:-0.44614 14:-0.637828 15:0.028396 16:-0.313513 17:-0.493177 18:-0.59438 19:0.573219 20:-0.0822554 21:0.422705 22:0.982822 23:-0.82722 24:0.0956146 25:0.473171 26:-0.507659 27:-0.380582 28:-0.556426 29:0.651495 30:-0.779965 31:-0.40981 32:-0.643154 33:0.690289 34:-0.44072 35:-0.484164 36:-0.578846 +1024 1:1 2:0.974576 3:0.721195 4:-0.970087 5:0.92998 6:0.926588 7:0.723694 8:-0.949384 9:0.924446 10:0.93395 11:0.7366 12:-0.48535 13:0.944427 14:0.923321 15:0.726784 16:-0.440741 17:0.939068 18:0.911023 19:0.832438 20:0.973822 21:0.942029 22:-0.461144 23:0.916479 24:0.910664 25:0.934146 26:-0.319805 27:0.933192 28:0.945195 29:0.908973 30:-0.708358 31:0.94666 32:0.928466 33:0.926509 34:-0.6692 35:0.963842 36:0.936081 +-826.0575913131683 1:-0.0767957 2:0.827359 3:0.378378 4:-0.837651 5:0.611497 6:0.663777 7:0.368647 8:-0.799431 9:0.610372 10:0.683942 11:0.392037 12:-0.497863 13:0.683418 14:0.60356 15:0.375288 16:-0.392507 17:0.65876 18:0.619764 19:0.798067 20:0.667479 21:0.806763 22:-0.289057 23:0.37268 24:0.52827 25:0.792683 26:0.0529787 27:0.303745 28:0.683755 29:0.846554 30:-0.71427 31:0.46832 32:0.354385 33:0.863517 34:-0.521123 35:0.415312 36:0.416807 +1024 1:-0.435935 2:0.590655 3:0.0512091 4:-0.622048 5:0.211948 6:0.373588 7:0.0536865 8:-0.706954 9:0.25178 10:0.303001 11:0.0735069 12:-0.376795 13:0.283341 14:0.231472 15:0.0636992 16:-0.361124 17:0.291244 18:0.21656 19:0.71357 20:0.375745 21:0.654589 22:-0.0513964 23:-0.082508 24:0.257873 25:0.687805 26:-0.105189 27:-0.0187962 28:0.140315 29:0.760728 30:-0.519969 31:0.0124898 32:-0.0309689 33:0.771654 34:-0.438323 35:0.00487488 36:-0.0119611 +1024 1:-0.492445 2:0.300767 3:-0.0426743 4:-0.283782 5:-0.258464 6:0.0784188 7:-0.0493916 8:-0.172799 9:-0.260669 10:0.123957 11:-0.0183767 12:-0.220182 13:-0.131241 14:-0.132639 15:-0.0299309 16:-0.127965 17:-0.150343 18:-0.122273 19:0.709273 20:0.229729 21:0.625604 22:0.00364461 23:-0.275431 24:0.0727853 25:0.604878 26:0.362481 27:-0.353135 28:0.176973 29:0.719116 30:-0.318967 31:-0.209864 32:-0.161396 33:0.732283 34:-0.355089 35:-0.187932 36:-0.185228 +-430.0514548045146 1:-0.500931 2:-0.0293207 3:-0.103841 4:-0.0234751 5:-0.615678 6:-0.243399 7:-0.0322119 8:-0.514711 9:-0.502345 10:-0.488499 11:-0.0658499 12:0.183504 13:-0.547374 14:-0.403384 15:-0.066769 16:-0.413713 17:-0.416417 18:-0.567309 19:0.195131 20:-0.275163 21:0.0966184 22:0.259667 23:-0.792355 24:-0.414148 25:0.134146 26:-0.411221 27:-0.547375 28:-0.660716 29:0.162549 30:0.112862 31:-0.697631 32:-0.555928 33:0.191601 34:-0.466592 35:-0.576613 36:-0.709468 +1024 1:-0.342165 2:0.744292 3:0.174964 4:-0.786955 5:0.466144 6:0.522265 7:0.168218 8:-0.716185 9:0.450106 10:0.55497 11:0.182236 12:-0.414488 13:0.523499 14:0.477952 15:0.172678 16:-0.3272 17:0.500718 18:0.483492 19:0.702828 20:0.604964 21:0.7657 22:-0.209549 23:0.247135 24:0.475624 25:0.741463 26:0.0457367 27:0.208522 28:0.562789 29:0.771131 30:-0.476314 31:0.306545 32:0.358189 33:0.80315 34:-0.482731 35:0.320441 36:0.332508 +-1024 1:1 2:0.979184 3:0.842105 4:-0.965301 5:0.938813 6:0.951558 7:0.843951 8:-0.962732 9:0.941783 10:0.948116 11:0.854518 12:-0.465565 13:0.949178 14:0.950096 15:0.843438 16:-0.425759 17:0.94862 18:0.939435 19:0.879699 20:0.966296 21:0.94686 22:-0.431066 23:0.903946 24:0.934389 25:0.956098 26:-0.279241 27:0.900312 28:0.96023 29:0.960988 30:-0.70937 31:0.92006 32:0.899812 33:0.963255 34:-0.681819 35:0.946157 36:0.905172 +-1024 1:-0.486442 2:0.504087 3:0.0241821 4:-0.737673 5:0.109595 6:0.116207 7:0.0207588 8:-0.718848 9:0.11617 10:0.119323 11:0.0367534 12:-0.317348 13:0.134531 14:0.105519 15:0.0176516 16:-0.312242 17:0.145851 18:0.0887831 19:0.399212 20:0.0999678 21:0.478261 22:-0.265079 23:-0.350759 24:-0.250552 25:0.480488 26:-0.0646248 27:-0.359958 28:-0.214544 29:0.516255 30:-0.204365 31:-0.349698 32:-0.268206 33:0.540682 34:-0.305571 35:-0.319942 36:-0.318903 +15.86106570993926 1:-0.448768 2:0.390477 3:0.0227596 4:-0.404946 5:-0.124788 6:0.149089 7:0.0164639 8:-0.384199 9:-0.113318 10:0.136731 11:0.0290965 12:-0.154977 13:-0.0216652 14:0.0379608 15:0.0268611 16:-0.15952 17:-0.0223583 18:0.00641126 19:0.960616 20:0.226044 21:0.736715 22:0.107117 23:-0.335072 24:0.0877868 25:0.753659 26:0.123229 27:-0.291993 28:0.0251436 29:0.739922 30:0.0304718 31:-0.249716 32:0.0341116 33:0.80315 34:-0.354221 35:-0.150103 36:-0.136262 +-1024 1:-0.444214 2:0.723641 3:0.0953058 4:-0.851261 5:0.440396 6:0.407919 7:0.0866142 8:-0.830977 9:0.439417 10:0.410569 11:0.0995406 12:-0.3864 13:0.456204 14:0.418832 15:0.0928626 16:-0.386348 17:0.466893 18:0.392805 19:0.565342 20:0.468769 21:0.661836 22:-0.344205 23:0.112451 24:0.186553 25:0.670732 26:-0.204982 27:0.121392 28:0.198985 29:0.680104 30:-0.487506 31:0.141175 32:0.142572 33:0.692913 34:-0.45713 35:0.147137 36:0.139219 +995.7664006880985 1:-0.501345 2:0.345879 3:-0.0199147 4:-0.392003 5:-0.191845 6:0.0660045 7:-0.0307802 8:-0.305789 9:-0.193661 10:0.0961705 11:-0.00306279 12:-0.209884 13:-0.0927531 14:-0.0816317 15:-0.00997698 16:-0.169246 17:-0.0978371 18:-0.0881184 19:0.508772 20:0.156017 21:0.550725 22:-0.0903359 23:-0.358233 24:-0.113719 25:0.473171 26:0.294436 27:-0.407111 28:0.0437545 29:0.630689 30:-0.357379 31:-0.276527 32:-0.271473 33:0.64042 34:-0.244048 35:-0.302235 36:-0.253869 +1024 1:-0.399089 2:0.625821 3:0.140825 4:-0.816868 5:0.30781 6:0.288802 7:0.1267 8:-0.71567 9:0.281263 10:0.33797 11:0.139357 12:-0.412332 13:0.341943 14:0.274933 15:0.125096 16:-0.298941 17:0.320676 18:0.300235 19:0.555317 20:0.377755 21:0.611111 22:-0.293534 23:-0.00179621 24:0.111619 25:0.614634 26:-0.0458588 27:-0.0479536 28:0.165329 29:0.651495 30:-0.454636 31:0.0197209 32:0.0198905 33:0.682415 34:-0.382762 35:0.00104138 36:0.0211303 +-348.3673954832759 1:-0.446077 2:0.360267 3:-0.00142248 4:-0.169785 5:-0.209459 6:0.27377 7:-0.00501074 8:-0.161725 9:-0.203082 10:0.222253 11:0.0520674 12:-0.232484 13:-0.0643963 14:-0.0612664 15:0.0391404 16:-0.298687 17:-0.035668 18:-0.10028 19:0.626208 20:0.344385 21:0.618357 22:0.245102 23:-0.234317 24:0.372187 25:0.641463 26:0.144172 27:-0.178811 28:0.192871 29:0.726918 30:-0.423918 31:-0.0591476 32:-0.0492283 33:0.729659 34:-0.352792 35:-0.0644375 36:-0.0338848 +-1024 1:-0.329124 2:0.736491 3:0.207681 4:-0.729773 5:0.426761 6:0.541735 7:0.206872 8:-0.880556 9:0.496449 10:0.441436 11:0.223583 12:-0.499055 13:0.523871 14:0.41587 15:0.206447 16:-0.419518 17:0.51425 18:0.427083 19:0.566058 20:0.515816 21:0.625604 22:0.00097402 23:0.0678759 24:0.500356 25:0.682927 26:-0.336495 27:0.241753 28:0.19699 29:0.687906 30:-0.691208 31:0.251521 32:0.112523 33:0.703412 34:-0.532376 35:0.221585 36:0.167014 +-778.0079666641395 1:-0.44173 2:0.607807 3:0.0753912 4:-0.583243 5:0.185565 6:0.384203 7:0.0708661 8:-0.66915 9:0.231419 10:0.317239 11:0.0811639 12:-0.308867 13:0.278227 14:0.276193 15:0.0729087 16:-0.27416 17:0.277089 18:0.266865 19:0.64053 20:0.379224 21:0.652174 22:0.214614 23:-0.219952 24:0.356959 25:0.697561 26:-0.0792741 27:-0.0598318 28:0.118108 29:0.724317 30:-0.199094 31:-0.0707331 32:0.103296 33:0.732283 34:-0.325508 35:-0.0225746 36:0.0382825 +1024 1:-0.566135 2:-0.200647 3:-0.163585 4:-0.261066 5:-0.693076 6:-0.551327 7:-0.173944 8:-0.1637 9:-0.695477 10:-0.530758 11:-0.140888 12:0.0328014 13:-0.658888 14:-0.615753 15:-0.14812 16:-0.0429285 17:-0.643005 18:-0.644356 19:-0.127103 20:-0.47011 21:-0.128019 22:-0.0771034 23:-0.830948 24:-0.690061 25:-0.168293 26:0.182738 27:-0.838284 28:-0.633064 29:-0.136541 30:0.134643 31:-0.808582 32:-0.707697 33:-0.120735 34:-0.0736901 35:-0.767205 36:-0.7582 +1024 1:-0.430967 2:0.161344 3:-0.0355619 4:0.465102 5:-0.574423 6:0.316691 7:0.0765927 8:-0.504482 9:-0.352984 10:-0.286307 11:0.0842266 12:-0.382392 13:-0.271993 14:-0.37431 15:0.0713738 16:-0.266222 17:-0.292834 18:-0.359102 19:0.513784 20:0.122936 21:0.471014 22:0.884959 23:-0.660471 24:0.370756 25:0.556098 26:-0.612811 27:-0.124723 28:-0.396553 29:0.570871 30:-0.711903 31:-0.184286 32:-0.387592 33:0.606299 34:-0.47411 35:-0.253185 36:-0.34438 +-1024 1:1 2:0.975255 3:0.785206 4:-0.959139 5:0.9254 6:0.938824 7:0.793844 8:-0.971302 9:0.932159 10:0.923346 11:0.803982 12:-0.470714 13:0.938485 14:0.931703 15:0.789716 16:-0.397943 17:0.926736 18:0.93656 19:0.899033 20:0.962762 21:0.934783 22:-0.423571 23:0.91142 24:0.951327 25:0.963415 26:-0.298294 27:0.895289 28:0.93171 29:0.947984 30:-0.688508 31:0.924324 32:0.924552 33:0.971129 34:-0.587187 35:0.898469 36:0.944741 +1024 1:-0.528876 2:-0.0440685 3:-0.102418 4:-0.282803 5:-0.567275 6:-0.379756 7:-0.108089 8:-0.255186 9:-0.563623 10:-0.396488 11:-0.0643185 12:-0.171236 13:-0.496938 14:-0.518705 15:-0.0744436 16:-0.165236 17:-0.492786 18:-0.530387 19:0.084855 20:-0.326658 21:0.00966184 22:-0.00397046 23:-0.751607 24:-0.536393 25:0.0121951 26:0.0159928 27:-0.726051 28:-0.591364 29:0.0819246 30:-0.120815 31:-0.690106 32:-0.665294 33:0.0944882 34:-0.147425 35:-0.683563 36:-0.684105 +-1024 1:-0.43904 2:0.648635 3:0.0853485 4:-0.471381 5:0.195428 6:0.527356 7:0.0980673 8:-0.784134 9:0.310461 10:0.302298 11:0.0964778 12:-0.430865 13:0.367721 14:0.286593 15:0.085188 16:-0.346847 17:0.354099 18:0.298301 19:0.70068 20:0.52675 21:0.727053 22:0.271142 23:-0.0637405 24:0.628944 25:0.768293 26:-0.482922 27:0.310825 28:0.127099 29:0.786736 30:-0.688582 31:0.256943 32:0.127954 33:0.821522 34:-0.580773 35:0.225407 36:0.139961 +-1024 1:1 2:0.981447 3:0.803698 4:-0.957346 5:0.934603 6:0.953642 7:0.80816 8:-0.98837 9:0.950359 10:0.927325 11:0.81317 12:-0.480344 13:0.957819 14:0.945858 15:0.801995 16:-0.415951 17:0.948456 18:0.946104 19:0.873255 20:0.979915 21:0.94686 22:-0.469538 23:0.951226 24:0.936665 25:0.95122 26:-0.343226 27:0.948761 28:0.933346 29:0.942783 30:-0.691264 31:0.949116 32:0.95123 33:0.955381 34:-0.678852 35:0.972924 36:0.939374 +-1024 1:-0.495343 2:0.00493028 3:-0.100996 4:-0.286132 5:-0.504886 6:-0.290128 7:-0.0579814 8:-0.380373 9:-0.490176 10:-0.38202 11:-0.0168453 12:-0.208776 13:-0.456157 14:-0.489796 15:-0.028396 16:-0.173633 17:-0.45861 18:-0.495426 19:0.379162 20:-0.247073 21:0.18599 22:0.237091 23:-0.761344 24:-0.387134 25:0.219512 26:-0.00649481 27:-0.662596 28:-0.530968 29:0.420026 30:-0.171504 31:-0.662935 32:-0.647768 33:0.406824 34:-0.207664 35:-0.647435 36:-0.660871 +-719.2006849546706 1:-0.586835 2:0.00341522 3:-0.189189 4:-0.553918 5:-0.426503 6:-0.40386 7:-0.192555 8:-0.540197 9:-0.425131 10:-0.418662 11:-0.169985 12:-0.198301 13:-0.415552 14:-0.446069 15:-0.188028 16:-0.152771 17:-0.422856 18:-0.451944 19:0.517365 20:-0.283912 21:0.398551 22:0.00513928 23:-0.751562 24:-0.54807 25:0.434146 26:0.097803 27:-0.739307 28:-0.569182 29:0.477243 30:0.0846314 31:-0.717361 32:-0.599345 33:0.485564 34:-0.0118233 35:-0.698927 36:-0.632556 +-1024 1:-0.345063 2:0.83857 3:0.194879 4:-0.874828 5:0.62475 6:0.61811 7:0.191124 8:-0.842528 9:0.613301 10:0.623305 11:0.203675 12:-0.441087 13:0.659397 14:0.609925 15:0.192632 16:-0.361436 17:0.644149 18:0.617852 19:0.739348 20:0.732592 21:0.833333 22:-0.347931 23:0.474073 24:0.573284 25:0.807317 26:-0.131225 27:0.458008 28:0.650637 29:0.843953 30:-0.613319 31:0.522465 32:0.505264 33:0.866142 34:-0.525953 35:0.508659 36:0.525028 +675.6160730259147 1:-0.509004 2:0.183971 3:-0.0640114 4:-0.487947 5:-0.299933 6:-0.176267 7:-0.0680029 8:-0.365782 9:-0.328665 10:-0.149208 11:-0.0336907 12:-0.29703 13:-0.246902 14:-0.307454 15:-0.046815 16:-0.107604 17:-0.284665 18:-0.264841 19:0.633369 20:-0.0721998 21:0.415459 22:-0.00431757 23:-0.553504 24:-0.285511 25:0.529268 26:0.127949 27:-0.586435 28:-0.345692 29:0.656697 30:-0.356488 31:-0.497372 32:-0.532924 33:0.661417 34:-0.156191 35:-0.532053 36:-0.488027 +1024 1:-0.555579 2:-0.116614 3:-0.173542 4:-0.13997 5:-0.650042 6:-0.395202 7:-0.189692 8:-0.167916 9:-0.626872 10:-0.428688 11:-0.148545 12:0.0684563 13:-0.592599 14:-0.518716 15:-0.155794 16:0.0087497 17:-0.575351 18:-0.542952 19:0.276763 20:-0.23023 21:0.195652 22:0.223844 23:-0.754946 24:-0.387567 25:0.160976 26:0.267818 27:-0.715726 28:-0.406003 29:0.227568 30:0.180033 31:-0.679375 32:-0.491933 33:0.223097 34:0.160452 35:-0.664882 36:-0.494542 +-1024 1:-0.442351 2:0.658825 3:0.0796586 4:-0.648595 5:0.279271 6:0.433907 7:0.0837509 8:-0.737654 9:0.317411 10:0.356778 11:0.0872894 12:-0.416678 13:0.383724 14:0.314141 15:0.085188 16:-0.34506 17:0.364579 18:0.311303 19:0.666309 20:0.44313 21:0.661836 22:-0.086454 23:-0.0123699 24:0.306492 25:0.697561 26:-0.234266 27:0.114906 28:0.163369 29:0.739922 30:-0.56135 31:0.117003 32:0.0603012 33:0.761155 34:-0.535443 35:0.121136 36:0.0507662 +616.4958277904848 1:1 2:0.99811 3:0.965861 4:-0.992479 5:0.987943 6:0.98646 7:0.965641 8:-0.98506 9:0.99302 10:0.993192 11:0.972435 12:-0.475068 13:0.994351 14:0.997592 15:0.967767 16:-0.411966 17:0.980269 18:0.99158 19:0.958468 20:0.993792 21:1 22:-0.471939 23:0.970976 24:0.955163 25:1 26:-0.317808 27:0.96198 28:0.979285 29:1 30:-0.668332 31:0.958163 32:0.989508 33:1 34:-0.650881 35:0.989888 36:0.99186 +1024 1:-0.479611 2:0.380675 3:-0.0142248 4:-0.0205254 5:-0.265549 6:0.349774 7:0.00501074 8:-0.258008 9:-0.18701 10:0.152118 11:0.0229709 12:-0.229119 13:-0.0386506 14:-0.0311649 15:0.00690714 16:-0.167556 17:-0.0473409 18:-0.0285837 19:0.615467 20:0.325029 21:0.584541 22:0.258229 23:-0.273838 24:0.333397 25:0.643902 26:-0.0394143 27:-0.132055 28:0.0726033 29:0.695709 30:-0.380496 31:-0.0738015 32:-0.0372055 33:0.703412 34:-0.337902 35:-0.0668712 36:-0.0268928 +210.8103549005023 1:-0.474436 2:0.63895 3:0.0440967 4:-0.77001 5:0.29977 6:0.319846 7:0.0422334 8:-0.737727 9:0.292545 10:0.321447 11:0.0551302 12:-0.409609 13:0.3484 14:0.277963 15:0.0360706 16:-0.285632 17:0.323255 18:0.307718 19:0.664876 20:0.389674 21:0.657005 22:-0.237112 23:-0.00276444 24:0.165224 25:0.704878 26:-0.12366 27:-0.029207 28:0.110738 29:0.755527 30:-0.521417 31:0.0334159 32:-0.00759634 33:0.76378 34:-0.448582 35:0.0216163 36:-9.47788e-005 +1024 1:-0.469468 2:0.248254 3:-0.0128023 4:-0.511477 5:-0.224425 6:-0.094184 7:-0.0479599 8:-0.368386 9:-0.237966 10:-0.024691 12:-0.278057 13:-0.162932 14:-0.202526 15:-0.0115119 16:-0.168253 17:-0.18243 18:-0.183638 19:0.629073 20:0.0263137 21:0.509662 22:-0.129757 23:-0.444962 24:-0.251737 25:0.539024 26:0.208107 27:-0.519204 28:-0.192043 29:0.622887 30:-0.341611 31:-0.396017 32:-0.406107 33:0.669291 34:-0.259028 35:-0.414207 36:-0.400278 +1024 1:-0.367212 2:0.771591 3:0.189189 4:-0.827712 5:0.49274 6:0.509693 7:0.175376 8:-0.832437 9:0.516227 10:0.512992 11:0.188361 12:-0.412036 13:0.542877 14:0.501955 15:0.178818 16:-0.378976 17:0.544399 18:0.4909 19:0.682062 20:0.575081 21:0.753623 22:-0.241851 23:0.208641 24:0.39744 25:0.741463 26:-0.0885852 27:0.214135 28:0.4223 29:0.778934 30:-0.416494 31:0.245139 32:0.333286 33:0.795276 34:-0.345555 35:0.230504 36:0.339982 +1024 1:-0.321673 2:0.757297 3:0.224751 4:-0.855685 5:0.500269 6:0.490513 7:0.216893 8:-0.829655 9:0.501033 10:0.501537 11:0.229709 12:-0.417312 13:0.527593 14:0.483484 15:0.218726 16:-0.358024 17:0.522486 18:0.48599 19:0.579663 20:0.500248 21:0.649758 22:-0.257343 23:0.123762 24:0.28708 25:0.663415 26:-0.0857761 27:0.114316 28:0.311936 29:0.706112 30:-0.390862 31:0.142389 32:0.222921 33:0.698163 34:-0.35537 35:0.159441 36:0.238407 +1024 1:-0.350238 2:0.727938 3:0.169275 4:-0.75345 5:0.431165 6:0.516442 7:0.168218 8:-0.806852 9:0.460073 10:0.470278 11:0.179173 12:-0.439777 13:0.505064 14:0.437521 15:0.171144 16:-0.396476 17:0.50298 18:0.43041 19:0.726459 20:0.542437 21:0.724638 22:-0.195643 23:0.185335 24:0.420909 25:0.72439 26:-0.166386 27:0.239809 28:0.368806 29:0.789337 30:-0.604958 31:0.253589 32:0.189854 33:0.779528 34:-0.500289 35:0.247902 36:0.229286 +1024 1:1 2:0.999014 3:0.978663 4:-0.988734 5:0.993566 6:0.998738 7:0.985684 8:-0.989289 9:0.992986 10:0.989481 11:0.992343 12:-0.471297 13:0.990137 14:0.996658 15:0.978511 16:-0.423233 17:0.991565 18:0.995019 19:0.86681 20:0.991633 21:0.934783 22:-0.490853 23:0.988915 24:0.949311 25:0.94878 26:-0.288114 27:0.947815 28:1 29:0.93498 30:-0.680638 31:0.963269 32:0.978354 33:0.950131 34:-0.65734 35:0.969656 36:0.957095 +1024 1:-0.459532 2:0.0659228 3:-0.0440967 4:-0.0165415 5:-0.552478 6:-0.130745 7:-0.043665 8:0.0388114 9:-0.55102 10:-0.149255 11:-0.0444104 12:0.00823945 13:-0.400148 14:-0.313139 15:-0.046815 16:0.0545319 17:-0.418445 18:-0.328912 19:0.856785 20:0.0977371 21:0.611111 22:0.173429 23:-0.468014 24:-0.0267432 25:0.621951 26:0.150501 27:-0.409325 28:-0.097348 29:0.622887 30:0.0947933 31:-0.371549 32:-0.0936393 33:0.687664 34:-0.318525 35:-0.273133 36:-0.265367 +74.8838466583353 1:-0.417512 2:0.727203 3:0.103841 4:-0.772684 5:0.428952 6:0.484831 7:0.102362 8:-0.748266 9:0.435802 10:0.49581 11:0.12098 12:-0.405458 13:0.478008 14:0.4299 15:0.105142 16:-0.382191 17:0.480617 18:0.412214 19:0.815968 20:0.606705 21:0.797101 22:-0.331695 23:0.333701 24:0.439151 25:0.802439 26:-0.172163 27:0.345425 28:0.479614 29:0.862159 30:-0.680183 31:0.370948 32:0.270979 33:0.88189 34:-0.721459 35:0.400997 36:0.230743 +-1024 1:-0.308425 2:0.740507 3:0.214794 4:-0.762856 5:0.445743 6:0.528166 7:0.212598 8:-0.759896 9:0.45576 10:0.519022 11:0.223583 12:-0.330275 13:0.487178 14:0.505687 15:0.217191 16:-0.328872 17:0.493276 18:0.476495 19:0.795918 20:0.54879 21:0.782609 22:-0.14872 23:0.137557 24:0.414945 25:0.782927 26:-0.0618947 27:0.160636 28:0.388719 29:0.807542 30:-0.255333 31:0.176518 32:0.383717 33:0.83727 34:-0.473639 35:0.251411 36:0.258927 +-1024 1:-0.529911 2:0.012802 3:-0.130868 4:-0.0259352 5:-0.583963 6:-0.1895 7:-0.142448 8:0.150874 9:-0.603998 10:-0.14174 11:-0.0826953 12:-0.0321165 13:-0.469031 14:-0.418379 15:-0.0974674 16:0.00171386 17:-0.467453 18:-0.417804 19:0.432152 20:0.051234 21:0.413043 22:0.0890113 23:-0.502577 24:-0.138328 25:0.402439 26:0.362991 27:-0.523736 28:-0.0553289 29:0.479844 30:-0.171949 31:-0.39366 32:-0.304931 33:0.501312 34:-0.0642097 35:-0.413143 36:-0.281263 +-1024 1:-0.488719 2:-0.0272153 3:-0.145092 4:0.622611 5:-0.743113 6:0.114988 7:-0.0150322 8:-0.536028 9:-0.501768 10:-0.500712 11:0.00612557 12:-0.299119 13:-0.46895 14:-0.544658 15:-0.0130468 16:-0.345248 17:-0.449306 18:-0.565909 19:0.243108 20:-0.093464 21:0.219807 22:0.887276 23:-0.810837 24:0.0882048 25:0.32439 26:-0.637684 27:-0.32278 28:-0.593074 29:0.373212 30:-0.450061 31:-0.446112 32:-0.534004 33:0.375328 34:-0.537894 35:-0.41415 36:-0.56796 +1024 1:-0.478576 2:0.349084 3:-0.0170697 4:-0.219935 5:-0.226535 6:0.193247 7:-0.00644238 8:-0.497649 9:-0.125811 10:0.0131466 11:0.0260337 12:-0.314541 13:-0.0641975 14:-0.114239 15:0.00997698 16:-0.269822 17:-0.0660917 18:-0.116769 19:0.692803 20:0.135028 21:0.545894 22:0.241164 23:-0.46882 24:0.0391535 25:0.597561 26:-0.207446 27:-0.247492 28:-0.205328 29:0.719116 30:-0.501148 31:-0.266314 32:-0.344375 33:0.737533 34:-0.487281 35:-0.255614 36:-0.349103 +-1024 1:-0.511488 2:-0.0035875 3:-0.116643 4:0.316578 5:-0.682912 6:-0.0597291 7:-0.0808876 8:-0.0968682 9:-0.580256 10:-0.304758 11:-0.0444104 12:-0.0191803 13:-0.496599 14:-0.443852 15:-0.0498849 16:0.00756066 17:-0.498501 18:-0.450625 19:0.523093 20:0.0238831 21:0.427536 22:0.576184 23:-0.661648 24:0.0571495 25:0.526829 26:-0.0134925 27:-0.459444 28:-0.292667 29:0.557867 30:0.0306295 31:-0.474367 32:-0.283854 33:0.582677 34:-0.198437 35:-0.413293 36:-0.365074 +-1024 1:-0.429725 2:0.396872 3:0.029872 4:-0.342935 5:-0.135196 6:0.199322 7:0.0136006 8:-0.116956 9:-0.173582 10:0.312681 11:0.0689127 12:-0.169012 13:-0.0302354 14:0.0201159 15:0.0636992 16:-0.22527 17:-0.00983345 18:-0.0220828 19:0.679198 20:0.32188 21:0.657005 22:0.00994917 23:-0.210899 24:0.159481 25:0.585366 26:0.470076 27:-0.280048 28:0.3957 29:0.750325 30:-0.270905 31:-0.113469 32:-0.00520264 33:0.782152 34:-0.397254 35:-0.0731157 36:-0.0746721 +-464.7328340085832 1:-0.390809 2:0.138489 3:-0.0184922 4:0.0328138 5:-0.466607 6:0.0641841 7:-0.027917 8:-0.0518487 9:-0.395932 10:0.0262484 11:0.105666 12:-0.535471 13:-0.251838 14:-0.430159 15:0.103607 16:-0.328831 17:-0.297543 18:-0.395997 19:0.916219 20:0.106576 21:0.572464 22:-0.0264615 23:-0.352125 24:-0.0502805 25:0.473171 26:0.254656 27:-0.324009 28:0.119903 29:0.919376 30:-0.951009 31:-0.20287 32:-0.515148 33:0.88189 34:-0.534828 35:-0.282928 36:-0.401588 +1024 1:1 2:0.980385 3:0.796586 4:-0.971623 5:0.932969 6:0.933635 7:0.795276 8:-0.96217 9:0.941267 10:0.944993 11:0.80245 12:-0.470342 13:0.954465 14:0.950043 15:0.789716 16:-0.417132 17:0.946621 18:0.942526 19:0.89044 20:0.97953 21:0.937198 22:-0.471493 23:0.960112 24:0.943342 25:0.95122 26:-0.31594 27:0.943481 28:0.961133 29:0.968791 30:-0.739122 31:0.952632 32:0.909978 33:0.976378 34:-0.647742 35:0.944146 36:0.938421 +-1024 1:1 2:0.961163 3:0.758179 4:-0.949647 5:0.88775 6:0.902011 7:0.753758 8:-0.971791 9:0.906981 10:0.889219 11:0.762634 12:-0.480124 13:0.911137 14:0.891273 15:0.754413 16:-0.444587 17:0.912828 18:0.879444 19:0.865378 20:0.951808 21:0.927536 22:-0.472775 23:0.907199 24:0.886621 25:0.929268 26:-0.312074 27:0.905011 28:0.924704 29:0.93498 30:-0.672889 31:0.899062 32:0.908589 33:0.96063 34:-0.638388 35:0.898586 36:0.892131 +233.5733362699879 1:-0.238667 2:0.823541 3:0.277383 4:-0.761944 5:0.563562 6:0.684846 7:0.271296 8:-0.826266 9:0.601495 10:0.63479 11:0.284839 12:-0.403927 13:0.636385 14:0.619717 15:0.273983 16:-0.374466 17:0.633713 18:0.600586 19:0.745077 20:0.721352 21:0.78744 22:-0.119032 23:0.379344 24:0.730488 25:0.834146 26:-0.223475 27:0.46728 28:0.557144 29:0.817945 30:-0.572922 31:0.517531 32:0.533657 33:0.853018 34:-0.534086 35:0.504354 36:0.511575 +-1024 1:-0.504243 2:0.248077 3:-0.059744 4:-0.0882337 5:-0.370697 6:0.104386 7:-0.043665 8:-0.358329 9:-0.284281 10:-0.0802687 11:-0.0199081 12:-0.127616 13:-0.221168 14:-0.179047 15:-0.0314658 16:-0.121192 17:-0.2137 18:-0.190945 19:0.594701 20:0.115922 21:0.516908 22:0.516985 23:-0.579103 24:0.134212 25:0.607317 26:-0.0173363 27:-0.377112 28:-0.197927 29:0.641092 30:-0.00576769 31:-0.393062 32:-0.19329 33:0.664042 34:-0.219949 35:-0.331884 36:-0.274455 +-1024 1:-0.463465 2:0.633041 3:0.0455192 4:-0.613034 5:0.23856 6:0.418436 7:0.0479599 8:-0.73289 9:0.28521 10:0.317856 11:0.0597243 12:-0.407538 13:0.342756 14:0.273628 15:0.0514198 16:-0.282582 17:0.309689 18:0.295814 19:0.699964 20:0.455126 21:0.666667 22:-0.0668461 23:0.0199574 24:0.365942 25:0.746341 26:-0.243728 27:0.106921 28:0.146039 29:0.773732 30:-0.567948 31:0.133244 32:0.0763678 33:0.782152 34:-0.401225 35:0.0998672 36:0.131631 +-1024 1:-0.465535 2:0.680396 3:0.0625889 4:-0.72943 5:0.328037 6:0.402829 7:0.0622763 8:-0.688432 9:0.324616 10:0.415084 11:0.0673813 12:-0.372737 13:0.392631 14:0.355914 15:0.0606293 16:-0.304108 17:0.372048 18:0.349819 19:0.629789 20:0.486933 21:0.705314 22:-0.226075 23:0.0740654 24:0.262628 25:0.690244 26:0.0732247 27:0.0234862 28:0.370377 29:0.750325 30:-0.468658 31:0.133842 32:0.152413 33:0.771654 34:-0.385656 35:0.115703 36:0.162984 +1024 1:-0.488512 2:0.364055 3:-0.0213371 4:-0.385136 5:-0.159688 6:0.118655 7:-0.0136006 8:-0.326915 9:-0.167326 10:0.114238 11:0.0183767 12:-0.248287 13:-0.0598407 14:-0.0678336 15:0.00844206 16:-0.191165 17:-0.0630371 18:-0.0621485 19:0.747225 20:0.167373 21:0.65942 22:-0.144442 23:-0.326191 24:-0.124241 25:0.619512 26:0.276971 27:-0.397411 28:0.0320454 29:0.747724 30:-0.389488 31:-0.251558 32:-0.257383 33:0.690289 34:-0.115773 35:-0.290671 36:-0.150755 +-1024 1:-0.340509 2:0.685243 3:0.174964 4:-0.628951 5:0.318331 6:0.515137 7:0.178239 8:-0.648996 9:0.333882 10:0.478529 11:0.189893 12:-0.349367 13:0.410306 14:0.401678 15:0.181888 16:-0.297555 17:0.397057 18:0.390702 19:0.72073 20:0.539894 21:0.7657 22:0.108775 23:0.00443849 24:0.533226 25:0.773171 26:0.110369 27:0.0603809 28:0.452565 29:0.773732 30:-0.372542 31:0.183801 32:0.29299 33:0.811024 34:-0.393092 35:0.193995 36:0.254936 +-1024 1:1 2:0.982159 3:0.829303 4:-0.985196 5:0.949339 6:0.939361 7:0.831067 8:-0.980877 9:0.950759 10:0.937788 11:0.837672 12:-0.477436 13:0.954541 14:0.945573 15:0.825019 16:-0.417427 17:0.95215 18:0.949897 19:0.871106 20:0.959198 21:0.92029 22:-0.469864 23:0.925206 24:0.908742 25:0.936585 26:-0.265368 27:0.895617 28:0.971994 29:0.955787 30:-0.710205 31:0.917571 32:0.8956 33:0.965879 34:-0.624312 35:0.901876 36:0.910702 +-1024 1:-0.468019 2:0.300635 3:-0.0241821 4:-0.343712 5:-0.22135 6:0.0723694 7:-0.0107373 8:-0.374313 9:-0.182147 10:0.049048 11:0.0382848 12:-0.285776 13:-0.131674 14:-0.170579 15:0.028396 16:-0.357598 17:-0.0995584 18:-0.206729 19:0.585392 20:0.101057 21:0.468599 22:0.0971435 23:-0.426692 24:-0.0305194 25:0.421951 26:0.027955 27:-0.314359 28:-0.0789216 29:0.622887 30:-0.411213 31:-0.294907 32:-0.327299 33:0.650919 34:-0.642016 35:-0.224807 36:-0.412323 +-1024 1:-0.395777 2:0.693877 3:0.135135 4:-0.719841 5:0.35001 6:0.448619 7:0.122405 8:-0.684804 9:0.358627 10:0.467848 11:0.143951 12:-0.361703 13:0.415058 14:0.394777 15:0.13584 16:-0.331652 17:0.415098 18:0.381476 19:0.667741 20:0.514678 21:0.7343 22:-0.191953 23:0.104081 24:0.331568 25:0.756098 26:0.139617 27:0.0094791 28:0.421243 29:0.763329 30:-0.368487 31:0.146845 32:0.249376 33:0.774278 34:-0.333885 35:0.148152 36:0.24587 +-1024 1:-0.330159 2:0.79605 3:0.209104 4:-0.805981 5:0.532981 6:0.587304 7:0.211167 8:-0.835827 9:0.548171 10:0.552413 11:0.218989 12:-0.40922 13:0.586172 14:0.55477 15:0.203377 16:-0.358566 17:0.581811 18:0.551006 19:0.71357 20:0.638453 21:0.753623 22:-0.0917527 23:0.235792 24:0.594024 25:0.802439 26:-0.154841 27:0.307999 28:0.456764 29:0.804941 30:-0.430683 31:0.333593 32:0.432758 33:0.821522 34:-0.429567 35:0.35118 36:0.417457 +-1024 1:-0.495343 2:0.180834 3:-0.0640114 4:-0.437068 5:-0.304499 6:-0.136398 7:-0.0293486 8:-0.536907 9:-0.287147 10:-0.23184 11:-0.00612557 12:-0.277347 13:-0.260084 14:-0.309494 15:-0.0237913 16:-0.241236 17:-0.258977 18:-0.312819 19:0.58038 20:-0.101886 21:0.39372 22:0.131677 23:-0.634935 24:-0.288756 25:0.458537 26:-0.0662198 27:-0.546254 28:-0.434593 29:0.648895 30:-0.262534 31:-0.553517 32:-0.552535 33:0.645669 34:-0.280703 35:-0.539584 36:-0.562978 +1024 1:-0.460981 2:0.298697 3:-0.0327169 4:0.055885 5:-0.340587 6:0.308988 7:0.0522548 8:-0.675388 9:-0.160176 10:-0.17882 11:0.0689127 12:-0.363301 13:-0.129376 14:-0.212483 15:0.0514198 16:-0.363314 17:-0.115243 18:-0.22544 19:0.571071 20:0.0850655 21:0.471014 22:0.717931 23:-0.652354 24:0.209776 25:0.626829 26:-0.570854 27:-0.215859 28:-0.445085 29:0.685306 30:-0.482245 31:-0.322515 32:-0.398779 33:0.674541 34:-0.536718 35:-0.295534 36:-0.425456 +1024 1:-0.428483 2:0.715052 3:0.106686 4:-0.801037 5:0.415165 6:0.435254 7:0.108089 8:-0.795215 9:0.410382 10:0.414892 11:0.119449 12:-0.384472 13:0.446186 14:0.41054 15:0.103607 16:-0.362781 17:0.449811 18:0.393395 19:0.549588 20:0.48534 21:0.65942 22:-0.28837 23:0.105153 24:0.234562 25:0.643902 26:-0.167543 27:0.129741 28:0.245612 29:0.680104 30:-0.443759 31:0.142912 32:0.179492 33:0.687664 34:-0.465652 35:0.162931 36:0.150901 +1024 1:-0.405506 2:0.788388 3:0.139403 4:-0.727484 5:0.473482 6:0.598325 7:0.136722 8:-0.882334 9:0.549269 10:0.495439 11:0.145482 12:-0.445966 13:0.574052 14:0.506632 15:0.132771 16:-0.402855 17:0.573784 18:0.500676 19:0.698532 20:0.666546 21:0.768116 22:-0.0374697 23:0.245728 24:0.667768 25:0.809756 26:-0.382612 27:0.452751 28:0.370472 29:0.810143 30:-0.614433 31:0.425532 32:0.386404 33:0.826772 34:-0.616895 35:0.443912 36:0.364365 +-1024 1:-0.0153177 2:0.809804 3:0.415363 4:-0.817076 5:0.577905 6:0.648715 7:0.407301 8:-0.770422 9:0.572431 10:0.670764 11:0.421133 12:-0.429259 13:0.632918 14:0.603301 15:0.415196 16:-0.405734 17:0.639282 18:0.589429 19:0.75367 20:0.677245 21:0.806763 22:-0.241731 23:0.347519 24:0.552869 25:0.809756 26:0.1157 27:0.261706 28:0.704904 29:0.830949 30:-0.462552 31:0.399563 32:0.488285 33:0.884514 34:-0.505672 35:0.414818 36:0.4311 +1024 1:-0.304078 2:0.698397 3:0.204836 4:-0.623902 5:0.33877 6:0.550129 7:0.20544 8:-0.649426 9:0.361884 10:0.516414 11:0.222052 12:-0.416864 13:0.452973 14:0.400132 15:0.212586 16:-0.334973 17:0.437473 18:0.408696 19:0.690655 20:0.616381 21:0.741546 22:-0.00178157 23:0.180535 24:0.630729 25:0.773171 26:-0.00516568 27:0.217605 28:0.516307 29:0.804941 30:-0.547503 31:0.334898 32:0.334459 33:0.805774 34:-0.496599 35:0.339721 36:0.343914 +-1024 1:-0.440282 2:0.745997 3:0.0953058 4:-0.818888 5:0.459721 6:0.468724 7:0.095204 8:-0.821944 9:0.465764 10:0.453317 11:0.0964778 12:-0.456771 13:0.527844 14:0.443049 15:0.0867229 16:-0.344404 17:0.496246 18:0.458642 19:0.647691 20:0.552238 21:0.68599 22:-0.287832 23:0.231299 24:0.374272 25:0.717073 26:-0.186711 27:0.227026 28:0.333445 29:0.750325 30:-0.575855 31:0.264332 32:0.223366 33:0.761155 34:-0.480931 35:0.248694 36:0.24529 +-1024 1:-0.393293 2:0.657574 3:0.13229 4:-0.754802 5:0.327593 6:0.380498 7:0.129563 8:-0.726685 9:0.325514 10:0.382608 11:0.143951 12:-0.354178 13:0.364362 14:0.343447 15:0.126631 16:-0.328241 17:0.377136 18:0.341081 19:0.533119 20:0.347276 21:0.567633 22:-0.133533 23:-0.120717 24:0.132231 25:0.582927 26:0.0124508 27:-0.113169 28:0.14601 29:0.635891 30:-0.320684 31:-0.0534056 32:0.0298236 33:0.661417 34:-0.300821 35:-0.0577553 36:0.0106396 +-1024 1:-0.491617 2:0.087914 3:-0.0938834 4:-0.0058443 5:-0.512789 6:-0.0498897 7:-0.0307802 8:-0.353855 9:-0.445057 10:-0.299839 11:-0.00153139 12:-0.288761 13:-0.359803 14:-0.423757 15:-0.0176516 16:-0.052531 17:-0.403761 18:-0.370363 19:0.505908 20:-0.0650036 21:0.36715 22:0.453812 23:-0.68874 24:-0.0987467 25:0.47561 26:-0.17421 27:-0.493953 28:-0.450241 29:0.53446 30:-0.358307 31:-0.47548 32:-0.512233 33:0.52231 34:-0.0987118 35:-0.520084 36:-0.442939 +1024 1:-0.433865 2:0.713527 3:0.100996 4:-0.720159 5:0.37305 6:0.474556 7:0.102362 8:-0.767429 9:0.401282 10:0.432215 11:0.11026 12:-0.401924 13:0.446914 14:0.397203 15:0.100537 16:-0.355064 17:0.444778 18:0.393693 19:0.663444 20:0.523059 21:0.698068 22:-0.140192 23:0.105899 24:0.389037 25:0.721951 26:-0.231529 27:0.215769 28:0.275174 29:0.755527 30:-0.585367 31:0.229786 32:0.17528 33:0.776903 34:-0.57217 35:0.233078 36:0.152943 +1024 1:-0.489133 2:0.0351504 3:-0.100996 4:0.306101 5:-0.642375 6:0.0130858 7:-0.0637079 8:-0.227413 9:-0.505319 10:-0.290133 12:-0.267564 13:-0.423634 14:-0.481965 15:-0.0145817 16:-0.210805 17:-0.427752 18:-0.47965 19:0.533119 20:-0.0477778 21:0.335749 22:0.394974 23:-0.651169 24:-0.0833321 25:0.397561 26:-0.200621 27:-0.407741 28:-0.37497 29:0.53186 30:-0.440892 31:-0.43382 32:-0.508298 33:0.566929 34:-0.455945 35:-0.423194 36:-0.524763 +1024 1:-0.459532 2:0.691893 3:0.0625889 4:-0.786613 5:0.380411 6:0.403583 7:0.0622763 8:-0.824422 9:0.404061 10:0.371472 11:0.0704441 12:-0.389419 13:0.420879 14:0.374873 15:0.0544896 16:-0.363478 17:0.429123 18:0.366192 19:0.646259 20:0.50271 21:0.68599 22:-0.271242 23:0.140484 24:0.291062 25:0.704878 26:-0.238771 27:0.201019 28:0.251795 29:0.747724 30:-0.542696 31:0.181489 32:0.151332 33:0.779528 34:-0.519648 35:0.184947 36:0.138921 +-1024 1:-0.367212 2:0.708394 3:0.227596 4:-0.886015 5:0.428677 6:0.369614 7:0.226915 8:-0.895675 9:0.436982 10:0.356566 11:0.223583 12:-0.46187 13:0.455169 14:0.368696 15:0.211051 16:-0.437821 17:0.462517 18:0.356495 19:0.676334 20:0.54594 21:0.748792 22:-0.405699 23:0.251356 24:0.273386 25:0.743902 26:-0.273357 27:0.257151 28:0.277358 29:0.778934 30:-0.616391 31:0.276959 32:0.207446 33:0.790026 34:-0.537967 35:0.254765 36:0.20694 +-1024 1:-0.246947 2:0.740778 3:0.25889 4:-0.751877 5:0.445451 6:0.544246 7:0.244094 8:-0.704046 9:0.45217 10:0.577153 11:0.271057 12:-0.462682 13:0.533002 14:0.457043 15:0.261704 16:-0.372014 17:0.509497 18:0.462966 19:0.83387 20:0.555074 21:0.792271 22:-0.232408 23:0.202736 24:0.400405 25:0.746341 26:0.105598 27:0.159362 28:0.570115 29:0.875163 30:-0.721898 31:0.288334 32:0.143967 33:0.866142 34:-0.471505 35:0.236477 36:0.244239 +1024 1:0.206789 2:0.905947 3:0.502134 4:-0.870103 5:0.755687 6:0.815695 7:0.503221 8:-0.908124 9:0.775702 10:0.780353 11:0.517611 12:-0.437663 13:0.792055 14:0.780775 15:0.501151 16:-0.404823 17:0.794415 18:0.768407 19:0.815968 20:0.845736 21:0.876812 22:-0.264781 23:0.625583 24:0.835593 25:0.9 26:-0.257192 27:0.671895 28:0.7407 29:0.882965 30:-0.638561 31:0.719508 32:0.721484 33:0.910761 34:-0.551627 35:0.698436 36:0.733287 +1024 1:-0.494308 2:0.248634 3:-0.0312945 4:-0.35351 5:-0.289278 6:-0.0355186 7:-0.00071582 8:-0.659318 9:-0.201345 10:-0.220002 11:-0.0122511 12:-0.0519351 13:-0.231072 14:-0.144134 15:-0.0145817 16:-0.41532 17:-0.135668 18:-0.281733 19:0.431436 20:-0.0820961 21:0.364734 22:0.146638 23:-0.643034 24:-0.286824 25:0.417073 26:-0.390026 27:-0.420492 28:-0.520177 29:0.440832 30:-0.0261843 31:-0.552792 32:-0.42816 33:0.472441 34:-0.481238 35:-0.445339 36:-0.5662 +-1024 1:-0.502794 2:0.0893049 3:-0.102418 4:0.20512 5:-0.569775 6:0.0565402 7:-0.10952 8:0.214013 9:-0.562528 10:-0.0123551 11:-0.0290965 12:-0.16607 13:-0.379104 14:-0.382704 15:-0.0360706 16:-0.245738 17:-0.35246 18:-0.417217 19:0.373434 20:0.165922 21:0.376812 22:0.298727 23:-0.402242 24:0.210154 25:0.387805 26:0.21162 27:-0.367052 28:0.0252882 29:0.477243 30:-0.365647 31:-0.232475 32:-0.230026 33:0.472441 34:-0.34029 35:-0.212646 36:-0.215963 +-1024 1:-0.314635 2:0.837534 3:0.226174 4:-0.834787 5:0.600679 6:0.639532 7:0.225483 8:-0.883305 9:0.632363 10:0.605582 11:0.229709 12:-0.44348 13:0.666181 14:0.617422 15:0.218726 16:-0.383732 17:0.658062 18:0.616512 19:0.692087 20:0.721004 21:0.775362 22:-0.291749 23:0.439162 24:0.598636 25:0.782927 26:-0.268931 27:0.510409 28:0.552726 29:0.812744 30:-0.58198 31:0.503468 32:0.5082 33:0.818898 34:-0.590733 35:0.525389 36:0.482827 +487.988806043341 1:-0.351273 2:0.695326 3:0.196302 4:-0.821232 5:0.40021 6:0.403187 7:0.189692 8:-0.795347 9:0.404722 10:0.416028 11:0.18683 12:-0.415215 13:0.449113 14:0.394799 15:0.188028 16:-0.370103 17:0.438392 18:0.380777 19:0.558897 20:0.466825 21:0.620773 22:-0.270859 23:0.112949 24:0.26132 25:0.646341 26:-0.107279 27:0.0886651 28:0.260737 29:0.6671 30:-0.452585 31:0.124562 32:0.14934 33:0.664042 34:-0.400501 35:0.132531 36:0.166055 +1024 1:1 2:0.984241 3:0.926031 4:-0.964292 5:0.951524 6:0.973654 7:0.93844 8:-0.980916 9:0.96009 10:0.955809 11:0.932619 12:-0.471297 13:0.965468 14:0.966613 15:0.933998 16:-0.426784 17:0.963913 18:0.959135 19:0.933405 20:0.957912 21:0.978261 22:-0.436882 23:0.89216 24:0.915281 25:0.960976 26:-0.251624 27:0.885877 28:0.978691 29:0.96619 30:-0.663952 31:0.909621 32:0.932569 33:0.992126 34:-0.628673 35:0.90171 36:0.908016 +-1024 1:1 2:0.99928 3:0.970128 4:-0.981567 5:0.987856 6:1 7:0.971367 8:-0.986685 9:0.999792 10:1 11:0.990812 12:-0.477698 13:0.992456 14:0.99386 15:0.972371 16:-0.447834 17:1 18:0.983115 19:0.866094 20:0.993363 21:0.956522 22:-0.426851 23:0.932708 24:0.969992 25:0.941463 26:-0.355325 27:0.985169 28:0.956515 29:0.929779 30:-0.696192 31:0.978927 32:0.981133 33:0.950131 34:-0.655079 35:0.978987 36:0.970586 +-1024 1:-0.488719 2:0.237489 3:-0.0526316 4:0.22947 5:-0.474791 6:0.25945 7:-0.0264853 8:-0.0527474 9:-0.389833 10:0.0351717 11:-0.00612557 12:-0.214763 13:-0.20506 14:-0.212311 15:-0.0191865 16:-0.130048 17:-0.216133 18:-0.198742 19:0.601146 20:0.272787 21:0.543478 22:0.296389 23:-0.334538 24:0.290305 25:0.614634 26:-0.0486033 27:-0.17715 28:0.0116443 29:0.656697 30:-0.36071 31:-0.125938 32:-0.0887922 33:0.674541 34:-0.30719 35:-0.129928 36:-0.0830235 +-1024 1:-0.411716 2:0.577149 3:0.16074 4:-0.803454 5:0.226374 6:0.20518 7:0.158196 8:-0.787689 9:0.225453 10:0.200662 11:0.160796 12:-0.40944 13:0.253464 14:0.180825 15:0.149655 16:-0.373293 17:0.252491 18:0.17095 19:0.573935 20:0.328619 21:0.652174 22:-0.341421 23:-0.0630528 24:-0.0003196 25:0.67561 26:-0.221133 27:-0.070121 28:-0.0243657 29:0.698309 30:-0.473567 31:-0.0561544 32:-0.082295 33:0.703412 34:-0.513325 35:-0.0277136 36:-0.108397 +513.4821417019538 1:-0.413579 2:0.724566 3:0.11522 4:-0.849566 5:0.457511 6:0.43311 7:0.108089 8:-0.856483 9:0.467222 10:0.420126 11:0.116386 12:-0.396335 13:0.484455 14:0.443897 15:0.105142 16:-0.354908 17:0.481918 18:0.435507 19:0.648407 20:0.457354 21:0.644928 22:-0.339891 23:0.13149 24:0.211398 25:0.656098 26:-0.255898 27:0.158372 28:0.188447 29:0.687906 30:-0.460046 31:0.145529 32:0.17008 33:0.692913 34:-0.419182 35:0.14473 36:0.16716 +-1024 1:-0.41006 2:0.742714 3:0.130868 4:-0.635658 5:0.379897 6:0.585429 7:0.130995 8:-0.826959 9:0.463326 10:0.449083 11:0.140888 12:-0.437443 13:0.503058 14:0.434307 15:0.129701 16:-0.372047 17:0.495776 18:0.438949 19:0.707841 20:0.641307 21:0.768116 22:0.101734 23:0.164206 24:0.729726 25:0.802439 26:-0.421373 27:0.448799 28:0.326199 29:0.817945 30:-0.718956 31:0.42449 32:0.297799 33:0.83727 34:-0.613937 35:0.399703 36:0.316109 +-1024 1:-0.48727 2:0.146502 3:-0.0668563 4:-0.161688 5:-0.440343 6:-0.0802775 7:-0.0479599 8:-0.0936832 9:-0.43915 10:-0.0794857 11:0.00765697 12:-0.181653 13:-0.321484 14:-0.324545 15:-0.0176516 16:-0.0982148 17:-0.32147 18:-0.300687 19:0.717866 20:0.0430325 21:0.557971 22:-0.132109 23:-0.432172 24:-0.239223 25:0.514634 26:0.319029 27:-0.507015 28:-0.0783881 29:0.656697 30:-0.354669 31:-0.364108 32:-0.374354 33:0.585302 34:-0.068579 35:-0.402932 36:-0.269153 +795.8137701977026 1:-0.388739 2:0.653439 3:0.130868 4:-0.60424 5:0.277156 6:0.486063 7:0.133858 8:-0.860831 9:0.374578 10:0.306903 11:0.153139 12:-0.502691 13:0.403426 14:0.276891 15:0.134305 16:-0.375704 17:0.381734 18:0.31019 19:0.53097 20:0.388929 21:0.572464 22:0.194907 23:-0.164749 24:0.417378 25:0.629268 26:-0.349642 27:0.067803 28:0.00411414 29:0.664499 30:-0.697834 31:0.0835369 32:-0.0827727 33:0.658793 34:-0.471848 35:0.0327734 36:-0.0100059 +1024 1:-0.449596 2:0.711964 3:0.0825036 4:-0.781729 5:0.396332 6:0.431221 7:0.0851825 8:-0.834294 9:0.419488 10:0.382688 11:0.093415 12:-0.359767 13:0.432909 14:0.412989 15:0.0775134 16:-0.424069 17:0.47147 18:0.366753 19:0.605442 20:0.499344 21:0.664251 22:-0.243799 23:0.117129 24:0.293516 25:0.702439 26:-0.34337 27:0.214333 28:0.162292 29:0.726918 30:-0.433486 31:0.156656 32:0.207082 33:0.727034 34:-0.558773 35:0.206556 36:0.129655 +1024 1:1 2:0.974852 3:0.769559 4:-0.980521 5:0.935415 6:0.923907 7:0.776664 8:-0.955674 9:0.928856 10:0.935848 11:0.785605 12:-0.453203 13:0.930801 14:0.936946 15:0.774367 16:-0.4001 17:0.926047 18:0.933326 19:0.871822 20:0.970575 21:0.927536 22:-0.479044 23:0.944553 24:0.917745 25:0.953659 26:-0.286598 27:0.905524 28:0.956759 29:0.960988 30:-0.706855 31:0.923922 32:0.906922 33:0.963255 34:-0.614805 35:0.930046 36:0.954149 +1024 1:-0.707928 2:-0.84104 3:-0.547653 4:0.125839 5:-0.996852 6:-0.921183 7:-0.473157 8:0.110632 9:-0.993572 10:-0.939491 11:-0.476263 12:0.52809 13:-0.993307 14:-0.944267 15:-0.439754 16:0.377902 17:-0.987239 18:-0.959692 19:-0.146438 20:-0.646194 21:-0.176329 22:0.245747 23:-0.970057 24:-0.765108 25:-0.12439 26:0.0145918 27:-0.913869 28:-0.842346 29:-0.107932 30:0.360998 31:-0.93304 32:-0.82222 33:-0.104987 34:-0.0598857 35:-0.877109 36:-0.886125 +-1024 1:-0.637963 2:-0.677627 3:-0.405405 4:0.343706 5:-0.984354 6:-0.778422 7:-0.38869 8:0.384529 9:-0.982593 10:-0.803391 11:-0.287902 12:0.565089 13:-0.965132 14:-0.871796 15:-0.300077 16:0.590068 17:-0.96553 18:-0.870576 19:0.123523 20:-0.385044 21:0.123188 22:0.397404 23:-0.874736 24:-0.473043 25:0.102439 26:0.34031 27:-0.840093 28:-0.552985 29:0.284785 30:0.109076 31:-0.788694 32:-0.691522 33:0.275591 34:0.155314 35:-0.787871 36:-0.679805 +-1024 1:-0.701097 2:-0.911328 3:-0.547653 4:-0.00277222 5:-0.998368 6:-0.966342 7:-0.541875 8:0.0665777 9:-0.998198 10:-0.967128 11:-0.50536 12:0.465666 13:-0.998459 14:-0.972423 15:-0.495012 16:0.471402 17:-0.998325 18:-0.974146 19:-0.33763 20:-0.736816 21:-0.222222 22:0.269804 23:-0.993928 24:-0.837756 25:-0.207317 26:0.425317 27:-0.993307 28:-0.839733 29:-0.0975293 30:0.69196 31:-0.986655 32:-0.847221 33:-0.0866142 34:0.595202 35:-0.981421 36:-0.863356 +1024 1:-0.575243 2:-0.26982 3:-0.3101 4:0.226196 5:-0.800619 6:-0.369508 7:-0.287044 8:0.270338 9:-0.791532 10:-0.394871 11:-0.202144 12:-0.0123063 13:-0.681619 14:-0.66257 15:-0.207982 16:-0.184629 17:-0.644099 18:-0.705157 19:0.183673 20:-0.150788 21:0.0990338 22:0.0340199 23:-0.571973 24:-0.260966 25:0.0487805 26:0.0607883 27:-0.515855 28:-0.288229 29:0.240572 30:-0.415055 31:-0.463056 32:-0.540968 33:0.254593 34:-0.629668 35:-0.404072 36:-0.612999 +-1024 1:-0.908922 2:-1 3:-0.807966 4:-0.218705 5:-0.998649 6:-1 7:-0.831067 8:-0.163674 9:-0.998724 10:-1 11:-0.808576 12:0.170399 13:-0.998787 14:-1 15:-0.820414 16:0.200661 17:-0.998944 18:-1 19:-0.689939 20:-0.951127 21:-0.466184 22:-0.130806 23:-0.999941 24:-0.988637 25:-0.463415 26:0.0166106 27:-0.999617 28:-0.988705 29:-0.417425 30:0.318039 31:-0.999684 32:-0.987429 33:-0.383202 34:0.326114 35:-0.999623 36:-0.988285 +1024 1:-0.714759 2:-0.881582 3:-0.512091 4:0.0486332 5:-0.997871 6:-0.952261 7:-0.523264 8:0.142377 9:-0.998195 10:-0.950609 11:-0.448698 12:0.514156 13:-0.997637 14:-0.963181 15:-0.473523 16:0.542744 17:-0.997829 18:-0.961936 19:-0.228786 20:-0.668545 21:-0.0821256 22:0.269166 23:-0.981065 24:-0.797132 25:-0.0682927 26:0.432099 27:-0.980551 28:-0.796343 29:0.00650195 30:0.455276 31:-0.955944 32:-0.841516 33:0.0551181 34:0.548723 35:-0.964019 36:-0.834722 +-1024 1:-0.449182 2:-0.491335 3:-0.118065 4:0.499948 5:-0.958424 6:-0.618174 7:-0.159628 8:0.464081 9:-0.93543 10:-0.626837 11:0.0398162 12:0.444207 13:-0.90219 14:-0.798031 15:0.0038373 16:0.515667 17:-0.903594 18:-0.784116 19:0.899749 20:-0.151665 21:0.550725 22:0.184912 23:-0.691124 24:-0.340492 25:0.453659 26:0.567333 27:-0.719835 28:-0.198326 29:0.914174 30:-0.405163 31:-0.576489 32:-0.639626 33:0.824147 34:-0.0278351 35:-0.629999 36:-0.545582 +-1024 1:-0.461188 2:-0.388397 3:-0.0782361 4:0.581536 5:-0.943933 6:-0.516306 7:-0.122405 8:0.863012 9:-0.957213 10:-0.460525 11:0.0214395 12:0.686639 13:-0.883199 14:-0.682279 15:0.00844206 16:0.57165 17:-0.870034 18:-0.707782 19:0.694952 20:0.0444144 21:0.599034 22:0.34492 23:-0.611227 24:-0.0879343 25:0.541463 26:0.819755 27:-0.676963 28:0.0991981 29:0.742523 30:0.101475 31:-0.499854 32:-0.275295 33:0.771654 34:-0.1213 35:-0.44595 36:-0.355862 +-1024 1:-0.52308 2:-0.387493 3:-0.179232 4:0.63504 5:-0.942264 6:-0.456395 7:-0.133858 8:0.355613 9:-0.898936 10:-0.593948 11:-0.0872894 12:0.369659 13:-0.835596 14:-0.716799 15:-0.0928626 16:0.336179 17:-0.830265 18:-0.730174 19:0.499463 20:-0.106547 21:0.403382 22:0.653823 23:-0.784021 24:-0.1083 25:0.509756 26:0.178284 27:-0.64493 28:-0.387462 29:0.542263 30:0.160006 31:-0.617773 32:-0.413055 33:0.55643 34:-0.0859205 35:-0.558227 36:-0.48468 +225.3565921693048 1:-0.78224 2:-0.989752 3:-0.746799 4:-0.20433 5:-0.998357 6:-0.998073 7:-0.789549 8:-0.139436 9:-0.998443 10:-0.997145 11:-0.744257 12:0.201894 13:-0.998801 14:-0.998219 15:-0.754413 16:0.228115 17:-0.998745 18:-0.998058 19:-0.492302 20:-0.995886 21:-0.777778 22:-0.248588 23:-0.99981 24:-1 25:-0.814634 26:-0.0902951 27:-0.999703 28:-0.99994 29:-0.760728 30:0.172228 31:-0.999647 32:-1 33:-0.75853 34:0.192276 35:-0.999687 36:-1 +-1024 1:-0.732147 2:-0.982488 3:-0.725462 4:-0.193095 5:-0.998433 6:-0.997067 7:-0.717967 8:-0.135841 9:-0.998356 10:-0.996923 11:-0.675345 12:0.206916 13:-0.998588 14:-0.99769 15:-0.683807 16:0.233651 17:-0.998553 18:-0.997539 19:-0.520945 20:-0.992474 21:-0.770531 22:-0.236375 23:-0.999855 24:-0.998776 25:-0.763415 26:-0.0750065 27:-0.999905 28:-0.999701 29:-0.721717 30:0.193916 31:-0.999823 32:-0.999115 33:-0.71916 34:0.21358 35:-0.999883 36:-0.999307 +-1024 1:-0.734217 2:-0.803308 3:-0.564723 4:0.101195 5:-0.991373 6:-0.902177 7:-0.569077 8:0.204894 9:-0.991818 10:-0.897785 11:-0.535988 12:0.454607 13:-0.982769 14:-0.928737 15:-0.536454 16:0.401396 17:-0.979636 18:-0.938158 19:-0.39778 20:-0.658475 21:-0.374396 22:-0.0203269 23:-0.930418 24:-0.798912 25:-0.402439 26:0.163369 27:-0.923708 28:-0.770606 29:-0.404421 30:0.192589 31:-0.89913 32:-0.819115 33:-0.385827 34:0.0247322 35:-0.870721 36:-0.853662 +1024 1:-0.513144 2:-0.383606 3:-0.13798 4:0.484802 5:-0.92611 6:-0.51564 7:-0.168218 8:0.707304 9:-0.937238 10:-0.480253 11:-0.0765697 12:0.400207 13:-0.842497 14:-0.716342 15:-0.0867229 16:0.480282 17:-0.851627 18:-0.709077 19:0.638382 20:-0.00650963 21:0.516908 22:0.209464 23:-0.578257 24:-0.148609 25:0.5 26:0.642333 27:-0.671409 28:-0.0510702 29:0.638492 30:-0.114764 31:-0.492672 32:-0.396212 33:0.661417 34:-0.129044 35:-0.48107 36:-0.40773 +-1024 1:-0.602153 2:-0.570681 3:-0.321479 4:0.691806 5:-0.990314 6:-0.623823 7:-0.216893 8:0.180398 9:-0.943174 10:-0.78717 11:-0.133231 12:0.352724 13:-0.920169 14:-0.85016 15:-0.152724 16:0.51574 17:-0.932585 18:-0.831097 19:0.477265 20:-0.26449 21:0.374396 22:0.93342 23:-0.922799 24:-0.218425 25:0.439024 26:-0.159554 27:-0.670279 28:-0.636554 29:0.625488 30:-0.342901 31:-0.658693 32:-0.71192 33:0.650919 34:-0.0303861 35:-0.71174 36:-0.656728 +-670.4707296450881 1:-0.691161 2:-0.728594 3:-0.466572 4:0.236606 5:-0.986438 6:-0.833255 7:-0.48461 8:0.387668 9:-0.991049 10:-0.830361 11:-0.355283 12:0.619075 13:-0.980401 14:-0.892027 15:-0.358404 16:0.541252 17:-0.975359 18:-0.902886 19:0.143573 20:-0.398324 21:0.0217391 22:0.108308 23:-0.803358 24:-0.537076 25:-0.0341463 26:0.256401 27:-0.802271 28:-0.535526 29:0.185956 30:-0.0784322 31:-0.743431 32:-0.711866 33:0.181102 34:-0.221722 35:-0.71122 36:-0.747136 +-1024 1:-0.62989 2:-0.859581 3:-0.396871 4:0.144706 5:-0.999494 6:-0.943291 7:-0.325698 8:0.16557 9:-0.998392 10:-0.953137 11:-0.24196 12:0.56158 13:-0.997921 14:-0.961805 15:-0.277053 16:0.601048 17:-0.99834 18:-0.959867 19:0.637666 20:-0.571903 21:0.405797 22:0.635376 23:-0.991906 24:-0.705564 25:0.612195 26:0.347516 27:-0.956349 28:-0.800302 29:0.812744 30:0.516832 31:-0.94851 32:-0.822464 33:0.816273 34:0.653088 35:-0.957469 36:-0.803326 +1024 1:-0.740012 2:-0.991039 3:-0.74111 4:-0.190255 5:-0.999113 6:-0.99838 7:-0.748031 8:-0.13033 9:-0.999141 10:-0.998149 11:-0.701378 12:0.213613 13:-0.999287 14:-0.998631 15:-0.714505 16:0.240227 17:-0.999329 18:-0.998615 19:-0.344074 20:-0.970384 21:-0.490338 22:-0.178968 23:-0.999955 24:-0.995467 25:-0.490244 26:-0.0200233 27:-0.999946 28:-0.996185 29:-0.412224 30:0.270367 31:-0.999966 32:-0.995495 33:-0.409449 34:0.28253 35:-0.999932 36:-0.995554 +1024 1:-0.508797 2:-0.368955 3:-0.129445 4:0.73492 5:-0.953099 6:-0.433813 7:-0.0866142 8:0.671648 9:-0.93476 10:-0.506563 11:-0.0153139 12:0.595367 13:-0.864941 14:-0.682343 15:-0.0345357 16:0.591355 17:-0.860386 18:-0.682476 19:0.614035 20:0.0242568 21:0.538647 22:0.62259 23:-0.69621 24:0.0214427 25:0.614634 26:0.380097 27:-0.602765 28:-0.174055 29:0.674902 30:-0.0543499 31:-0.479962 32:-0.343143 33:0.685039 34:-0.0267133 35:-0.47535 36:-0.338271 +-1024 1:-0.679569 2:-0.869391 3:-0.504979 4:0.108367 5:-0.999357 6:-0.946796 7:-0.504653 8:0.190826 9:-0.999288 10:-0.947201 11:-0.42879 12:0.569376 13:-0.998477 14:-0.959063 15:-0.436685 16:0.581941 17:-0.998422 18:-0.959468 19:0.351235 20:-0.596588 21:0.246377 22:0.446764 23:-0.984133 24:-0.748765 25:0.280488 26:0.587098 27:-0.982505 28:-0.75565 29:0.427828 30:0.68022 31:-0.961254 32:-0.791574 33:0.440945 34:0.687102 35:-0.961491 36:-0.792489 +-537.5559875065735 1:-0.507348 2:-0.553954 3:-0.146515 4:0.620873 5:-0.986708 6:-0.672043 7:-0.15247 8:0.714645 9:-0.985767 10:-0.6845 11:0.00918836 12:0.887903 13:-0.962851 14:-0.786386 15:-0.0038373 16:0.892453 17:-0.962916 18:-0.787674 19:0.731472 20:-0.0798016 21:0.623188 22:0.737624 23:-0.80458 24:-0.108512 25:0.665854 26:0.771661 27:-0.788251 28:-0.181256 29:0.758127 30:0.293577 31:-0.654444 32:-0.395311 33:0.790026 34:0.285018 35:-0.654819 36:-0.412837 +-1024 1:-0.594287 2:-0.627959 3:-0.302987 4:0.446119 5:-0.984517 6:-0.737918 7:-0.272727 8:0.443828 9:-0.979009 10:-0.772928 11:-0.165391 12:0.587292 13:-0.956403 14:-0.851296 15:-0.183423 16:0.658073 17:-0.960074 18:-0.843859 19:0.344074 20:-0.292687 21:0.285024 22:0.505857 23:-0.854195 24:-0.366764 25:0.304878 26:0.310221 27:-0.78979 28:-0.501686 29:0.482445 30:0.0340447 31:-0.733933 32:-0.646563 33:0.456693 34:0.213698 35:-0.754754 36:-0.602996 +-1024 1:-0.661975 2:-0.829391 3:-0.465149 4:0.182183 5:-0.998731 6:-0.921515 7:-0.46743 8:0.27092 9:-0.998671 10:-0.922074 11:-0.370597 12:0.629314 13:-0.996579 14:-0.941447 15:-0.378358 16:0.636006 17:-0.996406 18:-0.942325 19:0.372001 20:-0.535464 21:0.282609 22:0.464756 23:-0.970401 24:-0.691025 25:0.312195 26:0.601934 27:-0.9682 28:-0.699324 29:0.417425 30:0.601301 31:-0.93436 32:-0.751478 33:0.425197 34:0.603814 35:-0.933672 36:-0.752627 +1024 1:-0.625129 2:-0.425727 3:-0.314367 4:0.329129 5:-0.912293 6:-0.560301 7:-0.299928 8:0.452491 9:-0.910928 10:-0.547766 11:-0.237366 12:0.206012 13:-0.820237 14:-0.751818 15:-0.283193 16:0.256398 17:-0.814805 18:-0.735996 19:0.288937 20:-0.159713 21:0.316425 22:-0.0646289 23:-0.612779 24:-0.405907 25:0.292683 26:0.400846 27:-0.688477 28:-0.268217 29:0.417425 30:-0.288769 31:-0.529944 32:-0.543856 33:0.354331 34:-0.00852149 35:-0.568509 36:-0.456923 +-342.2090739266498 1:-0.743531 2:-0.986686 3:-0.726885 4:-0.19971 5:-0.998189 6:-0.997263 7:-0.783822 8:-0.124727 9:-0.998609 10:-0.995906 11:-0.721286 12:0.215244 13:-0.998769 14:-0.997322 15:-0.740599 16:0.24322 17:-0.998848 18:-0.997248 19:-0.678482 20:-1 21:-0.922705 22:-0.253575 23:-0.999855 24:-0.998741 25:-0.953659 26:-0.0923355 27:-0.999806 28:-0.998299 29:-0.924577 30:0.173564 31:-0.999804 32:-0.998735 33:-0.923885 34:0.190187 35:-0.999759 36:-0.998695 +1024 1:-0.676878 2:-0.828585 3:-0.459459 4:0.205781 5:-0.999568 6:-0.922662 7:-0.494631 8:0.320591 9:-0.999806 10:-0.917223 11:-0.390505 12:0.718117 13:-0.999041 14:-0.938004 15:-0.392172 16:0.716524 17:-0.998859 18:-0.939741 19:0.525958 20:-0.458107 21:0.47343 22:0.579386 23:-0.963954 24:-0.620207 25:0.4 26:0.921143 27:-0.980529 28:-0.573935 29:0.719116 30:0.899346 31:-0.944953 32:-0.670076 33:0.71916 34:0.826485 35:-0.939068 36:-0.685221 +-851.9939843883124 1:-0.524943 2:-0.716344 3:-0.197724 4:0.387737 5:-0.996228 6:-0.844889 7:-0.195419 8:0.48263 9:-0.995943 10:-0.848326 11:-0.0826953 12:0.826688 13:-0.989655 14:-0.882155 15:-0.0422103 16:0.748924 17:-0.986968 18:-0.894959 19:1 20:-0.31788 21:0.729469 22:0.621336 23:-0.914782 24:-0.470171 25:0.780488 26:0.683234 27:-0.901055 28:-0.502389 29:0.771131 30:0.658236 31:-0.84508 32:-0.542472 33:0.832021 34:0.332239 35:-0.803141 36:-0.627676 +841.9112050597138 1:-0.727593 2:-0.717821 3:-0.475107 4:0.24368 5:-0.98557 6:-0.82524 7:-0.514674 8:0.436262 9:-0.990925 10:-0.803442 11:-0.437979 12:0.505185 13:-0.966377 14:-0.884346 15:-0.436685 16:0.637949 17:-0.975184 18:-0.874168 19:-0.273183 20:-0.467558 21:-0.149758 22:0.109646 23:-0.855742 24:-0.608401 25:-0.12439 26:0.43812 27:-0.896972 28:-0.573626 29:-0.0975293 30:0.0518071 31:-0.790946 32:-0.720767 33:-0.0577428 34:0.152953 35:-0.809563 36:-0.711483 +1024 1:-0.699027 2:-0.678144 3:-0.519203 4:0.368014 5:-0.986185 6:-0.756185 7:-0.451682 8:0.0159349 9:-0.948188 10:-0.85722 11:-0.482389 12:0.573451 13:-0.957401 14:-0.84321 15:-0.491942 16:0.018508 17:-0.899133 18:-0.914775 19:-0.187254 20:-0.516529 21:-0.198068 22:0.257747 23:-0.915013 24:-0.617625 25:-0.165854 26:-0.239604 27:-0.762172 28:-0.781038 29:-0.16515 30:0.211381 31:-0.841722 32:-0.722629 33:-0.149606 34:-0.351236 35:-0.733172 36:-0.834868 +-1024 1:-0.531153 2:-0.553975 3:-0.204836 4:0.591413 5:-0.983332 6:-0.662046 7:-0.145311 8:0.483925 9:-0.969013 10:-0.726597 11:-0.0735069 12:0.663396 13:-0.942079 14:-0.802446 15:-0.0744436 16:0.616891 17:-0.938172 18:-0.813648 19:0.532402 20:-0.197856 21:0.422705 22:0.695213 23:-0.856285 24:-0.23826 25:0.541463 26:0.343485 27:-0.764409 28:-0.450635 29:0.576073 30:0.302653 31:-0.719892 32:-0.492975 33:0.585302 34:0.0702797 35:-0.671734 36:-0.554079 +-1024 1:-0.900021 2:-0.936535 3:-0.71835 4:-0.093821 5:-0.997169 6:-0.976194 7:-0.735147 8:-0.0120495 9:-0.997945 10:-0.976047 11:-0.70291 12:0.339373 13:-0.997561 14:-0.981705 15:-0.71604 16:0.36064 17:-0.997608 18:-0.98201 19:-0.742929 20:-0.798158 21:-0.490338 22:0.049753 23:-0.988092 24:-0.8843 25:-0.497561 26:0.191504 27:-0.986961 28:-0.889033 29:-0.443433 30:0.332712 31:-0.974817 32:-0.909045 33:-0.440945 34:0.335604 35:-0.974577 36:-0.912278 +-1024 1:-0.713103 2:-0.949529 3:-0.578947 4:-0.116623 5:-0.998363 6:-0.98765 7:-0.577666 8:-0.0515117 9:-0.99824 10:-0.987273 11:-0.546708 12:0.311446 13:-0.998354 14:-0.989416 15:-0.524175 16:0.326757 17:-0.998357 18:-0.990407 19:-0.368421 20:-0.84668 21:-0.342995 22:0.0227779 23:-0.996331 24:-0.935342 25:-0.326829 26:0.166595 27:-0.994414 28:-0.934179 29:-0.289987 30:0.43717 31:-0.993028 32:-0.937775 33:-0.272966 34:0.316625 35:-0.985941 36:-0.94831 +1024 1:-0.621403 2:-0.497309 3:-0.339972 4:0.325898 5:-0.939411 6:-0.637171 7:-0.351467 8:0.471039 9:-0.944472 10:-0.627986 11:-0.313936 12:0.298459 13:-0.865 14:-0.781027 15:-0.318496 16:0.293398 17:-0.862425 18:-0.78804 19:0.298246 20:-0.264424 21:0.217391 22:0.23352 23:-0.789997 24:-0.441103 25:0.256098 26:0.374522 27:-0.791293 28:-0.456211 29:0.289987 30:0.0754996 31:-0.694156 32:-0.570686 33:0.28084 34:0.0717814 35:-0.685446 36:-0.573512 +-1024 1:-0.481681 2:-0.511743 3:-0.113798 4:0.589614 5:-0.977594 6:-0.64519 7:-0.161059 8:0.805015 9:-0.982422 10:-0.614271 11:0.0214395 12:0.891547 13:-0.95031 14:-0.752965 15:0.00997698 16:0.789163 17:-0.942321 18:-0.770964 19:0.692087 20:-0.0459353 21:0.596618 22:0.468759 23:-0.723443 24:-0.171989 25:0.55122 26:0.925676 27:-0.780468 28:-0.0177282 29:0.752926 30:0.296166 31:-0.624753 32:-0.346378 33:0.774278 34:0.0878383 35:-0.580194 36:-0.414684 +1024 1:-0.554958 2:-0.664832 3:-0.260313 4:0.478088 5:-0.994203 6:-0.78393 7:-0.204009 8:0.460817 9:-0.988878 10:-0.81491 11:-0.0980092 12:0.762709 13:-0.978512 14:-0.861089 15:-0.0990023 16:0.715778 17:-0.975756 18:-0.869053 19:0.562478 20:-0.288715 21:0.437198 22:0.707957 23:-0.90904 24:-0.365534 25:0.57561 26:0.470644 27:-0.850976 28:-0.519359 29:0.620286 30:0.451453 31:-0.806367 32:-0.565323 33:0.629921 34:0.247937 35:-0.771895 36:-0.614478 +-1024 1:-0.660733 2:-0.479453 3:-0.332859 4:0.790193 5:-0.978594 6:-0.472553 7:-0.235505 8:0.231332 9:-0.915081 10:-0.695142 11:-0.205207 12:0.348843 13:-0.872877 14:-0.777719 15:-0.227936 16:0.455731 17:-0.881546 18:-0.7621 19:-0.0103831 20:-0.151952 21:0.190821 22:0.916532 23:-0.858502 24:-0.000634284 25:0.260976 26:-0.261704 27:-0.515954 28:-0.53426 29:0.289987 30:-0.422387 31:-0.493078 32:-0.575691 33:0.299213 34:-0.194855 35:-0.545391 36:-0.534506 +1024 1:-0.691161 2:-0.91389 3:-0.517781 4:-0.0182795 5:-0.998784 6:-0.972801 7:-0.518969 8:0.0563751 9:-0.998727 10:-0.972481 11:-0.474732 12:0.431432 13:-0.998529 14:-0.977797 15:-0.452034 16:0.438182 17:-0.998398 18:-0.979422 19:-0.147154 20:-0.713994 21:-0.0942029 22:0.217164 23:-0.988531 24:-0.846818 25:-0.0878049 26:0.361798 27:-0.986258 28:-0.846425 29:-0.00130039 30:0.551141 31:-0.97684 32:-0.864124 33:0.0183727 34:0.388795 35:-0.964442 36:-0.886233 +-1024 1:-0.723867 2:-0.944832 3:-0.605974 4:-0.0866058 5:-0.998579 6:-0.983033 7:-0.604868 8:-0.0199194 9:-0.998488 10:-0.982992 11:-0.580398 12:0.364544 13:-0.998877 14:-0.985313 15:-0.564083 16:0.374597 17:-0.998754 18:-0.986498 19:-0.394916 20:-0.804274 21:-0.326087 22:0.191457 23:-0.998625 24:-0.892437 25:-0.334146 26:0.359313 27:-0.998893 28:-0.893217 29:-0.214564 30:0.695487 31:-0.997383 32:-0.894775 33:-0.170604 34:0.638823 35:-0.995706 36:-0.904414 +1024 1:-0.576071 2:-0.685326 3:-0.27027 4:0.472617 5:-0.996796 6:-0.80644 7:-0.275591 8:0.565598 9:-0.996311 10:-0.811795 11:-0.117917 12:0.89925 13:-0.989702 14:-0.863031 15:-0.132771 16:0.909124 17:-0.990121 18:-0.863971 19:0.712137 20:-0.226632 21:0.613527 22:0.797907 23:-0.903548 24:-0.302957 25:0.656098 26:0.859198 27:-0.892827 28:-0.352435 29:0.79974 30:0.597515 31:-0.808838 32:-0.501193 33:0.829396 34:0.574287 35:-0.806495 36:-0.515393 +-1024 1:-0.622852 2:-0.644017 3:-0.308677 4:0.370939 5:-0.984658 6:-0.777194 7:-0.317108 8:0.497491 9:-0.984412 10:-0.766919 11:-0.215926 12:0.595214 13:-0.960845 14:-0.857012 15:-0.266309 16:0.623697 17:-0.958983 18:-0.848135 19:0.372001 20:-0.301459 21:0.347826 22:0.119202 23:-0.78674 24:-0.524086 25:0.343902 26:0.580539 27:-0.849752 28:-0.425367 29:0.459038 30:-0.016839 31:-0.712375 32:-0.640293 33:0.409449 34:0.213897 35:-0.741299 36:-0.581836 +-1024 1:-0.687435 2:-0.909568 3:-0.480797 4:0.0266084 5:-0.999744 6:-0.970908 7:-0.478883 8:0.101672 9:-0.999679 10:-0.971064 11:-0.436447 12:0.500298 13:-0.99964 14:-0.975445 15:-0.409056 16:0.502792 17:-0.999568 18:-0.977611 19:0.648407 20:-0.655575 21:0.439614 22:0.456497 23:-0.995629 24:-0.815045 25:0.478049 26:0.593887 27:-0.994212 28:-0.818873 29:0.659298 30:0.923456 31:-0.98964 32:-0.819805 33:0.816273 34:0.787035 35:-0.984813 36:-0.845391 +632.2634813555851 1:-0.682053 2:-0.882492 3:-0.479374 4:0.0877869 5:-0.999461 6:-0.954367 7:-0.465999 8:0.15141 9:-0.999122 10:-0.956856 11:-0.393568 12:0.551874 13:-0.999067 14:-0.965904 15:-0.42287 16:0.573897 17:-0.999046 18:-0.964501 19:0.399212 20:-0.622274 21:0.318841 22:0.47342 23:-0.990399 24:-0.77004 25:0.35122 26:0.547317 27:-0.985489 28:-0.790244 29:0.602081 30:0.728227 31:-0.974618 32:-0.821004 33:0.569554 34:0.811433 35:-0.978493 36:-0.806976 +-534.3162514998654 1:-0.69882 2:-0.859852 3:-0.520626 4:0.0958588 5:-0.998141 6:-0.940354 7:-0.508948 8:0.174636 9:-0.997964 10:-0.941622 11:-0.441041 12:0.530305 13:-0.99636 14:-0.955673 15:-0.433615 16:0.52955 17:-0.996079 18:-0.958179 19:-0.121375 20:-0.606294 21:-0.0531401 22:0.230708 23:-0.960216 24:-0.757217 25:-0.0536585 26:0.351079 27:-0.952825 28:-0.759505 29:-0.00130039 30:0.426637 31:-0.931213 32:-0.797328 34:0.243966 35:-0.907634 36:-0.827324 +1024 1:-0.656179 2:-0.804626 3:-0.499289 4:0.176871 5:-0.994844 6:-0.895284 7:-0.45884 8:0.215572 9:-0.993392 10:-0.908887 11:-0.370597 12:0.548061 13:-0.989915 14:-0.933447 15:-0.379893 16:0.552486 17:-0.989652 18:-0.935316 19:-0.223058 20:-0.609176 21:-0.270531 22:0.29709 23:-0.958981 24:-0.690991 25:-0.253659 26:0.212274 27:-0.921872 28:-0.752384 29:-0.128739 30:0.242173 31:-0.906997 32:-0.8181 33:-0.139108 34:0.210758 35:-0.900235 36:-0.825726 +-1024 1:-0.477334 2:-0.360799 3:-0.0810811 4:0.692584 5:-0.944267 6:-0.437616 7:-0.079456 8:0.757762 9:-0.940231 10:-0.470351 11:0.0183767 12:0.601953 13:-0.861783 14:-0.67551 15:0.0038373 16:0.601425 17:-0.860593 18:-0.680191 19:0.725743 20:0.0685727 21:0.611111 22:0.593497 23:-0.645921 24:0.0791183 25:0.641463 26:0.594412 27:-0.619301 28:-0.0172744 29:0.719116 30:-0.0203006 31:-0.451057 32:-0.28234 33:0.755906 34:-0.0231039 35:-0.452538 36:-0.304416 +1024 1:-0.387497 2:-0.25867 3:-0.0938834 4:0.474202 5:-0.853875 6:-0.322395 7:-0.133858 8:0.308816 9:-0.787894 10:-0.373761 11:0.0811639 12:-0.125951 13:-0.687944 14:-0.707884 15:0.0790483 16:0.0515634 17:-0.711129 18:-0.682163 19:0.823129 20:-0.0374036 21:0.504831 22:0.0678379 23:-0.535144 24:-0.206044 25:0.404878 26:0.396255 27:-0.538337 28:-0.0469909 29:0.862159 30:-0.743169 31:-0.3929 32:-0.600599 33:0.795276 34:-0.326151 35:-0.46291 36:-0.492722 +1024 1:-0.641482 2:-0.361134 3:-0.29872 4:0.877392 5:-0.953815 6:-0.277683 7:-0.216893 8:0.0379457 9:-0.830473 10:-0.630543 11:-0.192956 12:0.0744932 13:-0.765099 14:-0.728684 15:-0.215656 16:0.19114 17:-0.776875 18:-0.711221 19:0.000358038 20:-0.0927484 21:0.200483 22:0.91593 23:-0.819062 24:0.101662 25:0.268293 26:-0.400753 27:-0.401385 28:-0.512866 29:0.284785 30:-0.545146 31:-0.401259 32:-0.540925 33:0.301837 34:-0.307036 35:-0.461499 36:-0.497429 +367.4632889794013 1:-0.598427 2:-0.70447 3:-0.344239 4:0.47654 5:-0.997568 6:-0.803498 7:-0.20544 8:0.294246 9:-0.985992 10:-0.865492 11:-0.104135 12:0.612674 13:-0.979164 14:-0.898466 15:-0.140445 16:0.711719 17:-0.982973 18:-0.8886 19:0.516649 20:-0.367222 21:0.388889 22:0.88146 23:-0.96037 24:-0.39863 25:0.490244 26:0.0728439 27:-0.810859 28:-0.682733 29:0.672302 30:-0.0026588 31:-0.792748 32:-0.742039 33:0.706037 34:0.266681 35:-0.829353 36:-0.697992 +-1024 1:-0.676258 2:-0.929195 3:-0.496444 4:-0.0871321 5:-0.997332 6:-0.980215 7:-0.544739 8:0.00125219 9:-0.997885 10:-0.978098 11:-0.457887 12:0.375958 13:-0.99819 14:-0.983231 15:-0.471988 16:0.396 17:-0.998177 18:-0.983287 19:-0.329037 20:-0.78947 21:-0.297101 22:0.149351 23:-0.994743 24:-0.886291 25:-0.314634 26:0.292144 27:-0.993564 28:-0.887577 29:-0.144343 30:0.516322 31:-0.988975 32:-0.907889 33:-0.146982 34:0.520951 35:-0.988764 36:-0.908465 +-1024 1:-0.619954 2:-0.681017 3:-0.339972 4:0.344734 5:-0.989589 6:-0.810937 7:-0.358626 8:0.485207 9:-0.990553 10:-0.799361 11:-0.225115 12:0.65473 13:-0.974857 14:-0.873953 15:-0.243285 16:0.677475 17:-0.975563 18:-0.873395 19:0.153598 20:-0.346534 21:0.224638 22:0.258207 23:-0.857113 24:-0.544201 25:0.141463 26:0.621627 27:-0.880386 28:-0.43956 29:0.305592 30:0.14757 31:-0.78079 32:-0.662608 33:0.322835 34:0.210143 35:-0.790814 36:-0.659067 +1024 1:-0.530532 2:-0.544573 3:-0.193457 4:0.637867 5:-0.986359 6:-0.653477 7:-0.142448 8:0.647133 9:-0.97975 10:-0.689414 11:-0.0275651 12:0.813761 13:-0.954667 14:-0.786622 15:-0.046815 16:0.800282 17:-0.951998 18:-0.787484 19:0.64053 20:-0.105753 21:0.550725 22:0.734868 23:-0.821673 24:-0.140526 25:0.631707 26:0.558583 27:-0.758161 28:-0.289167 29:0.706112 30:0.19206 31:-0.650616 32:-0.445627 33:0.716535 34:0.204805 35:-0.645367 36:-0.443286 +-1024 1:-0.63403 2:-0.43768 3:-0.362731 4:0.371673 5:-0.909288 6:-0.513291 7:-0.337151 8:0.257241 9:-0.887012 10:-0.607208 11:-0.251149 12:0.0261811 13:-0.796605 14:-0.783914 15:-0.270913 16:0.162202 17:-0.811217 18:-0.765965 19:0.288937 20:-0.183594 21:0.227053 22:0.352854 23:-0.722669 24:-0.230796 25:0.258537 26:0.0996207 27:-0.62955 28:-0.41471 29:0.430429 30:-0.276622 31:-0.577147 32:-0.593445 33:0.404199 34:-0.0775709 35:-0.604474 36:-0.542636 +1024 1:-0.701511 2:-0.94994 3:-0.504979 4:-0.115711 5:-0.998422 6:-0.988541 7:-0.516106 8:-0.0424325 9:-0.998612 10:-0.988004 11:-0.460949 12:0.32483 13:-0.998789 14:-0.990181 15:-0.476592 16:0.355737 17:-0.998944 18:-0.989866 19:-0.107769 20:-0.804453 21:-0.0966184 22:0.176723 23:-0.99862 24:-0.912695 25:-0.0682927 26:0.33148 27:-0.998222 28:-0.913967 29:0.113134 30:0.611862 31:-0.99574 32:-0.920693 33:0.112861 34:0.638976 35:-0.996185 36:-0.918203 +1024 1:-0.719934 2:-0.856652 3:-0.516358 4:0.0848556 5:-0.996394 6:-0.933836 7:-0.50179 8:0.150062 9:-0.996624 10:-0.941035 11:-0.427259 12:0.526221 13:-0.995854 14:-0.954836 15:-0.471988 16:0.569789 17:-0.996374 18:-0.951275 19:-0.158611 20:-0.619799 21:-0.125604 22:0.467484 23:-0.986128 24:-0.707644 25:-0.0487805 26:0.358379 27:-0.961377 28:-0.777398 29:0.0377113 30:0.4275 31:-0.93944 32:-0.815636 33:0.0367454 34:0.601598 35:-0.953783 36:-0.787517 +-70.30919202542755 1:-0.699027 2:-0.921802 3:-0.526316 4:-0.0191791 5:-0.999197 6:-0.97512 7:-0.530422 8:0.0541945 9:-0.999147 10:-0.974941 11:-0.48392 12:0.437638 13:-0.99917 14:-0.979691 15:-0.485802 16:0.455419 17:-0.99916 18:-0.980012 19:0.112782 20:-0.711163 21:0.0990338 22:0.30547 23:-0.994145 24:-0.848357 25:0.102439 26:0.452209 27:-0.993402 28:-0.851402 29:0.235371 30:0.684387 31:-0.986237 32:-0.863608 33:0.259843 34:0.654834 35:-0.983945 36:-0.866676 +1024 1:-0.688263 2:-0.798543 3:-0.490754 4:0.209465 5:-0.995431 6:-0.88686 7:-0.455977 8:0.239797 9:-0.994146 10:-0.90484 11:-0.370597 12:0.580621 13:-0.990734 14:-0.929472 15:-0.413661 16:0.643689 17:-0.992269 18:-0.923472 19:-0.127103 20:-0.540734 21:-0.0942029 22:0.54627 23:-0.972061 24:-0.602693 25:-0.0317073 26:0.298165 27:-0.921854 28:-0.72159 29:0.029909 30:0.281986 31:-0.88874 32:-0.774286 33:0.0314961 34:0.486404 35:-0.910754 36:-0.736607 +-1024 1:-0.747464 2:-0.892132 3:-0.631579 4:0.0120374 5:-0.997427 6:-0.954256 7:-0.626342 8:0.0922295 9:-0.997353 10:-0.953784 11:-0.586524 12:0.438974 13:-0.995988 14:-0.96506 15:-0.580967 16:0.431753 17:-0.995501 18:-0.968373 19:-0.423559 20:-0.739586 21:-0.384058 22:0.0219987 23:-0.970324 24:-0.857448 25:-0.407317 26:0.157097 27:-0.96072 28:-0.846251 29:-0.414824 30:0.274682 31:-0.947687 32:-0.872347 33:-0.393701 34:0.138379 35:-0.930416 36:-0.896187 +1024 1:-0.655351 2:-0.839495 3:-0.44239 4:0.163775 5:-0.998312 6:-0.925412 7:-0.372942 8:0.174359 9:-0.996827 10:-0.940895 11:-0.310873 12:0.569773 13:-0.99598 14:-0.951052 15:-0.316961 16:0.569018 17:-0.995542 18:-0.952425 19:0.0461869 20:-0.562111 21:0.0603865 22:0.613757 23:-0.98744 24:-0.654556 25:0.260976 26:0.169849 27:-0.92369 28:-0.80129 29:0.326398 30:0.37128 31:-0.920834 32:-0.804911 33:0.301837 34:0.316354 35:-0.912539 36:-0.814039 +1024 1:-0.713517 2:-0.941369 3:-0.566145 4:-0.048933 5:-0.999812 6:-0.98374 7:-0.55476 8:0.0179833 9:-0.999761 10:-0.984336 11:-0.506891 12:0.394568 13:-0.999754 14:-0.987008 15:-0.521105 16:0.416911 17:-0.999784 18:-0.986927 19:0.334049 20:-0.730156 21:0.128019 22:0.339154 23:-0.99819 24:-0.86414 25:0.221951 26:0.460219 27:-0.997047 28:-0.875643 29:0.420026 30:0.777376 31:-0.994555 32:-0.881254 33:0.435696 34:0.781264 35:-0.994397 36:-0.880541 +1024 1:-0.724902 2:-0.812951 3:-0.502134 4:0.170574 5:-0.995903 6:-0.903341 7:-0.528991 8:0.300041 9:-0.997117 10:-0.896074 11:-0.430322 12:0.593752 13:-0.992243 14:-0.929513 15:-0.445894 16:0.645403 17:-0.993643 18:-0.926724 19:-0.271035 20:-0.567496 21:-0.120773 22:0.218999 23:-0.937219 24:-0.701542 25:-0.104878 26:0.466592 27:-0.951088 28:-0.686248 29:-0.0663199 30:0.277234 31:-0.891869 32:-0.779617 33:-0.023622 34:0.37121 35:-0.90451 36:-0.771713 +1024 1:-0.486028 2:-0.43583 3:-0.123755 4:0.506178 5:-0.944354 6:-0.563034 7:-0.136722 8:0.503107 9:-0.928577 10:-0.585957 11:-0.169985 12:0.396005 13:-0.839052 14:-0.710517 15:-0.140445 16:0.435952 17:-0.854422 18:-0.728688 19:0.868958 20:-0.0606493 21:0.608696 22:0.361574 23:-0.676814 24:-0.181503 25:0.629268 26:0.360599 27:-0.6364 28:-0.242011 29:0.615085 30:0.213358 31:-0.552897 32:-0.283268 33:0.690289 34:-0.195244 35:-0.467136 36:-0.427904 +-1024 1:-0.696129 2:-0.754289 3:-0.479374 4:0.249622 5:-0.993482 6:-0.860253 7:-0.464567 8:0.325084 9:-0.992443 10:-0.865398 11:-0.385911 12:0.580173 13:-0.982994 14:-0.90692 15:-0.390637 16:0.565836 17:-0.981926 18:-0.911646 19:-0.0898675 20:-0.465486 21:-0.0362319 22:0.149981 23:-0.879817 24:-0.635134 25:-0.0463415 26:0.232851 27:-0.858642 28:-0.643446 29:0.00130039 30:0.195531 31:-0.825135 32:-0.706204 33:0.0131234 34:0.0202725 35:-0.790972 36:-0.745289 +700.6146753188117 1:-0.465328 2:-0.541619 3:-0.128023 4:0.473499 5:-0.969838 6:-0.677065 7:-0.163923 8:0.492066 9:-0.956548 10:-0.6773 11:0.0382848 12:0.542387 13:-0.931096 14:-0.819439 15:-0.00537222 16:0.60441 17:-0.931541 18:-0.806471 19:0.924096 20:-0.185679 21:0.570048 22:0.220968 23:-0.731844 24:-0.378441 25:0.470732 26:0.610455 27:-0.76314 28:-0.243986 29:0.929779 30:-0.295321 31:-0.627076 32:-0.649939 33:0.83727 34:0.0708587 35:-0.676775 36:-0.560297 +1024 1:-0.859656 2:-0.653923 3:-0.664296 4:0.0156542 5:-0.933971 6:-0.773221 7:-0.672155 8:0.0614103 9:-0.931559 10:-0.786719 11:-0.629403 12:0.0204993 13:-0.871359 14:-0.878457 15:-0.642364 16:0.0188197 17:-0.866935 18:-0.884138 19:-0.679914 20:-0.585157 21:-0.504831 22:-0.0363575 23:-0.863922 24:-0.683915 25:-0.517073 26:0.0111216 27:-0.842911 28:-0.726362 29:-0.477243 30:-0.0818288 31:-0.793673 32:-0.793387 33:-0.472441 34:-0.100512 35:-0.787675 36:-0.807366 +1024 1:-0.591803 2:-0.617445 3:-0.28734 4:0.442674 5:-0.985539 6:-0.7469 7:-0.299928 8:0.583704 9:-0.986775 10:-0.738971 11:-0.179173 12:0.693834 13:-0.962222 14:-0.834239 15:-0.203377 16:0.736369 17:-0.96391 18:-0.82923 19:0.384891 20:-0.233472 21:0.357488 22:0.420653 23:-0.829152 24:-0.387203 25:0.37561 26:0.664023 27:-0.838995 28:-0.343782 29:0.451235 30:0.205795 31:-0.721708 32:-0.545159 33:0.467192 34:0.290762 35:-0.733379 36:-0.529778 +321.1907291191194 1:-0.687228 2:-0.543288 3:-0.364154 4:0.546831 5:-0.975693 6:-0.623997 7:-0.390122 8:0.653595 9:-0.976134 10:-0.631752 11:-0.294028 12:0.736887 13:-0.941137 14:-0.765518 15:-0.303147 16:0.699304 17:-0.935243 18:-0.770767 19:0.105621 20:-0.117379 21:0.241546 22:0.470027 23:-0.724795 24:-0.133082 25:0.219512 26:0.557577 27:-0.735512 28:-0.209258 29:0.30039 30:0.0107141 31:-0.584111 32:-0.451186 33:0.307087 34:0.0840932 35:-0.585627 36:-0.425494 +1024 1:-0.677085 2:-0.830704 3:-0.473684 4:0.1673 5:-0.997559 6:-0.916941 7:-0.4932 8:0.25064 9:-0.997674 10:-0.918976 11:-0.388974 12:0.634006 13:-0.996567 14:-0.939879 15:-0.404451 16:0.647207 17:-0.99647 18:-0.939573 19:0.0648049 20:-0.555827 21:0.144928 22:0.440757 23:-0.967134 24:-0.68129 25:0.134146 26:0.50217 27:-0.958262 28:-0.708769 29:0.328999 30:0.518577 31:-0.933473 32:-0.778037 33:0.322835 34:0.562084 35:-0.935589 36:-0.770121 +1024 1:-0.615815 2:-0.361656 3:-0.308677 4:0.890635 5:-0.952647 6:-0.256606 7:-0.255548 8:-0.237028 9:-0.771025 10:-0.686968 11:-0.168453 12:-0.312055 13:-0.709219 14:-0.798856 15:-0.181888 16:-0.0585746 17:-0.744426 18:-0.76424 19:0.444325 20:-0.170218 21:0.362319 22:0.94197 23:-0.870135 24:-0.0480236 25:0.412195 26:-0.390271 27:-0.502707 28:-0.599273 29:0.589077 30:-0.635694 31:-0.513786 32:-0.683147 33:0.622047 34:-0.309578 35:-0.577896 36:-0.62212 +1024 1:-0.676671 2:-0.88276 3:-0.479374 4:0.0611969 5:-0.998961 6:-0.957091 7:-0.481747 8:0.146639 9:-0.998964 10:-0.956226 11:-0.411945 12:0.532833 13:-0.998696 14:-0.9662 15:-0.42901 16:0.550526 17:-0.99871 18:-0.966054 19:0.28106 20:-0.605645 21:0.222222 22:0.426872 23:-0.985105 24:-0.760762 25:0.256098 26:0.617129 27:-0.986299 28:-0.755505 29:0.451235 30:0.71452 31:-0.967966 32:-0.800036 33:0.451444 34:0.735065 35:-0.968592 36:-0.796545 +1024 1:-0.750569 2:-0.981829 3:-0.691323 4:-0.212463 5:-0.997978 6:-0.99835 7:-0.679313 8:-0.150181 9:-0.998021 10:-0.997766 11:-0.646248 12:0.184164 13:-0.998237 14:-0.99856 15:-0.660783 16:0.210657 17:-0.998249 18:-0.998525 19:-0.31758 20:-0.984417 21:-0.516908 22:-0.224085 23:-0.999787 24:-0.999336 25:-0.507317 26:-0.0623545 27:-0.999815 28:-1 29:-0.443433 30:0.209033 31:-0.999767 32:-0.99936 33:-0.43832 34:0.22534 35:-0.999751 36:-0.999366 +-1024 1:-0.79052 2:-0.989146 3:-0.685633 4:-0.219244 5:-0.998295 6:-0.99965 7:-0.683608 8:-0.163337 9:-0.998285 10:-0.999421 11:-0.652374 12:0.180257 13:-0.99869 14:-0.99952 15:-0.663853 16:0.205425 17:-0.998725 18:-0.9996 19:-0.0182599 20:-0.96255 21:-0.217391 22:-0.175788 23:-0.999683 24:-0.995447 25:-0.190244 26:-0.0209357 27:-0.999581 28:-0.99628 29:-0.13394 30:0.267703 31:-0.999575 32:-0.994854 33:-0.0656168 34:0.270526 35:-0.999457 36:-0.995721 +1024 1:-0.509832 2:0.0314692 3:-0.109531 4:0.493326 5:-0.70058 6:0.0765515 7:-0.0880458 8:0.210451 9:-0.620726 10:-0.125476 11:-0.0520674 12:-0.107713 13:-0.433391 14:-0.414996 15:-0.0698388 16:-0.0607559 17:-0.432671 18:-0.409757 19:0.56749 20:0.205759 21:0.514493 22:0.358988 23:-0.42719 24:0.220254 25:0.590244 26:0.0305055 27:-0.282613 28:-0.0422285 29:0.638492 30:-0.33853 31:-0.20504 32:-0.17153 33:0.648294 34:-0.274217 35:-0.209179 36:-0.158522 +-1024 1:-0.672946 2:-0.86708 3:-0.516358 4:0.0631307 5:-0.996599 6:-0.941364 7:-0.521832 8:0.138861 9:-0.99681 10:-0.944005 11:-0.434916 12:0.513961 13:-0.99624 14:-0.958066 15:-0.444359 16:0.525048 17:-0.996126 18:-0.958822 19:-0.290369 20:-0.682894 21:-0.294686 22:0.251074 23:-0.978586 24:-0.775508 25:-0.278049 26:0.269377 27:-0.962286 28:-0.805673 29:-0.154746 30:0.373535 31:-0.950315 32:-0.851661 33:-0.160105 34:0.355949 35:-0.947644 36:-0.857106 +-1024 1:-0.685986 2:-0.898625 3:-0.466572 4:0.0366753 5:-0.999315 6:-0.965771 7:-0.50179 8:0.127542 9:-0.999364 10:-0.962669 11:-0.393568 12:0.512118 13:-0.999351 14:-0.972989 15:-0.433615 16:0.539529 17:-0.99939 18:-0.971286 19:0.637666 20:-0.638448 21:0.512077 22:0.376195 23:-0.987648 24:-0.810256 25:0.353659 26:0.656759 27:-0.994023 28:-0.784309 29:0.856957 30:0.801012 31:-0.983613 32:-0.836637 33:0.745407 34:0.907919 35:-0.987398 36:-0.816703 +-1024 1:-0.685779 2:-0.664364 3:-0.396871 4:0.536593 5:-0.99495 6:-0.740058 7:-0.291339 8:0.35439 9:-0.980876 10:-0.817982 11:-0.226646 12:0.630328 13:-0.968085 14:-0.863658 15:-0.254029 16:0.711202 17:-0.972033 18:-0.854692 19:-0.0290011 20:-0.295129 21:0.169082 22:0.866492 23:-0.92774 24:-0.25094 25:0.25122 26:0.0394143 27:-0.738852 28:-0.599861 29:0.297789 30:-0.0835363 31:-0.697375 32:-0.652973 33:0.296588 34:0.110372 35:-0.73041 36:-0.617511 +546.534137449476 1:-0.663217 2:-0.743947 3:-0.467994 4:0.314289 5:-0.993934 6:-0.835416 7:-0.411596 8:0.29297 9:-0.989506 10:-0.868117 11:-0.327718 12:0.579708 13:-0.981523 14:-0.905337 15:-0.367613 16:0.664412 17:-0.984561 18:-0.896165 19:-0.0905836 20:-0.481084 21:-0.0700483 22:0.584692 23:-0.956027 24:-0.521298 25:-0.0146341 26:0.235272 27:-0.880895 28:-0.682174 29:0.0403121 30:0.163764 31:-0.840161 32:-0.743966 33:0.0393701 34:0.39169 35:-0.868888 36:-0.698609 +-1024 1:-0.637135 2:-0.70731 3:-0.341394 4:0.351356 5:-0.992344 6:-0.8229 7:-0.302792 8:0.322712 9:-0.986347 10:-0.851207 11:-0.206738 12:0.600592 13:-0.977582 14:-0.894494 15:-0.218726 16:0.596267 17:-0.976435 18:-0.896516 19:0.233083 20:-0.39853 21:0.202899 22:0.50371 23:-0.916022 24:-0.503257 25:0.236585 26:0.236946 27:-0.839202 28:-0.62513 29:0.378414 30:0.140137 31:-0.812549 32:-0.713858 33:0.406824 34:0.111955 35:-0.804876 36:-0.723977 +-1024 1:-0.679776 2:-0.836085 3:-0.479374 4:0.159069 5:-0.998208 6:-0.923864 7:-0.480315 8:0.239539 9:-0.99797 10:-0.92515 11:-0.396631 12:0.598199 13:-0.996044 14:-0.943956 15:-0.399847 16:0.604541 17:-0.995752 18:-0.944771 19:0.130684 20:-0.550659 21:0.15942 22:0.400344 23:-0.96494 24:-0.698125 25:0.129268 26:0.491062 27:-0.954166 28:-0.703104 29:0.191157 30:0.522985 31:-0.9242 32:-0.751343 33:0.186352 34:0.484223 35:-0.916535 36:-0.755297 +249.8361122508463 1:-0.64231 2:-0.89876 3:-0.429587 4:0.0502977 5:-0.99959 6:-0.966006 7:-0.382963 8:0.0940598 9:-0.99915 10:-0.970911 11:-0.312404 12:0.48633 13:-0.999035 14:-0.975854 15:-0.343054 16:0.516601 17:-0.999183 18:-0.974807 19:0.699964 20:-0.64554 21:0.379227 22:0.511686 23:-0.995964 24:-0.790588 25:0.614634 26:0.372985 27:-0.978242 28:-0.845727 29:0.846554 30:0.618581 31:-0.974152 32:-0.857615 33:0.818898 34:0.706479 35:-0.977965 36:-0.845316 +-1024 1:-0.592631 2:-0.754289 3:-0.357041 4:0.209636 5:-0.990853 6:-0.87355 7:-0.334288 8:0.312959 9:-0.992139 10:-0.878109 11:-0.237366 12:0.497567 13:-0.980035 14:-0.921813 15:-0.250959 16:0.615382 17:-0.985179 18:-0.913483 19:0.119943 20:-0.503151 21:-0.00724638 22:0.282328 23:-0.914384 24:-0.623157 25:0.107317 26:0.299976 27:-0.897715 28:-0.682927 29:0.191157 30:0.104519 31:-0.850581 32:-0.783905 33:0.2021 34:0.25967 35:-0.867642 36:-0.757848 +-1024 1:-0.530739 2:-0.611861 3:-0.186344 4:0.523943 5:-0.990755 6:-0.745532 7:-0.232641 8:0.700808 9:-0.99273 10:-0.726431 11:-0.0444104 12:0.955019 13:-0.979468 14:-0.813603 15:-0.0514198 16:0.867155 17:-0.97439 18:-0.825608 19:0.682062 20:-0.142125 21:0.591787 22:0.56021 23:-0.813529 24:-0.270928 25:0.55122 26:0.999583 27:-0.861869 28:-0.148518 29:0.76593 30:0.492573 31:-0.735666 32:-0.420203 33:0.782152 34:0.316896 35:-0.704066 36:-0.473111 +-1024 1:-0.634858 2:-0.789536 3:-0.355619 4:0.221459 5:-0.99688 6:-0.901534 7:-0.382963 8:0.338624 9:-0.99728 10:-0.895696 11:-0.254211 12:0.63059 13:-0.992304 14:-0.928339 15:-0.293937 16:0.657409 17:-0.992193 18:-0.92467 19:0.433584 20:-0.464194 21:0.39372 22:0.257931 23:-0.913461 24:-0.665713 25:0.378049 26:0.67064 27:-0.949688 28:-0.608613 29:0.492848 30:0.319051 31:-0.870954 32:-0.736427 33:0.469816 34:0.49023 35:-0.888681 36:-0.704729 +1024 1:-0.671497 2:-0.597521 3:-0.401138 4:0.327881 5:-0.968169 6:-0.722127 7:-0.395848 8:0.372086 9:-0.963052 10:-0.737758 11:-0.338438 12:0.438788 13:-0.926608 14:-0.831846 15:-0.353799 16:0.389325 17:-0.91992 18:-0.84225 19:-0.0648049 20:-0.348119 21:-0.0120773 22:0.0463882 23:-0.776306 24:-0.535867 25:-0.0341463 26:0.10151 27:-0.738267 28:-0.548108 29:0.0247074 30:0.0225186 31:-0.711382 32:-0.623386 33:0.0367454 34:-0.140722 35:-0.671979 36:-0.668534 +1024 1:-0.660112 2:-0.86931 3:-0.44239 4:0.102694 5:-0.999424 6:-0.951754 7:-0.488905 8:0.197334 9:-0.999403 10:-0.947337 11:-0.379786 12:0.58539 13:-0.999015 14:-0.960953 15:-0.382962 16:0.598235 17:-0.99902 18:-0.961607 19:0.579663 20:-0.55893 21:0.519324 22:0.444936 23:-0.977572 24:-0.74166 25:0.378049 26:0.744791 27:-0.986952 28:-0.704076 29:0.73472 30:0.815453 31:-0.967658 32:-0.773103 33:0.76378 34:0.787478 35:-0.96494 36:-0.776566 +-92.83771648627268 1:-0.58994 2:-0.674359 3:-0.386913 4:0.281708 5:-0.980341 6:-0.794856 7:-0.311382 8:0.262594 9:-0.974557 10:-0.832395 11:-0.243492 12:0.436953 13:-0.95593 14:-0.886772 15:-0.252494 16:0.437616 17:-0.955175 18:-0.890437 19:-0.122807 20:-0.517963 21:-0.214976 22:0.324292 23:-0.923383 24:-0.588301 25:-0.204878 26:0.141722 27:-0.857818 28:-0.687495 29:-0.0663199 30:0.0889003 31:-0.842387 32:-0.777863 33:-0.0787402 34:0.0446067 35:-0.82967 36:-0.787901 +1024 1:-0.691575 2:-0.641688 3:-0.398293 4:0.496484 5:-0.991493 6:-0.736251 7:-0.425913 8:0.593986 9:-0.991007 10:-0.740001 11:-0.304747 12:0.840681 13:-0.976991 14:-0.823944 15:-0.310821 16:0.833436 17:-0.975379 18:-0.824633 19:0.0998926 20:-0.211683 21:0.251208 22:0.573004 23:-0.828139 24:-0.251216 25:0.22439 26:0.660287 27:-0.829102 28:-0.307483 29:0.305592 30:0.217237 31:-0.70614 32:-0.513281 33:0.32021 34:0.311116 35:-0.715317 36:-0.486711 +-1024 1:-0.889878 2:-0.855294 3:-0.708393 4:0.0276426 5:-0.992976 6:-0.923945 7:-0.717967 8:0.0882515 9:-0.992468 10:-0.928206 11:-0.684533 12:0.360113 13:-0.98631 14:-0.951146 15:-0.699156 16:0.363912 17:-0.985456 18:-0.953116 19:-0.725027 20:-0.696913 21:-0.512077 22:0.0263977 23:-0.947521 24:-0.792397 25:-0.52439 26:0.116756 27:-0.939205 28:-0.814161 29:-0.477243 30:0.10863 31:-0.904112 32:-0.859553 33:-0.47769 34:0.0945506 35:-0.900318 36:-0.867813 +1024 1:-0.685365 2:-0.476879 3:-0.354196 4:0.537431 5:-0.955638 6:-0.545883 7:-0.377237 8:0.648732 9:-0.957494 10:-0.556817 11:-0.298622 12:0.609047 13:-0.901044 14:-0.729562 15:-0.310821 16:0.553134 17:-0.890716 18:-0.738643 19:0.112782 20:-0.067721 21:0.236715 22:0.401612 23:-0.656345 24:-0.0735081 25:0.219512 26:0.4889 27:-0.673714 28:-0.16097 29:0.297789 30:-0.0918515 31:-0.513177 32:-0.415785 33:0.301837 34:-0.0310555 35:-0.509252 36:-0.391607 +-1024 1:-0.694887 2:-0.9702 3:-0.467994 4:-0.191559 5:-0.998085 6:-0.997041 7:-0.463135 8:-0.135313 9:-0.997995 10:-0.996851 11:-0.422665 12:0.22359 13:-0.998465 14:-0.997026 15:-0.413661 16:0.244295 17:-0.998495 18:-0.997356 19:-0.000358038 20:-0.892306 21:-0.111111 22:-0.0138311 23:-0.99943 24:-0.969107 25:-0.0707317 26:0.136528 27:-0.999149 28:-0.970623 29:-0.00390117 30:0.459591 31:-0.998981 32:-0.967731 33:0.131234 34:0.42365 35:-0.998321 36:-0.973018 +-442.9178882298776 1:-0.608156 2:-0.580364 3:-0.30441 4:0.495462 5:-0.978541 6:-0.680412 7:-0.259843 8:0.332479 9:-0.958407 10:-0.755617 11:-0.180704 12:0.473732 13:-0.933093 14:-0.837427 15:-0.192632 16:0.480783 17:-0.93218 18:-0.839584 19:0.225206 20:-0.300906 21:0.181159 22:0.493772 23:-0.857041 24:-0.369089 25:0.219512 26:0.0988088 27:-0.729769 28:-0.549011 29:0.352406 30:-0.0756852 31:-0.706994 32:-0.66112 33:0.380577 34:-0.10679 35:-0.695731 36:-0.673918 +628.0711230899607 1:-0.692196 2:-0.230694 3:-0.364154 4:0.293102 5:-0.781005 6:-0.257851 7:-0.384395 8:0.427778 9:-0.803166 10:-0.279967 11:-0.332312 12:-0.00467142 13:-0.632166 14:-0.603909 15:-0.336915 16:-0.0947707 17:-0.603578 18:-0.629185 19:0.11135 20:0.0573989 21:0.224638 22:0.176956 23:-0.429353 24:0.0619582 25:0.212195 26:0.262063 27:-0.470984 28:-0.0573336 29:0.289987 30:-0.330095 31:-0.317623 32:-0.318533 33:0.288714 34:-0.297918 35:-0.299726 36:-0.300755 +1024 1:-0.65473 2:-0.775067 3:-0.438122 4:0.267963 5:-0.995905 6:-0.87147 7:-0.441661 8:0.332228 9:-0.995106 10:-0.879381 11:-0.31853 12:0.674954 13:-0.991345 14:-0.913697 15:-0.330775 16:0.69545 17:-0.991644 18:-0.913218 19:0.0841389 20:-0.479447 21:0.142512 22:0.441458 23:-0.935884 24:-0.58954 25:0.121951 26:0.450915 27:-0.918037 28:-0.637477 29:0.30039 30:0.351281 31:-0.88037 32:-0.737024 33:0.291339 34:0.392884 35:-0.881305 36:-0.727801 +1024 1:-0.642724 2:-0.429651 3:-0.394026 4:0.809402 5:-0.965816 6:-0.364494 7:-0.297065 8:-0.126379 9:-0.832925 10:-0.722524 11:-0.274119 12:0.0633072 13:-0.800833 14:-0.776728 15:-0.289332 16:0.022395 17:-0.790578 18:-0.789956 19:0.0146796 20:-0.233643 21:0.0917874 22:0.840332 23:-0.88278 24:-0.117092 25:0.192683 26:-0.461929 27:-0.514815 28:-0.658571 29:0.23277 30:-0.327941 31:-0.58134 32:-0.630122 33:0.225722 34:-0.417137 35:-0.552337 36:-0.659858 +1024 1:-0.59408 2:-0.650067 3:-0.305832 4:0.436224 5:-0.988095 6:-0.761578 7:-0.275591 8:0.442995 9:-0.983534 10:-0.791995 11:-0.160796 12:0.627665 13:-0.965573 14:-0.860819 15:-0.178818 16:0.692514 17:-0.968584 18:-0.854303 19:0.349803 20:-0.311106 21:0.292271 22:0.52006 23:-0.869668 24:-0.391186 25:0.314634 26:0.337996 27:-0.81045 28:-0.517908 29:0.490247 30:0.0860884 31:-0.756581 32:-0.655204 33:0.464567 34:0.259643 35:-0.775936 36:-0.613519 +1024 1:-0.568826 2:-0.373282 3:-0.227596 4:0.350903 5:-0.900489 6:-0.524073 7:-0.241231 8:0.501059 9:-0.900786 10:-0.495325 11:-0.17611 12:0.235249 13:-0.804181 14:-0.72004 15:-0.189563 16:0.25657 17:-0.805219 18:-0.723767 19:0.176513 20:-0.159548 21:0.229469 22:0.0817787 23:-0.674787 24:-0.37584 25:0.146341 26:0.479826 27:-0.711293 28:-0.224517 29:0.297789 30:-0.15931 31:-0.577155 32:-0.53693 33:0.317585 34:-0.0760602 35:-0.593325 36:-0.528863 +1024 1:-0.718692 2:-0.54642 3:-0.473684 4:0.0807003 5:-0.906204 6:-0.691432 7:-0.500358 8:0.431802 9:-0.941873 10:-0.618684 11:-0.467075 12:0.0845886 13:-0.835719 14:-0.81363 15:-0.467383 16:0.324821 17:-0.869821 18:-0.784713 19:-0.253133 20:-0.369571 21:-0.164251 22:-0.0375901 23:-0.733319 24:-0.523368 25:-0.129268 26:0.36672 27:-0.814694 28:-0.464938 29:-0.102731 30:-0.154837 31:-0.6673 32:-0.659161 33:-0.0682415 34:-0.0369265 35:-0.694007 36:-0.646286 +-1024 1:-0.653074 2:-0.830516 3:-0.466572 4:0.120093 5:-0.995759 6:-0.922253 7:-0.441661 8:0.187687 9:-0.995134 10:-0.926244 11:-0.381317 12:0.515424 13:-0.991307 14:-0.943341 15:-0.389102 16:0.508688 17:-0.990845 18:-0.946701 19:-0.158611 20:-0.632074 21:-0.120773 22:0.270427 23:-0.966677 24:-0.747693 25:-0.097561 26:0.369881 27:-0.958586 28:-0.760592 29:-0.0897269 30:0.481131 31:-0.933875 32:-0.777972 33:-0.0971129 34:0.364434 35:-0.9211 36:-0.803705 +1024 1:-0.700269 2:-0.813106 3:-0.496444 4:0.166296 5:-0.995855 6:-0.905051 7:-0.523264 8:0.264021 9:-0.996224 10:-0.903202 11:-0.392037 12:0.601226 13:-0.993608 14:-0.93422 15:-0.389102 16:0.564368 17:-0.991822 18:-0.939117 19:0.139277 20:-0.510657 21:0.031401 22:0.0941541 23:-0.87712 24:-0.66941 25:-0.0268293 26:0.339368 27:-0.897773 28:-0.650198 29:0.180754 30:0.136555 31:-0.851833 32:-0.773537 33:0.181102 34:0.0399027 35:-0.834926 36:-0.795207 +-1024 1:-0.660319 2:-0.730416 3:-0.41394 4:0.285483 5:-0.991934 6:-0.84286 7:-0.427344 8:0.342668 9:-0.989726 10:-0.848607 11:-0.346095 12:0.58736 13:-0.978301 14:-0.894686 15:-0.356869 16:0.565967 17:-0.975802 18:-0.897991 19:0.122807 20:-0.436846 21:0.13285 22:0.359853 23:-0.910217 24:-0.578285 25:0.0780488 26:0.412959 27:-0.886057 28:-0.589708 29:0.131339 30:0.33621 31:-0.837172 32:-0.663319 33:0.12336 34:0.302287 35:-0.825172 36:-0.667283 +1024 1:-0.653281 2:-0.826678 3:-0.439545 4:0.17965 5:-0.998469 6:-0.921788 7:-0.443092 8:0.277237 9:-0.998525 10:-0.920495 11:-0.346095 12:0.649065 13:-0.997105 14:-0.941113 15:-0.364543 16:0.668077 17:-0.997228 18:-0.940551 19:0.32474 20:-0.496079 21:0.292271 22:0.492355 23:-0.963632 24:-0.65404 25:0.326829 26:0.700628 27:-0.966976 28:-0.641995 29:0.469441 30:0.621161 31:-0.926381 32:-0.726608 33:0.48294 34:0.661348 35:-0.929073 36:-0.720354 +1024 1:-0.620989 2:-0.76131 3:-0.359886 4:0.346534 5:-0.998891 6:-0.872497 7:-0.362921 8:0.436229 9:-0.998668 10:-0.875807 11:-0.234303 12:0.820229 13:-0.996175 14:-0.9062 15:-0.249424 16:0.829508 17:-0.996362 18:-0.907083 19:0.677766 20:-0.336452 21:0.57971 22:0.783208 23:-0.948227 24:-0.447165 25:0.621951 26:0.868437 27:-0.940996 28:-0.479275 29:0.823147 30:0.782424 31:-0.88944 32:-0.581971 33:0.847769 34:0.749557 35:-0.88658 36:-0.594439 +-1024 1:-0.616436 2:-0.658648 3:-0.355619 4:0.361772 5:-0.986292 6:-0.78442 7:-0.362921 8:0.475856 9:-0.986744 10:-0.78317 11:-0.283308 12:0.589237 13:-0.962009 14:-0.858703 15:-0.286262 16:0.59056 17:-0.961527 18:-0.862227 19:0.335482 20:-0.358018 21:0.253623 22:0.358408 23:-0.879573 24:-0.5241 25:0.290244 26:0.498563 27:-0.877951 28:-0.535511 29:0.323797 30:0.252576 31:-0.79603 32:-0.637742 33:0.32021 34:0.247494 35:-0.790388 36:-0.640577 +1024 1:-0.666529 2:-0.602208 3:-0.435277 4:0.254861 5:-0.954633 6:-0.715033 7:-0.423049 8:0.493605 9:-0.973214 10:-0.705984 11:-0.324655 12:0.499309 13:-0.935216 14:-0.829386 15:-0.330775 16:0.37586 17:-0.922453 18:-0.850767 19:0.159327 20:-0.288602 21:0.0483092 22:0.101011 23:-0.716226 24:-0.409025 25:-0.00243902 26:0.182509 27:-0.691452 28:-0.423756 29:0.211964 30:-0.254228 31:-0.623985 32:-0.644771 33:0.209974 34:-0.43759 35:-0.577379 36:-0.696231 +-1024 1:-0.696957 2:-0.90428 3:-0.539118 4:0.0136285 5:-0.998307 6:-0.962446 7:-0.531854 8:0.0826546 9:-0.998094 10:-0.96352 11:-0.491577 12:0.482331 13:-0.998284 14:-0.969625 15:-0.482732 16:0.487638 17:-0.998162 18:-0.971469 19:-0.324024 20:-0.724307 21:-0.207729 22:0.276547 23:-0.992164 24:-0.826963 25:-0.190244 26:0.425884 27:-0.991066 28:-0.830019 29:-0.0897269 30:0.672713 31:-0.98265 32:-0.838694 33:-0.0839895 34:0.573681 35:-0.976727 36:-0.855839 +1024 1:-0.770027 2:-0.993413 3:-0.742532 4:-0.191436 5:-0.999287 6:-0.998973 7:-0.76378 8:-0.13602 9:-0.999223 10:-0.99883 11:-0.719755 12:0.205893 13:-0.999383 14:-0.999254 15:-0.732924 16:0.232421 17:-0.999367 18:-0.999119 19:-0.246688 20:-0.960389 21:-0.398551 22:-0.154933 23:-0.99995 24:-0.993279 25:-0.390244 26:-0.000244274 27:-0.999851 28:-0.993876 29:-0.302991 30:0.294523 31:-0.999898 32:-0.993318 33:-0.301837 34:0.308854 35:-0.999872 36:-0.993176 +-923.2023708603091 1:-0.702546 2:-0.976547 3:-0.549075 4:-0.206178 5:-0.998256 6:-0.998627 7:-0.550465 8:-0.144055 9:-0.998226 10:-0.997923 11:-0.50536 12:0.193143 13:-0.998374 14:-0.998481 15:-0.511896 16:0.219964 17:-0.998407 18:-0.998458 19:-0.237379 20:-0.934944 21:-0.297101 22:-0.104737 23:-0.999747 24:-0.9852 25:-0.307317 26:0.06257 27:-0.999797 28:-0.985074 29:-0.217165 30:0.361508 31:-0.999692 32:-0.984514 33:-0.183727 34:0.363891 35:-0.99954 36:-0.985182 +-1024 1:-0.666529 2:-0.598712 3:-0.432432 4:0.619937 5:-0.989651 6:-0.640253 7:-0.314245 8:0.155949 9:-0.947079 10:-0.802565 11:-0.289433 12:0.429098 13:-0.930681 14:-0.843131 15:-0.301612 16:0.392744 17:-0.925866 18:-0.851925 19:0.0146796 20:-0.319389 21:0.0845411 22:0.814568 23:-0.925324 24:-0.268361 25:0.2 26:-0.26766 27:-0.66337 28:-0.690547 29:0.248375 30:-0.145426 31:-0.694705 32:-0.678783 33:0.238845 34:-0.244247 35:-0.668157 36:-0.706159 +1024 1:-0.720141 2:-0.903051 3:-0.540541 4:0.0286095 5:-0.999141 6:-0.963929 7:-0.560487 8:0.104315 9:-0.999096 10:-0.963686 11:-0.506891 12:0.498227 13:-0.999132 14:-0.971129 15:-0.524175 16:0.522383 17:-0.999204 18:-0.970487 19:0.00537057 20:-0.646287 21:0.0531401 22:0.460017 23:-0.99386 24:-0.774864 25:0.0414634 26:0.573483 27:-0.991354 28:-0.783806 29:0.240572 30:0.787649 31:-0.981999 32:-0.814095 33:0.262467 34:0.854945 35:-0.985255 36:-0.805617 +1024 1:-0.487477 2:-0.24169 3:-0.0924609 4:0.643865 5:-0.889562 6:-0.284884 7:-0.0923407 8:0.677007 9:-0.880758 10:-0.334043 11:-0.0153139 12:0.326699 13:-0.750967 14:-0.61195 15:-0.0299309 16:0.319376 17:-0.74688 18:-0.620093 19:0.725027 20:0.131577 21:0.603865 22:0.508088 23:-0.556155 24:0.154323 25:0.629268 26:0.491996 27:-0.523349 28:0.0460883 29:0.711313 30:-0.146716 31:-0.352631 32:-0.230221 33:0.748031 34:-0.147715 35:-0.354225 36:-0.254031 +1024 1:-0.522252 2:-0.582586 3:-0.156472 4:0.4878 5:-0.98306 6:-0.724808 7:-0.204009 8:0.672751 9:-0.986752 10:-0.705691 11:-0.050536 12:0.765905 13:-0.960383 14:-0.814196 15:-0.0529547 16:0.7858 17:-0.961632 18:-0.815175 19:0.648407 20:-0.146981 21:0.538647 22:0.374155 23:-0.754435 24:-0.298964 25:0.509756 26:0.803022 27:-0.822517 28:-0.212489 29:0.664499 30:0.185443 31:-0.679615 32:-0.493013 33:0.687664 34:0.154011 35:-0.668825 36:-0.506018 +281.4393635429198 1:-0.629476 2:-0.746319 3:-0.335704 4:0.279798 5:-0.994774 6:-0.868089 7:-0.357194 8:0.400018 9:-0.995013 10:-0.860828 11:-0.234303 12:0.64247 13:-0.986371 14:-0.90779 15:-0.278588 16:0.669389 17:-0.985879 18:-0.902435 19:0.421411 20:-0.408609 21:0.376812 22:0.216194 23:-0.876957 24:-0.617429 25:0.37561 26:0.65765 27:-0.924235 28:-0.546208 29:0.487646 30:0.207057 31:-0.824123 32:-0.70444 33:0.448819 34:0.39871 35:-0.845449 36:-0.663931 +1024 1:-0.519768 2:-0.530403 3:-0.233286 4:0.166553 5:-0.928717 6:-0.713575 7:-0.236936 8:0.367613 9:-0.944165 10:-0.698223 11:-0.145482 12:0.12721 13:-0.873631 14:-0.846192 15:-0.161934 16:0.384019 17:-0.899559 18:-0.815664 19:0.18797 20:-0.383306 21:0.0120773 22:0.175441 23:-0.813181 24:-0.504737 25:0.112195 26:0.245459 27:-0.811071 28:-0.567671 29:0.224967 30:-0.148452 31:-0.733967 32:-0.729061 33:0.233596 34:0.0748933 35:-0.766847 36:-0.686391 +-656.3435985810112 1:-0.48313 2:-0.580597 3:-0.125178 4:0.519782 5:-0.984006 6:-0.715651 7:-0.116679 8:0.57218 9:-0.979302 10:-0.727418 11:-0.0811639 12:0.709079 13:-0.94819 14:-0.801486 15:-0.0514198 16:0.66305 17:-0.947855 18:-0.820283 19:0.947726 20:-0.167109 21:0.673913 22:0.512019 23:-0.804571 24:-0.297312 25:0.7 26:0.536469 27:-0.777556 28:-0.345538 29:0.677503 30:0.394277 31:-0.692344 32:-0.398437 33:0.750656 34:0.00945325 35:-0.623894 36:-0.518703 +-1024 1:-0.64438 2:-0.806422 3:-0.401138 4:0.183444 5:-0.996975 6:-0.912281 7:-0.438797 8:0.300127 9:-0.997407 10:-0.905295 11:-0.30781 12:0.627073 13:-0.994363 14:-0.934816 15:-0.324635 16:0.643976 17:-0.994445 18:-0.934566 19:0.15145 20:-0.494312 21:0.227053 22:0.327466 23:-0.941137 24:-0.678782 25:0.136585 26:0.641449 27:-0.954256 28:-0.616802 29:0.342003 30:0.412967 31:-0.900292 32:-0.750371 33:0.354331 34:0.45637 35:-0.905068 36:-0.748203 +-923.3713141252451 1:-0.638377 2:-0.859533 3:-0.445235 4:0.0838703 5:-0.997312 6:-0.942405 7:-0.408733 8:0.160238 9:-0.997474 10:-0.946563 11:-0.326187 12:0.521613 13:-0.996363 14:-0.959791 15:-0.344589 16:0.551822 17:-0.99661 18:-0.958594 19:0.0540637 20:-0.62551 21:-0.02657 22:0.312632 23:-0.97141 24:-0.748607 25:0.117073 26:0.328132 27:-0.958154 28:-0.794029 29:0.172952 30:0.365387 31:-0.938549 32:-0.838515 33:0.199475 34:0.453675 35:-0.944735 36:-0.826777 +1024 1:-0.689712 2:-0.916917 3:-0.495021 4:-0.0441046 5:-0.997986 6:-0.974681 7:-0.464567 8:0.010523 9:-0.997716 10:-0.9772 11:-0.43951 12:0.397214 13:-0.997848 14:-0.979901 15:-0.405986 16:0.385512 17:-0.997462 18:-0.982902 19:-0.0862871 20:-0.76012 21:-0.135266 22:0.172026 23:-0.992363 24:-0.87778 25:-0.0439024 26:0.166135 27:-0.979637 28:-0.902582 29:-0.0117035 30:0.486922 31:-0.981338 32:-0.896007 33:0.00262467 34:0.24042 35:-0.964268 36:-0.92558 +1024 1:-0.746222 2:-0.99224 3:-0.752489 4:-0.190732 5:-0.999225 6:-0.998674 7:-0.7466 8:-0.129101 9:-0.999243 10:-0.998315 11:-0.709035 12:0.210366 13:-0.999336 14:-0.998916 15:-0.720645 16:0.23634 17:-0.999326 18:-0.998828 19:-0.289653 20:-0.967994 21:-0.442029 22:-0.173273 23:-0.999959 24:-0.995299 25:-0.397561 26:-0.0145056 27:-0.999946 28:-0.996439 29:-0.344603 30:0.275888 31:-0.999951 32:-0.995354 33:-0.317585 34:0.290635 35:-0.999962 36:-0.99577 +1024 1:-0.651625 2:-0.981239 3:-0.55192 4:-0.208565 5:-0.998141 6:-0.99861 7:-0.576235 8:-0.145846 9:-0.998519 10:-0.99863 11:-0.506891 12:0.196347 13:-0.99869 14:-0.99886 15:-0.521105 16:0.223015 17:-0.998731 18:-0.998842 19:-0.258861 20:-0.965015 21:-0.376812 22:-0.167436 23:-0.9999 24:-0.99466 25:-0.336585 26:-0.0154755 27:-0.999824 28:-0.99607 29:-0.271782 30:0.27522 31:-0.999838 32:-0.99499 33:-0.259843 34:0.289188 35:-0.9998 36:-0.994942 +282.8119336156975 1:-0.76568 2:-0.947528 3:-0.573257 4:-0.120491 5:-0.997764 6:-0.986315 7:-0.579098 8:-0.0547165 9:-0.998001 10:-0.986919 11:-0.529862 12:0.31175 13:-0.99826 14:-0.989255 15:-0.561013 16:0.344322 17:-0.998401 18:-0.98854 19:-0.160759 20:-0.796119 21:-0.202899 22:0.201679 23:-0.998543 24:-0.897349 25:-0.163415 26:0.315667 27:-0.9968 28:-0.905096 29:0.0169051 30:0.594369 31:-0.994108 32:-0.913886 33:-0.0393701 34:0.661863 35:-0.995748 36:-0.904257 +-1024 1:-0.666115 2:-0.729491 3:-0.44808 4:0.396036 5:-0.996321 6:-0.816641 7:-0.32713 8:0.24018 9:-0.985803 10:-0.877709 11:-0.280245 12:0.592534 13:-0.980462 14:-0.90129 15:-0.287797 16:0.570961 17:-0.978758 18:-0.905978 19:0.0254207 20:-0.426336 21:0.0772947 22:0.75138 23:-0.962108 24:-0.449284 25:0.22439 26:-0.0456361 27:-0.807083 28:-0.734631 29:0.276983 30:0.0961575 31:-0.814369 32:-0.734462 33:0.262467 34:0.00787922 35:-0.795613 36:-0.75449 +-1024 1:-0.724695 2:-0.976349 3:-0.627312 4:-0.158524 5:-0.999228 6:-0.995895 7:-0.639227 8:-0.0935114 9:-0.999206 10:-0.995238 11:-0.589587 12:0.261096 13:-0.999374 14:-0.996201 15:-0.596316 16:0.286231 17:-0.999399 18:-0.996199 19:-0.104189 20:-0.877905 21:-0.200483 22:0.0345724 23:-0.999751 24:-0.95944 25:-0.185366 26:0.193652 27:-0.999671 28:-0.96021 29:-0.0897269 30:0.517779 31:-0.999432 32:-0.959676 33:-0.0629921 34:0.525456 35:-0.999362 36:-0.959906 +1024 1:-0.750983 2:-0.974381 3:-0.56899 4:-0.182097 5:-0.998559 6:-0.996892 7:-0.587688 8:-0.128051 9:-0.998401 10:-0.996766 11:-0.539051 12:0.219717 13:-0.998652 14:-0.997386 15:-0.550269 16:0.246271 17:-0.998684 18:-0.997334 19:0.0626566 20:-0.882465 21:-0.0410628 22:0.0150849 23:-0.999647 24:-0.966476 25:-0.0487805 26:0.168779 27:-0.999406 28:-0.966384 29:0.110533 30:0.489919 31:-0.999252 32:-0.966651 33:0.131234 34:0.496662 35:-0.999219 36:-0.967212 +-1024 1:-0.623887 2:-0.703854 3:-0.352774 4:0.322624 5:-0.991639 6:-0.830731 7:-0.37151 8:0.459297 9:-0.992474 10:-0.820306 11:-0.235835 12:0.662069 13:-0.980006 14:-0.885261 15:-0.252494 16:0.684789 17:-0.980683 18:-0.884825 19:0.15145 20:-0.36896 21:0.224638 22:0.274103 23:-0.873306 24:-0.564699 25:0.141463 26:0.632353 27:-0.894947 28:-0.46574 29:0.308192 30:0.187448 31:-0.80169 32:-0.676465 33:0.328084 34:0.249186 35:-0.81137 36:-0.673154 +-1024 1:-0.718278 2:-0.936119 3:-0.587482 4:-0.0354085 5:-0.999767 6:-0.980505 7:-0.591983 8:0.0365977 9:-0.999733 10:-0.980337 11:-0.543645 12:0.41502 13:-0.999708 14:-0.984053 15:-0.553338 16:0.435747 17:-0.999735 18:-0.984138 19:0.231651 20:-0.728838 21:0.0797101 22:0.314743 23:-0.997281 24:-0.863132 25:0.117073 26:0.462834 27:-0.996566 28:-0.866328 29:0.313394 30:0.731188 31:-0.991769 32:-0.876179 33:0.333333 34:0.736304 35:-0.991914 36:-0.877237 +-1024 1:-0.669634 2:-0.943208 3:-0.486486 4:-0.100791 5:-0.998467 6:-0.986665 7:-0.465999 8:-0.0320185 9:-0.998547 10:-0.986839 11:-0.41807 12:0.338511 13:-0.998784 14:-0.989262 15:-0.430545 16:0.362797 17:-0.99876 18:-0.988962 19:-0.0247046 20:-0.793717 21:-0.118357 22:0.181724 23:-0.99753 24:-0.901819 25:0.0243902 26:0.288329 27:-0.995535 28:-0.915598 29:0.131339 30:0.561758 31:-0.99307 32:-0.920552 33:0.154856 34:0.588444 35:-0.993605 36:-0.918983 +1024 1:-0.707721 2:-0.899459 3:-0.479374 4:0.0312655 5:-0.998865 6:-0.963571 7:-0.454545 8:0.0884167 9:-0.998699 10:-0.96772 11:-0.385911 12:0.478526 13:-0.998629 14:-0.973799 15:-0.42287 16:0.503137 17:-0.998652 18:-0.97263 19:-0.0383101 20:-0.649456 21:0.0724638 22:0.482955 23:-0.994132 24:-0.767238 25:0.221951 26:0.398468 27:-0.979421 28:-0.825615 29:0.357607 30:0.582768 31:-0.96862 32:-0.842417 33:0.328084 34:0.671651 35:-0.973728 36:-0.830064 +1024 1:-0.511695 2:-0.424574 3:-0.140825 4:0.719645 5:-0.967153 6:-0.506232 7:-0.095204 8:0.68074 9:-0.953223 10:-0.565387 11:-0.0122511 12:0.682623 13:-0.900444 14:-0.715138 15:-0.0314658 16:0.673662 17:-0.896309 18:-0.715653 19:0.62406 20:-0.0121357 21:0.543478 22:0.659164 23:-0.73588 24:-0.0231489 25:0.621951 26:0.437703 27:-0.652253 28:-0.20441 29:0.682705 30:0.0105099 31:-0.530076 32:-0.373507 33:0.692913 34:0.0348911 35:-0.525412 36:-0.36918 +1024 1:-0.68226 2:-0.837065 3:-0.418208 4:0.142895 5:-0.997925 6:-0.93034 7:-0.407301 8:0.190621 9:-0.99688 10:-0.935725 11:-0.320061 12:0.562037 13:-0.995652 14:-0.950872 15:-0.324635 16:0.569846 17:-0.995449 18:-0.951772 19:0.256713 20:-0.552664 21:0.2343 22:0.450235 23:-0.971134 24:-0.697393 25:0.287805 26:0.3842 27:-0.945912 28:-0.747646 29:0.451235 30:0.453865 31:-0.929404 32:-0.795558 33:0.475066 34:0.425541 35:-0.925462 36:-0.802606 +1024 1:-0.631339 2:-0.78758 3:-0.369844 4:0.276794 5:-0.998124 6:-0.890407 7:-0.350036 8:0.330212 9:-0.997156 10:-0.899623 11:-0.229709 12:0.702856 13:-0.994801 14:-0.924367 15:-0.261704 16:0.738854 17:-0.995364 18:-0.921321 19:0.395632 20:-0.465318 21:0.359903 22:0.574973 23:-0.957181 24:-0.590376 25:0.392683 26:0.522797 27:-0.933786 28:-0.652323 29:0.583875 30:0.495747 31:-0.903518 32:-0.729761 33:0.56168 34:0.625208 35:-0.913146 36:-0.701214 +-1024 1:-0.488098 2:-0.603855 3:-0.13229 4:0.505798 5:-0.987213 6:-0.739414 7:-0.123837 8:0.568287 9:-0.983779 10:-0.749315 11:-0.0704441 12:0.745926 13:-0.958877 14:-0.815599 15:-0.0406754 16:0.689086 17:-0.957442 18:-0.833908 19:0.961332 20:-0.188826 21:0.68599 22:0.536983 23:-0.825379 24:-0.321498 25:0.714634 26:0.566622 27:-0.800525 28:-0.367081 29:0.690507 30:0.436112 31:-0.718489 32:-0.419671 33:0.761155 34:0.0584202 35:-0.654072 36:-0.534923 +444.4724117089706 1:-0.693024 2:-0.728341 3:-0.41963 4:0.418348 5:-0.99704 6:-0.816198 7:-0.331424 8:0.3316 9:-0.990215 10:-0.86262 11:-0.249617 12:0.660048 13:-0.983629 14:-0.895342 15:-0.283193 16:0.724577 17:-0.985903 18:-0.889063 19:-0.0325815 20:-0.365707 21:0.157005 22:0.817961 23:-0.950557 24:-0.36906 25:0.25122 26:0.159525 27:-0.818853 28:-0.639731 29:0.308192 30:0.0805295 31:-0.779207 32:-0.690295 33:0.301837 34:0.256296 35:-0.804246 36:-0.658157 +1024 1:-0.691782 2:-0.896702 3:-0.509246 4:0.0393802 5:-0.999076 6:-0.962083 7:-0.514674 8:0.117002 9:-0.999037 10:-0.96215 11:-0.456355 12:0.502014 13:-0.998795 14:-0.970067 15:-0.458173 16:0.518578 17:-0.998798 18:-0.970475 19:0.1314 20:-0.655294 21:0.144928 22:0.35794 23:-0.987965 24:-0.79965 25:0.136585 26:0.491752 27:-0.985754 28:-0.80311 29:0.250975 30:0.659451 31:-0.972621 32:-0.825808 33:0.259843 34:0.619238 35:-0.968374 36:-0.829588 +-1024 1:-0.675016 2:-0.969603 3:-0.504979 4:-0.174454 5:-0.998646 6:-0.99656 7:-0.527559 8:-0.106033 9:-0.998648 10:-0.995481 11:-0.473201 12:0.24159 13:-0.998784 14:-0.996463 15:-0.462778 16:0.260367 17:-0.998719 18:-0.996733 19:-0.163623 20:-0.89321 21:-0.183575 22:-0.0206032 23:-0.999398 24:-0.968733 25:-0.212195 26:0.149381 27:-0.9995 28:-0.967675 29:-0.102731 30:0.453689 31:-0.999049 32:-0.967492 33:-0.00524934 34:0.421678 35:-0.9982 36:-0.971068 +1024 1:-0.56717 2:-0.473294 3:-0.305832 4:0.532982 5:-0.95292 6:-0.548207 7:-0.228346 8:0.243708 9:-0.914797 10:-0.68838 11:-0.188361 12:0.208015 13:-0.855213 14:-0.79835 15:-0.217191 16:0.408997 17:-0.874754 18:-0.768082 19:0.0648049 20:-0.313418 21:0.0338164 22:0.61494 23:-0.879084 24:-0.296855 25:0.0780488 26:0.0173147 27:-0.719849 28:-0.584452 29:0.120936 30:-0.148331 31:-0.673655 32:-0.656892 33:0.115486 34:0.122069 35:-0.718653 36:-0.594325 +-946.3576839843597 1:-0.568619 2:-0.762891 3:-0.257468 4:0.277412 5:-0.996588 6:-0.885751 7:-0.317108 8:0.405126 9:-0.996908 10:-0.874939 11:-0.101072 12:0.713441 13:-0.993012 14:-0.918891 15:-0.160399 16:0.777813 17:-0.99427 18:-0.911728 19:0.950591 20:-0.403658 21:0.683575 22:0.39593 23:-0.914519 24:-0.605687 25:0.565854 26:0.77391 27:-0.937364 28:-0.524605 29:0.989597 30:0.3914 31:-0.875365 32:-0.722591 33:0.900262 34:0.627099 35:-0.894609 36:-0.668989 +1024 1:-0.564479 2:-0.691285 3:-0.229018 4:0.394689 5:-0.994307 6:-0.825973 7:-0.285612 8:0.544407 9:-0.995492 10:-0.813174 11:-0.111792 12:0.813541 13:-0.986553 14:-0.873008 15:-0.108212 16:0.815387 17:-0.986477 18:-0.875371 19:0.63695 20:-0.265142 21:0.555556 22:0.455151 23:-0.855226 24:-0.432242 25:0.504878 26:0.874644 27:-0.904007 28:-0.355048 29:0.690507 30:0.430396 31:-0.803148 32:-0.571408 33:0.713911 34:0.384851 35:-0.793293 36:-0.58456 +1024 1:-0.590561 2:-0.502219 3:-0.290185 4:0.555955 5:-0.963715 6:-0.578258 7:-0.248389 8:0.289204 9:-0.927879 10:-0.69481 11:-0.173047 12:0.344818 13:-0.888611 14:-0.803335 15:-0.184958 16:0.362781 17:-0.888312 18:-0.804794 19:0.223774 20:-0.257613 21:0.173913 22:0.478414 23:-0.823999 24:-0.309929 25:0.219512 26:0.0295715 27:-0.670626 28:-0.516856 29:0.344603 30:-0.167439 31:-0.654271 32:-0.636662 33:0.372703 34:-0.196239 35:-0.642402 36:-0.65038 +-606.652125037699 1:-0.479818 2:-0.235658 3:-0.0995733 4:0.445899 5:-0.859388 6:-0.35908 7:-0.129563 8:0.812416 9:-0.892607 10:-0.259525 11:-0.0229709 12:0.312579 13:-0.739663 14:-0.601816 15:-0.0345357 16:0.183744 17:-0.717305 18:-0.637616 19:0.677766 20:0.122736 21:0.589372 22:0.203832 23:-0.486185 24:-0.0237242 25:0.52439 26:0.695168 27:-0.560082 28:0.192981 29:0.719116 30:-0.0610131 31:-0.377821 32:-0.208054 33:0.755906 34:-0.292209 35:-0.317369 36:-0.300013 +1024 1:-0.683916 2:-0.971085 3:-0.507824 4:-0.178915 5:-0.998669 6:-0.997067 7:-0.527559 8:-0.118621 9:-0.998654 10:-0.996702 11:-0.462481 12:0.229238 13:-0.998816 14:-0.99733 15:-0.475058 16:0.254479 17:-0.99881 18:-0.997259 19:0.0798425 20:-0.890681 21:-0.0507246 22:-0.00526679 23:-0.999679 24:-0.970749 25:-0.0926829 26:0.162629 27:-0.999689 28:-0.969371 29:0.0871261 30:0.472593 31:-0.999447 32:-0.970662 33:0.0918635 34:0.480714 35:-0.9994 36:-0.970684 +-1024 1:-0.904782 2:-0.988087 3:-0.749644 4:-0.197568 5:-0.998478 6:-0.997557 7:-0.769506 8:-0.137189 9:-0.998648 10:-0.997494 11:-0.745789 12:0.205809 13:-0.998743 14:-0.997821 15:-0.755948 16:0.234856 17:-0.998883 18:-0.997853 19:-0.714286 20:-0.909766 21:-0.44686 22:-0.0501284 23:-0.999511 24:-0.968866 25:-0.458537 26:0.105943 27:-0.999244 28:-0.968289 29:-0.381014 30:0.401952 31:-0.998778 32:-0.968556 33:-0.364829 34:0.41275 35:-0.998838 36:-0.969638 +1024 1:-0.598427 2:-0.654564 3:-0.3101 4:0.415925 5:-0.98989 6:-0.781372 7:-0.319971 8:0.550539 9:-0.990829 10:-0.775562 11:-0.189893 12:0.721541 13:-0.973304 14:-0.853869 15:-0.214121 16:0.760716 17:-0.974629 18:-0.849528 19:0.383459 20:-0.268054 21:0.355072 22:0.448173 23:-0.855959 24:-0.421346 25:0.37561 26:0.686762 27:-0.864763 28:-0.383173 29:0.453836 30:0.264678 31:-0.756728 32:-0.570382 33:0.472441 34:0.349689 35:-0.768213 36:-0.555553 +1024 1:-0.608777 2:-0.789316 3:-0.362731 4:0.282644 5:-0.998784 6:-0.894956 7:-0.331424 8:0.328805 9:-0.997559 10:-0.904015 11:-0.229709 12:0.721592 13:-0.995634 14:-0.924303 15:-0.221796 16:0.700321 17:-0.994778 18:-0.927923 19:0.56749 20:-0.433347 21:0.442029 22:0.668245 23:-0.96237 24:-0.558234 25:0.580488 26:0.590324 27:-0.937751 28:-0.636006 29:0.672302 30:0.676304 31:-0.909343 32:-0.670847 33:0.690289 34:0.52608 35:-0.892783 36:-0.703012 +-1024 1:-0.635893 2:-0.603483 3:-0.405405 4:0.363357 5:-0.967391 6:-0.697618 7:-0.387258 8:0.340514 9:-0.959327 10:-0.743064 11:-0.298622 12:0.401983 13:-0.92655 14:-0.843713 15:-0.323101 16:0.423766 17:-0.924921 18:-0.84079 19:0.142141 20:-0.335786 21:0.115942 22:0.366929 23:-0.83402 24:-0.411286 25:0.097561 26:0.265461 27:-0.785739 28:-0.512577 29:0.282185 30:-0.0193726 31:-0.731616 32:-0.668909 33:0.278215 34:0.0370893 35:-0.731191 36:-0.654475 +1024 1:-0.507555 2:-0.479909 3:-0.129445 4:0.515076 5:-0.961376 6:-0.618724 7:-0.166786 8:0.723322 9:-0.968523 10:-0.592412 11:-0.050536 12:0.616022 13:-0.913248 14:-0.7611 15:-0.0560246 16:0.666355 17:-0.917793 18:-0.758392 19:0.644826 20:-0.0637144 21:0.524155 22:0.286033 23:-0.658562 24:-0.208045 25:0.507317 26:0.717102 27:-0.740905 28:-0.11547 29:0.646294 30:0.00459837 31:-0.573131 32:-0.436975 33:0.671916 34:-0.0191598 35:-0.5612 36:-0.449844 +1024 1:-0.685986 2:-0.969805 3:-0.510669 4:-0.172991 5:-0.998582 6:-0.996214 7:-0.507516 8:-0.106509 9:-0.998646 10:-0.995604 11:-0.451761 12:0.246942 13:-0.998936 14:-0.996538 15:-0.467383 16:0.273045 17:-0.998871 18:-0.996236 19:-0.0855711 20:-0.875422 21:-0.202899 22:0.0371367 23:-0.999579 24:-0.956746 25:-0.136585 26:0.183989 27:-0.99932 28:-0.960385 29:-0.0117035 30:0.497845 31:-0.998943 32:-0.960805 33:-0.0131234 34:0.513307 35:-0.998993 36:-0.960106 +-622.7559107244506 1:-0.562202 2:-0.443155 3:-0.216216 4:0.448151 5:-0.94122 6:-0.579272 7:-0.229778 8:0.612236 9:-0.945021 10:-0.560323 11:-0.163859 12:0.437088 13:-0.870143 14:-0.744227 15:-0.184958 16:0.495215 17:-0.872951 18:-0.735118 19:0.377014 20:-0.11768 21:0.355072 22:0.295787 23:-0.714814 24:-0.278018 25:0.363415 26:0.549157 27:-0.727123 28:-0.217635 29:0.430429 30:0.012134 31:-0.588631 32:-0.455658 33:0.448819 34:0.103081 35:-0.60298 36:-0.438644 +179.0751344487329 1:-0.852826 2:-0.925111 3:-0.795164 4:0.00725795 5:-0.999963 6:-0.961713 7:-0.805297 8:0.0857868 9:-0.999963 10:-0.961222 11:-0.751914 12:0.456907 13:-0.999909 14:-0.973638 15:-0.765157 16:0.475018 17:-0.999912 18:-0.973795 19:-0.227354 20:-0.695699 21:-0.137681 22:0.34684 23:-0.994648 24:-0.81502 25:-0.187805 26:0.55854 27:-0.997993 28:-0.813343 29:0.0403121 30:0.849669 31:-0.995123 32:-0.846412 33:0.0551181 34:0.842343 35:-0.994774 36:-0.847791 +-1024 1:-0.848686 2:-0.929887 3:-0.789474 4:-0.00428378 5:-0.999919 6:-0.965123 7:-0.793844 8:0.0697296 9:-0.999913 10:-0.96595 11:-0.745789 12:0.442119 13:-0.999863 14:-0.975899 15:-0.760553 16:0.462439 17:-0.999892 18:-0.975893 19:-0.212317 20:-0.709405 21:-0.190821 22:0.378483 23:-0.998575 24:-0.826024 25:-0.165854 26:0.530865 27:-0.998231 28:-0.830996 29:0.0117035 30:0.873361 31:-0.997529 32:-0.855585 33:0.0209974 34:0.875887 35:-0.997597 36:-0.856045 +-1024 1:-0.847651 2:-0.929727 3:-0.790896 4:-0.00413079 5:-0.999924 6:-0.965016 7:-0.792412 8:0.0707142 9:-0.999918 10:-0.965864 11:-0.745789 12:0.443497 13:-0.999886 14:-0.975854 15:-0.759018 16:0.462832 17:-0.999892 18:-0.97589 19:-0.207304 20:-0.708631 21:-0.188406 22:0.379822 23:-0.998534 24:-0.825223 25:-0.163415 26:0.533782 27:-0.998294 28:-0.830592 29:0.0143043 30:0.87531 31:-0.997541 32:-0.855222 33:0.023622 34:0.878392 35:-0.997589 36:-0.85533 +-1024 1:-0.701511 2:-0.508523 3:-0.412518 4:0.524684 5:-0.97298 6:-0.615787 7:-0.421618 8:0.64963 9:-0.973186 10:-0.613527 11:-0.105666 12:0.65872 13:-0.94969 14:-0.818895 15:-0.111282 16:0.674547 17:-0.950332 18:-0.820182 19:0.245256 20:-0.222811 21:0.205314 22:0.2214 23:-0.758557 24:-0.39626 25:0.217073 26:0.351977 27:-0.754637 28:-0.408322 29:0.276983 30:0.0625351 31:-0.666717 32:-0.538347 33:0.251969 34:0.0663537 35:-0.653004 36:-0.531056 +1024 1:-0.695922 2:-0.388286 3:-0.44808 4:0.187403 5:-0.858882 6:-0.511637 7:-0.453114 8:0.337897 9:-0.870011 10:-0.497516 11:-0.402757 12:-0.037942 13:-0.743687 14:-0.74869 15:-0.413661 16:-0.0359582 17:-0.738851 18:-0.756073 19:0.238811 20:-0.190758 21:0.178744 22:0.115073 23:-0.694414 24:-0.375432 25:0.214634 26:0.253707 27:-0.698807 28:-0.394728 29:0.250975 30:-0.0463132 31:-0.604812 32:-0.512391 33:0.238845 34:-0.0442358 35:-0.594264 36:-0.513666 +-1024 1:-0.791969 2:-0.86668 3:-0.694168 4:0.0510137 5:-0.995577 6:-0.928204 7:-0.682176 8:0.0794895 9:-0.994507 10:-0.941563 11:-0.611026 12:0.446346 13:-0.994751 14:-0.959059 15:-0.62241 16:0.464341 17:-0.994748 18:-0.959415 19:-0.119943 20:-0.611702 21:-0.0217391 22:0.40861 23:-0.979432 24:-0.725385 25:0.0463415 26:0.350979 27:-0.962448 28:-0.790019 29:0.245774 30:0.565257 31:-0.960761 32:-0.823935 33:0.246719 34:0.548035 35:-0.958752 36:-0.827974 +1024 1:-0.744359 2:-0.427637 3:-0.520626 4:0.530063 5:-0.914714 6:-0.355158 7:-0.481747 8:0.143916 9:-0.891942 10:-0.673108 11:-0.390505 12:0.108356 13:-0.844497 14:-0.816045 15:-0.401381 16:0.156683 17:-0.849874 18:-0.816941 19:0.00393842 20:-0.160032 21:0.0603865 22:0.697423 23:-0.789902 24:-0.0140821 25:0.14878 26:-0.557246 27:-0.38962 28:-0.608558 29:0.19896 30:-0.441022 31:-0.485332 32:-0.581612 33:0.194226 34:-0.496237 35:-0.460088 36:-0.604919 +1024 1:-0.781826 2:-0.940578 3:-0.738265 4:-0.090602 5:-0.997683 6:-0.97674 7:-0.73801 8:-0.0262498 9:-0.998032 10:-0.979183 11:-0.696784 12:0.328001 13:-0.997813 14:-0.984053 15:-0.70683 16:0.351628 17:-0.997876 18:-0.984179 19:-0.404941 20:-0.805937 21:-0.386473 22:0.192633 23:-0.999118 24:-0.891419 25:-0.353659 26:0.310408 27:-0.999091 28:-0.911753 29:-0.253576 30:0.651136 31:-0.998819 32:-0.917328 33:-0.244094 34:0.650356 35:-0.998619 36:-0.917786 +-849.5183975174531 1:-0.822811 2:-0.526592 3:-0.70697 4:0.135117 5:-0.858071 6:-0.495825 7:-0.710809 8:-0.89477 9:-0.518598 10:-0.826365 11:-0.686064 12:-0.645691 13:-0.59183 14:-0.863114 15:-0.702226 16:-0.605074 17:-0.588039 18:-0.865251 19:0.145005 20:-0.329946 21:0.149758 22:0.506877 23:-0.862818 24:-0.367196 25:0.0853659 26:-0.261035 27:-0.628438 28:-0.652378 29:0.269181 30:-0.0835085 31:-0.724321 32:-0.688243 33:0.259843 34:-0.0417752 35:-0.725958 36:-0.684555 +-1024 1:-0.718485 2:-0.2987 3:-0.439545 4:0.906038 5:-0.92811 6:-0.0694022 7:-0.403006 8:-0.51896 9:-0.629882 10:-0.668232 11:-0.375191 12:-0.423273 13:-0.597108 14:-0.744992 15:-0.395242 16:-0.450114 17:-0.580209 18:-0.758739 19:0.00322234 20:-0.147966 21:0.089372 22:0.817515 23:-0.818909 24:0.0311438 25:0.17561 26:-0.667055 27:-0.330882 28:-0.625952 29:0.217165 30:-0.486801 31:-0.456494 32:-0.573178 33:0.215223 34:-0.581542 35:-0.42033 36:-0.607264 +-1024 1:-0.834196 2:-0.940325 3:-0.800853 4:-0.0423115 5:-0.999337 6:-0.969932 7:-0.809592 8:0.0329766 9:-0.999426 10:-0.969958 11:-0.767228 12:0.40107 13:-0.999459 14:-0.978671 15:-0.780507 16:0.422298 17:-0.999478 18:-0.978671 19:-0.364841 20:-0.751264 21:-0.357488 22:0.301985 23:-0.999303 24:-0.850201 25:-0.343902 26:0.457705 27:-0.999154 28:-0.854379 29:-0.209363 30:0.799732 31:-0.9988 32:-0.876298 33:-0.204724 34:0.802793 35:-0.998811 36:-0.876479 +-1024 1:-0.781205 2:-0.75884 3:-0.613087 4:0.239659 5:-0.993437 6:-0.846952 7:-0.614889 8:0.327582 9:-0.993473 10:-0.852096 11:-0.480858 12:0.601082 13:-0.988646 14:-0.913993 15:-0.490407 16:0.594849 17:-0.987595 18:-0.916172 19:0.0204082 20:-0.441296 21:0.0507246 22:0.374459 23:-0.911674 24:-0.563037 25:0.0341463 26:0.500438 27:-0.903827 28:-0.565522 29:0.152146 30:0.516721 31:-0.882889 32:-0.665055 33:0.139108 34:0.443742 35:-0.868605 36:-0.67694 +-1024 1:-0.733182 2:-0.491649 3:-0.522048 4:0.13153 5:-0.889101 6:-0.612086 7:-0.547602 8:0.0702913 9:-0.860105 10:-0.647381 11:-0.509954 12:0.107079 13:-0.817693 14:-0.783963 15:-0.5165 16:0.0362945 17:-0.800953 18:-0.801613 19:0.0454708 20:-0.305808 21:0.02657 22:0.204874 23:-0.786355 24:-0.438536 25:-0.0097561 26:0.2168 27:-0.737128 28:-0.464464 29:0.0455137 30:0.157862 31:-0.70825 32:-0.546304 33:0.0393701 34:0.128202 35:-0.690558 36:-0.549963 +-1024 1:-0.728007 2:-0.581481 3:-0.509246 4:0.293017 5:-0.958267 6:-0.69159 7:-0.498926 8:0.364382 9:-0.959001 10:-0.714763 11:-0.378254 12:0.464499 13:-0.939398 14:-0.845472 15:-0.398312 16:0.407981 17:-0.93082 18:-0.853306 19:0.0698174 20:-0.316895 21:0.057971 22:0.270434 23:-0.818058 24:-0.44779 25:0.0268293 26:0.301685 27:-0.779064 28:-0.470074 29:0.076723 30:0.234833 31:-0.738953 32:-0.551455 33:0.0656168 34:0.184044 35:-0.718166 36:-0.559306 +61.09719331963842 1:-0.731526 2:-0.490259 3:-0.517781 4:0.140502 5:-0.890598 6:-0.60972 7:-0.540444 8:0.0701129 9:-0.860713 10:-0.649351 11:-0.506891 12:0.110765 13:-0.817567 14:-0.782425 15:-0.513431 16:0.0390826 17:-0.800472 18:-0.799974 19:0.0447547 20:-0.302803 21:0.031401 22:0.197747 23:-0.783152 24:-0.439087 25:-0.00731707 26:0.21818 27:-0.736786 28:-0.463092 29:0.0455137 30:0.149352 31:-0.703019 32:-0.54321 33:0.0393701 34:0.121164 35:-0.685627 36:-0.546844 +1024 1:-0.746429 2:-0.671655 3:-0.480797 4:0.377273 5:-0.987786 6:-0.766336 7:-0.50179 8:0.44141 9:-0.987183 10:-0.783106 11:-0.315467 12:0.653148 13:-0.977643 14:-0.877898 15:-0.32924 16:0.67681 17:-0.978133 18:-0.87673 19:0.437164 20:-0.287779 21:0.442029 22:0.566791 23:-0.87222 24:-0.37879 25:0.387805 26:0.541527 27:-0.849464 28:-0.45633 29:0.654096 30:0.393544 31:-0.818126 32:-0.614712 33:0.656168 34:0.488864 35:-0.8277 36:-0.593827 +1024 1:-0.725937 2:-0.606432 3:-0.439545 4:0.429547 5:-0.979678 6:-0.702947 7:-0.45884 8:0.476934 9:-0.977305 10:-0.726312 11:-0.238897 12:0.62129 13:-0.963763 14:-0.85562 15:-0.254029 16:0.639122 17:-0.963718 18:-0.854785 19:0.413534 20:-0.242716 21:0.379227 22:0.431498 23:-0.806946 24:-0.337523 25:0.317073 26:0.469947 27:-0.799616 28:-0.406522 29:0.537061 30:0.205006 31:-0.752779 32:-0.594411 33:0.519685 34:0.298298 35:-0.761391 36:-0.57167 +1024 1:-0.854688 2:-0.915233 3:-0.770982 4:0.0346742 5:-0.999958 6:-0.955586 7:-0.770938 8:0.104289 9:-0.999918 10:-0.95872 11:-0.719755 12:0.48469 13:-0.999895 14:-0.9706 15:-0.734459 16:0.504367 17:-0.999912 18:-0.970393 19:-0.148586 20:-0.671714 21:-0.0821256 22:0.470926 23:-0.99848 24:-0.793612 25:-0.0780488 26:0.605239 27:-0.998177 28:-0.805603 29:0.149545 30:0.964642 31:-0.997409 32:-0.83345 33:0.144357 34:0.966963 35:-0.997415 36:-0.831635 +-1024 1:-0.685986 2:-0.495034 3:-0.375533 4:0.574957 5:-0.968627 6:-0.569105 7:-0.347173 8:0.589155 9:-0.965558 10:-0.63242 11:-0.0260337 12:0.620174 13:-0.943243 14:-0.81912 15:-0.0437452 16:0.668709 17:-0.945714 18:-0.814339 19:0.258861 20:-0.174378 21:0.251208 22:0.363798 23:-0.719588 24:-0.218833 25:0.24878 26:0.197819 27:-0.655827 28:-0.376541 29:0.386216 30:-0.155616 31:-0.601469 32:-0.56376 33:0.35958 34:0.0326024 35:-0.624623 36:-0.509826 +1024 1:-0.688263 2:-0.306729 3:-0.445235 4:0.279401 5:-0.804949 6:-0.30886 7:-0.433071 8:0.0715138 9:-0.757915 10:-0.463657 11:-0.361409 12:-0.372568 13:-0.622409 14:-0.748198 15:-0.379893 16:-0.205803 17:-0.644779 18:-0.722479 19:0.326173 20:-0.0967116 21:0.236715 22:0.273678 23:-0.610471 24:-0.116797 25:0.265854 26:-0.0534529 27:-0.483664 28:-0.348286 29:0.427828 30:-0.438043 31:-0.462146 32:-0.542982 33:0.401575 34:-0.234685 35:-0.490752 36:-0.487166 +1024 1:-0.839578 2:-0.93107 3:-0.778094 4:-0.01902 5:-0.999568 6:-0.966897 7:-0.780959 8:0.0563421 9:-0.999578 10:-0.967239 11:-0.730475 12:0.426283 13:-0.999591 14:-0.977118 15:-0.742134 16:0.445472 17:-0.999586 18:-0.977238 19:-0.215181 20:-0.716778 21:-0.181159 22:0.363076 23:-0.998896 24:-0.837948 25:-0.165854 26:0.524844 27:-0.99869 28:-0.838686 29:0.0221066 30:0.863654 31:-0.998161 32:-0.865442 33:0.0288714 34:0.864398 35:-0.998162 36:-0.865739 +1024 1:-0.68433 2:-0.109545 3:-0.412518 4:0.12046 5:-0.653864 6:-0.151686 7:-0.408733 8:0.176341 9:-0.622587 10:-0.126298 11:-0.300153 12:-0.413549 13:-0.497932 14:-0.64216 15:-0.315426 16:-0.463234 17:-0.464737 18:-0.653863 19:0.482277 20:0.0459788 21:0.415459 22:-0.178168 23:-0.382615 24:-0.214786 25:0.37561 26:0.108422 27:-0.393311 28:-0.104045 29:0.516255 30:-0.425969 31:-0.332126 32:-0.384303 33:0.480315 34:-0.147697 35:-0.374992 36:-0.286879 +1024 1:-0.708963 2:-0.345978 3:-0.469417 4:0.219605 5:-0.847331 6:-0.455244 7:-0.474588 8:0.34056 9:-0.838773 10:-0.417101 11:-0.338438 12:0.134583 13:-0.797748 14:-0.748037 15:-0.379893 16:0.102495 17:-0.776236 18:-0.745357 19:0.318296 20:-0.0665303 21:0.323671 22:-0.133136 23:-0.505377 24:-0.323391 25:0.285366 26:0.298409 27:-0.569943 28:-0.172235 29:0.417425 30:-0.338707 31:-0.445413 32:-0.470596 33:0.362205 34:-0.0354248 35:-0.490673 36:-0.368497 +-1024 1:-0.789278 2:-0.73246 3:-0.600284 4:0.278678 5:-0.992409 6:-0.82362 7:-0.603436 8:0.37878 9:-0.991573 10:-0.819706 11:-0.454824 12:0.613849 13:-0.984997 14:-0.901354 15:-0.470453 16:0.631897 17:-0.984984 18:-0.900504 19:0.22449 20:-0.336754 21:0.297101 22:0.349007 23:-0.86447 24:-0.50338 25:0.263415 26:0.55415 27:-0.860114 28:-0.458061 29:0.443433 30:0.377609 31:-0.825654 32:-0.631164 33:0.430446 34:0.443308 35:-0.829149 36:-0.61301 +-1024 1:-0.69675 2:-0.301446 3:-0.432432 4:0.13183 5:-0.791177 6:-0.41199 7:-0.424481 8:0.232858 9:-0.783862 10:-0.390654 11:-0.359877 12:-0.142751 13:-0.665114 14:-0.701703 15:-0.379893 16:-0.123496 17:-0.652928 18:-0.697073 19:0.22807 20:-0.08176 21:0.285024 22:-0.205887 23:-0.477027 24:-0.345773 25:0.25122 26:0.276252 27:-0.563898 28:-0.180224 29:0.375813 30:-0.390574 31:-0.424599 32:-0.477142 33:0.309711 34:-0.0865719 35:-0.468996 36:-0.373269 +117.8778704505722 1:-0.773339 2:-0.71541 3:-0.58606 4:0.219654 5:-0.978215 6:-0.792695 7:-0.58053 8:0.4882 9:-0.997179 10:-0.811038 11:-0.470138 12:0.676341 13:-0.984374 14:-0.882575 15:-0.488872 16:0.676146 17:-0.983332 18:-0.882842 19:0.411386 20:-0.218178 21:0.439614 22:0.850539 23:-0.904729 24:-0.241524 25:0.495122 26:0.785829 27:-0.874566 28:-0.3448 29:0.885566 30:0.755901 31:-0.853108 32:-0.514752 33:0.884514 34:0.753691 35:-0.852007 36:-0.516699 +-1024 1:-0.608363 2:0.0120115 3:-0.251778 4:0.486925 5:-0.687229 6:0.131146 7:-0.248389 8:0.12735 9:-0.576263 10:-0.104281 11:-0.151608 12:-0.370521 13:-0.404294 14:-0.518892 15:-0.158864 16:-0.358065 17:-0.397978 18:-0.528513 19:0.510204 20:0.227524 21:0.475845 22:0.324122 23:-0.381086 24:0.257578 25:0.529268 26:-0.0823347 27:-0.189222 28:-0.0320703 29:0.604681 30:-0.348739 31:-0.175119 32:-0.143055 33:0.611549 34:-0.313088 35:-0.171609 36:-0.14099 +1024 1:-0.609398 2:0.0173624 3:-0.251778 4:0.471718 5:-0.678191 6:0.135468 7:-0.246958 8:0.129201 9:-0.571699 10:-0.0945535 11:-0.151608 12:-0.382519 13:-0.394435 14:-0.514609 15:-0.161934 16:-0.369415 17:-0.385999 18:-0.522266 19:0.515217 20:0.247354 21:0.478261 22:0.312235 23:-0.352641 24:0.286937 25:0.534146 26:-0.055443 27:-0.180535 28:0.00256822 29:0.607282 30:-0.370018 31:-0.148331 32:-0.124899 33:0.619423 34:-0.293467 35:-0.157856 36:-0.109719 +1024 1:-0.596978 2:0.0271976 3:-0.233286 4:0.487452 5:-0.680376 6:0.143266 7:-0.225483 8:0.150075 9:-0.573307 10:-0.0803197 11:-0.140888 12:-0.380262 13:-0.38402 14:-0.502202 15:-0.146585 16:-0.36342 17:-0.379385 18:-0.511635 19:0.524526 20:0.237681 21:0.490338 22:0.281811 23:-0.3565 24:0.248108 25:0.556098 26:-0.00311808 27:-0.222304 28:0.000962459 29:0.617685 30:-0.343245 31:-0.166628 32:-0.128264 33:0.629921 34:-0.275329 35:-0.173583 36:-0.115768 +-1024 1:-0.597185 2:0.0178057 3:-0.236131 4:0.47509 5:-0.682145 6:0.12626 7:-0.228346 8:0.170724 9:-0.587165 10:-0.0865366 11:-0.139357 12:-0.351701 13:-0.4013 14:-0.505979 15:-0.14505 16:-0.349947 17:-0.39273 18:-0.518349 19:0.516649 20:0.227663 21:0.478261 22:0.302014 23:-0.373937 24:0.244804 25:0.54878 26:-0.034651 27:-0.218442 28:-0.0231339 29:0.609883 30:-0.355207 31:-0.172329 32:-0.14388 33:0.614173 34:-0.290726 35:-0.176922 36:-0.131512 +1024 1:-0.796108 2:-0.986922 3:-0.87909 4:-0.16249 5:-0.998995 6:-0.99222 7:-0.879742 8:-0.0987514 9:-0.99906 10:-0.992311 11:-0.860643 12:0.248972 13:-0.999155 14:-0.994213 15:-0.872602 16:0.273463 17:-0.999145 18:-0.994212 19:-0.841747 20:-0.970682 21:-0.913043 22:-0.170524 23:-0.99995 24:-0.980593 25:-0.912195 26:-0.00971348 27:-0.999968 28:-0.982122 29:-0.90117 30:0.278914 31:-0.99997 32:-0.982576 33:-0.902887 34:0.294091 35:-0.999962 36:-0.982572 +1024 1:-0.689919 2:-0.446079 3:-0.339972 4:0.604766 5:-0.96583 6:-0.543125 7:-0.357194 8:0.737436 9:-0.967375 10:-0.54409 11:-0.00306279 12:0.794703 13:-0.945892 14:-0.772693 15:-0.0176516 16:0.708037 17:-0.938344 18:-0.787525 19:0.622628 20:-0.0328118 21:0.495169 22:0.315444 23:-0.63727 24:-0.146888 25:0.531707 26:0.440778 27:-0.639043 28:-0.174544 29:0.524057 30:0.315747 31:-0.573086 32:-0.247504 33:0.564304 34:-0.0557154 35:-0.493963 36:-0.382449 +1024 1:-0.616436 2:-0.259975 3:-0.290185 4:0.319405 5:-0.826299 6:-0.352728 7:-0.304223 8:0.301845 9:-0.798168 10:-0.383084 11:-0.274119 12:0.0628253 13:-0.672581 14:-0.62097 15:-0.260169 16:0.0586812 17:-0.683252 18:-0.649879 19:0.662728 20:0.0365721 21:0.490338 22:0.182319 23:-0.513797 24:-0.0763009 25:0.504878 26:0.168139 27:-0.459898 28:-0.144204 29:0.529259 30:0.122597 31:-0.438005 32:-0.170781 33:0.590551 34:-0.288301 35:-0.337344 36:-0.327157 +-1024 1:-0.614987 2:-0.266243 3:-0.28734 4:0.314295 5:-0.828464 6:-0.362623 7:-0.302792 8:0.311314 9:-0.805033 10:-0.390922 11:-0.275651 12:0.0643725 13:-0.675745 14:-0.624177 15:-0.261704 16:0.0652497 17:-0.688095 18:-0.652855 19:0.714286 20:0.0420591 21:0.519324 22:0.178883 23:-0.506888 24:-0.0713987 25:0.529268 26:0.153196 27:-0.45118 28:-0.146433 29:0.539662 30:0.108083 31:-0.418395 32:-0.152201 33:0.603675 34:-0.323129 35:-0.313623 36:-0.320095 +1024 1:-0.73401 2:-0.575292 3:-0.438122 4:0.476063 5:-0.979695 6:-0.674362 7:-0.440229 8:0.570078 9:-0.979443 10:-0.687215 11:-0.20827 12:0.778503 13:-0.968787 14:-0.824844 15:-0.231005 16:0.680509 17:-0.960888 18:-0.837344 19:0.638382 20:-0.133915 21:0.538647 22:0.50898 23:-0.778958 24:-0.237438 25:0.57561 26:0.615125 27:-0.772974 28:-0.268342 29:0.661899 30:0.600197 31:-0.739848 32:-0.362629 33:0.67979 34:0.190169 35:-0.661256 36:-0.475126 +-1024 1:-0.767129 2:-0.586272 3:-0.534851 4:0.561579 5:-0.986202 6:-0.627617 7:-0.527559 8:0.559671 9:-0.980926 10:-0.681619 11:-0.313936 12:0.739407 13:-0.968944 14:-0.830912 15:-0.327705 16:0.778273 17:-0.970542 18:-0.826859 19:0.0991765 20:-0.130818 21:0.222222 22:0.651435 23:-0.781568 24:-0.0755781 25:0.187805 26:0.46976 27:-0.707638 28:-0.231843 29:0.373212 30:0.0662658 31:-0.633755 32:-0.489116 33:0.404199 34:0.295158 35:-0.680235 36:-0.441406 +1024 1:-0.826744 2:-0.97979 3:-0.857752 4:-0.146157 5:-0.998992 6:-0.989717 7:-0.869721 8:-0.0787296 9:-0.999127 10:-0.989421 11:-0.842266 12:0.271462 13:-0.99917 14:-0.992176 15:-0.857252 16:0.299228 17:-0.999259 18:-0.992024 19:-0.734336 20:-0.925445 21:-0.746377 22:-0.0671082 23:-0.999905 24:-0.961559 25:-0.729268 26:0.0920482 27:-0.999928 28:-0.965177 29:-0.698309 30:0.397404 31:-0.999898 32:-0.96702 33:-0.700787 34:0.410027 35:-0.999894 36:-0.966865 +1024 1:-0.732768 2:-0.203682 3:-0.4367 4:0.252872 5:-0.732321 6:-0.173701 7:-0.463135 8:0.325184 9:-0.747029 10:-0.227381 11:-0.387443 12:-0.28176 13:-0.540271 14:-0.63263 15:-0.396777 16:-0.315408 17:-0.521027 18:-0.648381 19:0.0461869 20:0.0742248 21:0.178744 22:0.168761 23:-0.390239 24:0.11394 25:0.168293 26:0.0919045 27:-0.371589 28:-0.0817043 29:0.271782 30:-0.426563 31:-0.267487 32:-0.322865 33:0.265092 34:-0.35366 35:-0.260719 36:-0.293481 +1024 1:-0.730077 2:-0.202339 3:-0.43101 4:0.262284 5:-0.736289 6:-0.174148 7:-0.454545 8:0.355302 9:-0.75564 10:-0.220602 11:-0.379786 12:-0.249268 13:-0.548976 14:-0.626247 15:-0.387567 16:-0.288773 17:-0.530235 18:-0.644498 19:0.0247046 20:0.0753634 21:0.171498 22:0.105665 23:-0.3595 24:0.0919416 25:0.158537 26:0.139401 27:-0.387878 28:-0.0571292 29:0.237971 30:-0.407705 31:-0.25871 32:-0.302456 33:0.244094 34:-0.393165 35:-0.234809 36:-0.291575 +-1024 1:-0.728421 2:-0.200191 3:-0.429587 4:0.243937 5:-0.729094 6:-0.177286 7:-0.451682 8:0.367864 9:-0.756991 10:-0.212781 11:-0.378254 12:-0.25637 13:-0.544198 14:-0.624435 15:-0.387567 16:-0.298909 17:-0.52367 18:-0.642653 19:0.0275689 20:0.0751866 21:0.178744 22:0.0621283 23:-0.339959 24:0.072923 25:0.156098 26:0.191159 27:-0.407403 28:-0.0331026 29:0.243173 30:-0.39372 31:-0.265513 32:-0.300838 33:0.257218 34:-0.384399 35:-0.244665 36:-0.296146 +-1024 1:-0.808942 2:-0.888002 3:-0.756757 4:0.0408979 5:-0.997986 6:-0.938708 7:-0.76378 8:0.132716 9:-0.998119 10:-0.935908 11:-0.68147 12:0.487057 13:-0.997883 14:-0.960477 15:-0.688411 16:0.503842 17:-0.997908 18:-0.961208 19:-0.462943 20:-0.704045 21:-0.388889 22:0.092964 23:-0.968179 24:-0.817484 25:-0.387805 26:0.292583 27:-0.969177 28:-0.800422 29:-0.261378 30:0.429143 31:-0.964067 32:-0.859445 33:-0.257218 34:0.366424 35:-0.957054 36:-0.870007 +-1024 1:-0.807286 2:-0.946674 3:-0.825036 4:-0.0857246 5:-0.998236 6:-0.973922 7:-0.818182 8:-0.0178446 9:-0.998192 10:-0.974877 11:-0.770291 12:0.336143 13:-0.998289 14:-0.982853 15:-0.782041 16:0.358828 17:-0.998334 18:-0.983022 19:-0.56391 20:-0.848184 21:-0.586957 22:-0.0189385 23:-0.992037 24:-0.917376 25:-0.570732 26:0.103874 27:-0.98715 28:-0.919238 29:-0.508453 30:0.368728 31:-0.989309 32:-0.934284 33:-0.51706 34:0.346649 35:-0.9867 36:-0.936271 +1024 1:-0.759263 2:-0.606434 3:-0.566145 4:0.0303292 5:-0.927978 6:-0.761847 7:-0.574803 8:0.174121 9:-0.93226 10:-0.736971 11:-0.565084 12:0.174804 13:-0.888178 14:-0.850741 15:-0.568688 16:0.0713261 17:-0.873614 18:-0.873974 19:-0.364125 20:-0.562105 21:-0.350242 22:-0.0990773 23:-0.858765 24:-0.731187 25:-0.378049 26:0.138237 27:-0.860793 28:-0.680663 29:-0.36541 30:0.121177 31:-0.83469 32:-0.751495 33:-0.349081 34:-0.081895 35:-0.792248 36:-0.799118 +-1024 1:-0.792176 2:-0.75736 3:-0.658606 4:0.178542 5:-0.990367 6:-0.853117 7:-0.647817 8:0.271455 9:-0.990162 10:-0.854743 11:-0.488515 12:0.48294 13:-0.983716 14:-0.92658 15:-0.496546 16:0.448966 17:-0.981334 18:-0.932773 19:-0.365557 20:-0.608967 21:-0.355072 22:0.0100979 23:-0.911637 24:-0.749925 25:-0.37561 26:0.132705 27:-0.891751 28:-0.735079 29:-0.378414 30:0.205572 31:-0.878497 32:-0.780311 33:-0.367454 34:0.0251122 35:-0.845302 36:-0.820007 +-1024 1:-0.766922 2:-0.656441 3:-0.58606 4:0.129627 5:-0.96264 6:-0.790977 7:-0.609162 8:0.149625 9:-0.947042 10:-0.782651 11:-0.583461 12:0.236864 13:-0.9239 14:-0.880801 15:-0.588642 16:0.202604 17:-0.919471 18:-0.892267 19:-0.351951 20:-0.569837 21:-0.342995 22:-0.0564471 23:-0.87532 24:-0.730641 25:-0.368293 26:0.132777 27:-0.865848 28:-0.69328 29:-0.360208 30:0.147914 31:-0.844448 32:-0.753552 33:-0.349081 34:-0.0526397 35:-0.803605 36:-0.800049 +-1024 1:-0.841648 2:-0.979283 3:-0.88478 4:-0.129291 5:-0.999534 6:-0.987739 7:-0.891195 8:-0.0615887 9:-0.999544 10:-0.987375 11:-0.863706 12:0.290554 13:-0.999556 14:-0.990916 15:-0.878741 16:0.315727 17:-0.999592 18:-0.990826 19:-0.689223 20:-0.896767 21:-0.661836 22:-0.00383587 23:-0.999991 24:-0.950221 25:-0.665854 26:0.161005 27:-0.999973 28:-0.949438 29:-0.609883 30:0.474505 31:-0.99997 32:-0.955736 33:-0.606299 34:0.484703 35:-0.999955 36:-0.95586 +-1024 1:-0.883668 2:-0.970606 3:-1 4:-0.178046 5:-0.994611 6:-0.977763 7:-1 8:-0.148648 9:-0.9928 10:-0.984128 11:-1 12:0.125536 13:-0.989515 14:-0.992728 15:-1 16:0.167499 17:-0.991119 18:-0.992551 19:-0.896885 20:-0.974573 21:-0.958937 22:-0.212404 23:-0.998412 24:-0.980298 25:-0.963415 26:-0.0795255 27:-0.99621 28:-0.982815 29:-0.96619 30:0.184914 31:-0.996766 32:-0.984216 33:-0.963255 34:0.208171 35:-0.997159 36:-0.984353 +-1024 1:-0.760298 2:-0.689028 3:-0.5633 4:0.508161 5:-0.999368 6:-0.770778 7:-0.569077 8:0.599199 9:-0.999265 10:-0.783851 11:-0.405819 12:1 13:-0.998371 14:-0.865349 15:-0.418266 16:1 17:-0.998346 18:-0.866319 19:0.523093 20:-0.15639 21:0.565217 22:0.877727 23:-0.88355 24:-0.176818 25:0.54878 26:0.968137 27:-0.874188 28:-0.206934 29:0.994798 30:0.818719 31:-0.833765 32:-0.443581 33:0.994751 34:0.79733 35:-0.830492 36:-0.450803 +-1024 1:-0.581246 2:-0.131182 3:-0.227596 4:0.491056 5:-0.784998 6:-0.106978 7:-0.246958 8:0.444119 9:-0.760114 10:-0.191713 11:-0.124043 12:-0.0770297 13:-0.598596 14:-0.592222 15:-0.132771 16:-0.0645362 17:-0.597349 18:-0.601714 19:0.687791 20:0.207607 21:0.57971 22:0.388705 23:-0.426136 24:0.245728 25:0.6 26:0.340108 27:-0.38353 28:0.112269 29:0.687906 30:-0.258432 31:-0.236855 32:-0.155338 33:0.734908 34:-0.278161 35:-0.235307 36:-0.190708 +-1024 1:-0.58373 2:-0.120176 3:-0.227596 4:0.503858 5:-0.7813 6:-0.0851503 7:-0.246958 8:0.439526 9:-0.751402 10:-0.176063 11:-0.127106 12:-0.089391 13:-0.586447 14:-0.58387 15:-0.134305 16:-0.0801086 17:-0.584541 18:-0.594321 19:0.646975 20:0.2202 21:0.570048 22:0.391156 23:-0.415006 24:0.26637 25:0.580488 26:0.322844 27:-0.359337 28:0.130949 29:0.669701 30:-0.283183 31:-0.217926 32:-0.148846 33:0.711286 34:-0.300695 35:-0.211657 36:-0.177705 +1024 1:-0.867936 2:-0.925891 3:-0.807966 4:0.00718451 5:-1 6:-0.96092 7:-0.828203 8:0.0931347 9:-1 10:-0.957188 11:-0.773354 12:0.462546 13:-1 14:-0.972317 15:-0.788181 16:0.480569 17:-1 18:-0.972354 19:-0.338346 20:-0.691967 21:-0.219807 22:0.404204 23:-0.998566 24:-0.810236 25:-0.24878 26:0.602523 27:-0.99901 28:-0.796073 29:-0.0403121 30:0.925888 31:-0.997898 32:-0.837853 33:-0.0393701 34:0.925089 35:-0.997861 36:-0.837403 +1024 1:-0.877458 2:-0.253205 3:-0.709815 4:-0.230076 5:-0.508756 6:-0.244887 7:-0.722262 8:0.183504 9:-0.598569 10:0.0044446 11:-0.643185 12:-1 13:-0.300943 14:-0.793519 15:-0.656178 16:-1 17:-0.28325 18:-0.807662 19:-0.621912 20:-0.379129 21:-0.42029 22:-1 23:-0.26397 24:-0.764538 25:-0.458537 26:-0.461534 27:-0.375239 28:-0.578657 29:-0.401821 30:-0.881278 31:-0.397969 32:-0.788839 33:-0.388451 34:-0.850033 35:-0.398359 36:-0.79491 +-661.4548713859695 1:-0.645001 2:-0.284459 3:-0.26458 4:0.739528 5:-0.94197 6:-0.354143 7:-0.282749 8:1 9:-0.949073 10:-0.284686 11:0.139357 12:0.779864 13:-0.904178 14:-0.693403 15:0.125096 16:0.756771 17:-0.901712 18:-0.701255 19:0.60043 20:0.179112 21:0.538647 22:0.196784 23:-0.422322 24:0.0645101 25:0.519512 26:0.717763 27:-0.513181 28:0.298048 29:0.698309 30:-0.085977 31:-0.324275 32:-0.152402 33:0.713911 34:-0.25901 35:-0.270624 36:-0.222262 +-1024 1:-0.576899 2:-0.122129 3:-0.236131 4:0.247058 5:-0.73525 6:-0.220318 7:-0.245526 8:0.669203 9:-0.792711 10:-0.0710476 11:-0.12098 12:-0.0814433 13:-0.588309 14:-0.582313 15:-0.126631 16:-0.187032 17:-0.563739 18:-0.618722 19:0.631221 20:0.193756 21:0.560386 22:0.0666124 23:-0.351197 24:0.0370835 25:0.495122 26:0.586868 27:-0.438762 28:0.286942 29:0.695709 30:-0.198222 31:-0.265137 32:-0.150491 33:0.732283 34:-0.437554 35:-0.195652 36:-0.249363 +79.19952272035916 1:-0.576692 2:-0.109842 3:-0.231863 4:0.261788 5:-0.729995 6:-0.196227 7:-0.241231 8:0.672626 9:-0.786872 10:-0.0537202 11:-0.12098 12:-0.096637 13:-0.573517 14:-0.572209 15:-0.128166 16:-0.195331 17:-0.549896 18:-0.607737 19:0.591837 20:0.205385 21:0.538647 22:0.0194839 23:-0.317092 24:0.0382537 25:0.485366 26:0.556873 27:-0.413507 28:0.296467 29:0.674902 30:-0.220838 31:-0.244602 32:-0.13995 33:0.706037 34:-0.480225 35:-0.169089 36:-0.247868 +1024 1:-0.872076 2:-0.678962 3:-0.711238 4:0.149841 5:-0.963724 6:-0.759417 7:-0.710809 8:0.195372 9:-0.96432 10:-0.7894 11:-0.57121 12:0.283113 13:-0.949161 14:-0.906162 15:-0.588642 16:0.286584 17:-0.947109 18:-0.908547 19:-0.649839 20:-0.545227 21:-0.487923 22:-0.036903 23:-0.83811 24:-0.645691 25:-0.492683 26:-0.0325818 27:-0.802541 28:-0.70263 29:-0.448635 30:-0.087035 31:-0.773239 32:-0.769613 33:-0.451444 34:-0.109323 35:-0.763979 36:-0.782854 +1024 1:-0.861519 2:-0.657559 3:-0.692745 4:0.185775 5:-0.957214 6:-0.719151 7:-0.707946 8:0.186603 9:-0.949706 10:-0.753375 11:-0.577335 12:0.244 13:-0.929091 14:-0.88636 15:-0.584037 16:0.264877 17:-0.930251 18:-0.889702 19:-0.593985 20:-0.402693 21:-0.425121 22:0.0017249 23:-0.719452 24:-0.443364 25:-0.441463 26:-0.0615858 27:-0.656232 28:-0.542772 29:-0.344603 30:-0.264854 31:-0.641287 32:-0.698649 33:-0.317585 34:-0.329362 35:-0.624642 36:-0.729063 +1024 1:-0.854481 2:-0.891425 3:-0.780939 4:0.00820038 5:-0.99574 6:-0.935775 7:-0.786686 8:0.0662341 9:-0.99556 10:-0.941861 11:-0.722818 12:0.39313 13:-0.994436 14:-0.963373 15:-0.737529 16:0.409252 17:-0.994238 18:-0.963713 19:-0.712137 20:-0.732114 21:-0.589372 22:0.0590681 23:-0.960511 24:-0.790795 25:-0.617073 26:0.158965 27:-0.954841 28:-0.81066 29:-0.516255 30:0.239046 31:-0.94337 32:-0.873856 33:-0.52231 34:0.235481 35:-0.940271 36:-0.876165 +-1024 1:-0.894432 2:-0.621592 3:-0.731152 4:-0.00274774 5:-0.908608 6:-0.718836 7:-0.743737 8:-0.0569698 9:-0.883391 10:-0.75443 11:-0.679939 12:-0.1039 13:-0.834017 14:-0.879522 15:-0.689946 16:-0.0931552 17:-0.831581 18:-0.88506 19:-0.708557 20:-0.543503 21:-0.514493 22:-0.141615 23:-0.796621 24:-0.660643 25:-0.521951 26:-0.0851366 27:-0.776386 28:-0.704331 29:-0.477243 30:-0.196505 31:-0.729778 32:-0.773141 33:-0.47769 34:-0.204851 35:-0.723233 36:-0.785042 +1024 1:-0.897537 2:-0.557081 3:-0.731152 4:-0.179123 5:-0.816506 6:-0.679035 7:-0.740873 8:-0.15509 9:-0.812807 10:-0.701495 11:-0.705972 12:-0.315969 13:-0.707412 14:-0.838949 15:-0.717575 16:-0.315014 17:-0.70048 18:-0.848389 19:-0.71357 20:-0.533532 21:-0.521739 22:-0.183516 23:-0.770139 24:-0.65639 25:-0.529268 26:-0.12366 27:-0.751432 28:-0.701064 29:-0.487646 30:-0.220198 31:-0.711965 32:-0.765824 33:-0.480315 34:-0.252994 35:-0.70064 36:-0.784809 +1024 1:-0.833782 2:-0.929598 3:-0.775249 4:-0.0223797 5:-0.999374 6:-0.966534 7:-0.783822 8:0.0543002 9:-0.999321 10:-0.965601 11:-0.732006 12:0.422748 13:-0.999368 14:-0.976312 15:-0.746738 16:0.442832 17:-0.999387 18:-0.976341 19:-0.281776 20:-0.715057 21:-0.253623 22:0.361021 23:-0.998855 24:-0.830051 25:-0.239024 26:0.534335 27:-0.998794 28:-0.827555 29:-0.0741222 30:0.868833 31:-0.998323 32:-0.858962 33:-0.0734908 34:0.86865 35:-0.998242 36:-0.858298 +-1024 1:-0.83461 2:-0.929494 3:-0.775249 4:-0.0434743 5:-0.9985 6:-0.966875 7:-0.785254 8:0.0332343 9:-0.998482 10:-0.965686 11:-0.735069 12:0.422047 13:-0.999339 14:-0.976128 15:-0.751343 16:0.443685 17:-0.999379 18:-0.975976 19:-0.280344 20:-0.714634 21:-0.253623 22:0.362693 23:-0.998882 24:-0.829648 25:-0.239024 26:0.536526 27:-0.998861 28:-0.827411 29:-0.076723 30:0.869297 31:-0.998345 32:-0.858842 33:-0.0761155 34:0.87159 35:-0.998313 36:-0.857854 +1024 1:-0.672946 2:-0.261697 3:-0.399716 4:0.126739 5:-0.773767 6:-0.38503 7:-0.395848 8:0.37471 9:-0.802941 10:-0.321724 11:-0.339969 12:-0.103689 13:-0.656362 14:-0.675296 15:-0.350729 16:-0.0484719 17:-0.659054 18:-0.670554 19:0.325456 20:-0.00154701 21:0.321256 22:0.113344 23:-0.547925 24:-0.174389 25:0.32439 26:0.394933 27:-0.56718 28:-0.0851452 29:0.409623 30:-0.122365 31:-0.44959 32:-0.348289 33:0.414698 34:-0.0624548 35:-0.45407 36:-0.336039 +-1024 1:-0.666736 2:-0.253902 3:-0.386913 4:0.154571 5:-0.778834 6:-0.373281 7:-0.387258 8:0.358818 9:-0.795944 10:-0.32057 11:-0.330781 12:-0.101423 13:-0.65254 14:-0.669768 15:-0.346124 16:-0.0486195 17:-0.653009 18:-0.663702 19:0.345507 20:0.00963552 21:0.338164 22:0.10558 23:-0.537926 24:-0.168233 25:0.339024 26:0.384272 27:-0.556616 28:-0.0800337 29:0.412224 30:-0.118458 31:-0.440588 32:-0.333954 33:0.422572 34:-0.0532277 35:-0.445554 36:-0.318606 +1024 1:-0.805837 2:-0.977277 3:-0.832148 4:-0.145948 5:-0.999023 6:-0.99051 7:-0.85111 8:-0.0769719 9:-0.999017 10:-0.989209 11:-0.816233 12:0.271073 13:-0.999079 14:-0.992386 15:-0.829624 16:0.296694 17:-0.999125 18:-0.992353 19:-0.667025 20:-0.916936 21:-0.673913 22:-0.0556537 23:-0.999891 24:-0.963452 25:-0.690244 26:0.113243 27:-0.999914 28:-0.961457 29:-0.63329 30:0.415761 31:-0.99988 32:-0.966287 33:-0.632546 34:0.427006 35:-0.999879 36:-0.966551 +1024 1:-0.768992 2:-0.650161 3:-0.55761 4:0.42959 5:-0.989859 6:-0.731898 7:-0.496063 8:0.467154 9:-0.985989 10:-0.76509 11:-0.271057 12:0.701376 13:-0.98081 14:-0.876312 15:-0.297007 16:0.653079 17:-0.975957 18:-0.878649 19:0.651271 20:-0.2295 21:0.541063 22:0.408341 23:-0.813891 24:-0.382439 25:0.373171 26:0.417371 27:-0.731453 28:-0.332213 29:0.716515 30:0.201711 31:-0.746958 32:-0.588316 33:0.716535 34:0.296705 35:-0.752517 36:-0.560736 +-1024 1:-0.857586 2:-0.908947 3:-0.756757 4:0.0356839 5:-0.999744 6:-0.954239 7:-0.775233 8:0.123577 9:-0.999792 10:-0.951329 11:-0.705972 12:0.495631 13:-0.999763 14:-0.968432 15:-0.71911 16:0.514125 17:-0.999758 18:-0.968283 19:-0.126387 20:-0.661033 21:-0.0531401 22:0.476792 23:-0.998742 24:-0.797373 25:-0.0609756 26:0.663074 27:-0.998816 28:-0.78776 29:0.19896 30:1 31:-0.997951 32:-0.830324 33:0.2021 34:1 35:-0.997895 36:-0.828862 +-818.7540137434639 1:-0.78638 2:-0.703368 3:-0.615932 4:-0.0759331 5:-0.934493 6:-0.830079 7:-0.630637 8:0.198497 9:-0.959499 10:-0.787089 11:-0.555896 12:0.26983 13:-0.939196 14:-0.894644 15:-0.570223 16:0.288732 17:-0.937396 18:-0.893749 19:0.554601 20:-0.287049 21:0.596618 22:0.500615 23:-0.87845 24:-0.453857 25:0.529268 26:1 27:-0.926818 28:-0.33132 29:0.994798 30:0.658236 31:-0.869615 32:-0.600398 33:0.984252 34:0.742691 35:-0.875302 36:-0.576658 +1024 1:-0.86628 2:-0.980279 3:-0.889047 4:-0.124787 5:-0.999705 6:-0.98753 7:-0.899785 8:-0.0558002 9:-0.999713 10:-0.9868 11:-0.874426 12:0.29703 13:-0.999749 14:-0.990684 15:-0.887951 16:0.321894 17:-0.99977 18:-0.990579 19:-0.672753 20:-0.885724 21:-0.611111 22:0.019321 23:-0.999991 24:-0.946996 25:-0.621951 26:0.188278 27:-0.999973 28:-0.944337 29:-0.550065 30:0.503886 31:-0.999947 32:-0.951952 33:-0.551181 34:0.5148 35:-0.999943 36:-0.951603 +-1024 1:-0.537777 2:-0.131298 3:-0.244666 4:0.329833 5:-0.717147 6:-0.101734 7:-0.258411 8:0.125553 9:-0.614176 10:-0.173152 11:-0.0627871 12:-0.646968 13:-0.468795 14:-0.692147 15:-0.0621642 16:-0.3693 17:-0.523245 18:-0.651869 19:0.721446 20:0.0446896 21:0.44686 22:-0.0309809 23:-0.388488 24:-0.0955163 25:0.380488 26:0.292432 27:-0.386775 28:0.076887 29:0.815345 30:-0.949191 31:-0.250137 32:-0.564086 33:0.769029 34:-0.515831 35:-0.332466 36:-0.449709 +1024 1:-0.734838 2:-0.980943 3:-0.803698 4:-0.174136 5:-0.998121 6:-0.99291 7:-0.805297 8:-0.104461 9:-0.998449 10:-0.992562 11:-0.773354 12:0.241438 13:-0.998579 14:-0.99443 15:-0.789716 16:0.268371 17:-0.998649 18:-0.994373 19:-0.843895 20:-0.987447 21:-1 22:-0.211837 23:-0.999864 24:-0.98523 25:-1 26:-0.0531368 27:-0.999869 28:-0.987179 29:-1 30:0.226369 31:-0.999853 32:-0.986973 33:-1 34:0.243288 35:-0.999826 36:-0.986834 +1024 1:-0.697992 2:-0.297902 3:-0.422475 4:0.172545 5:-0.809597 6:-0.417988 7:-0.427344 8:0.354377 9:-0.813494 10:-0.356663 11:-0.37366 12:-0.145786 13:-0.669926 14:-0.708702 15:-0.387567 16:-0.110376 17:-0.671463 18:-0.711695 19:0.119227 20:-0.092311 21:0.190821 22:-0.0520198 23:-0.560449 24:-0.323047 25:0.107317 26:0.371354 27:-0.605519 28:-0.143845 29:0.256177 30:-0.268037 31:-0.486389 32:-0.486038 33:0.270341 34:-0.17403 35:-0.50752 36:-0.476957 +1024 1:-0.709791 2:-0.401815 3:-0.443812 4:0.383105 5:-0.917556 6:-0.512631 7:-0.447387 8:0.539061 9:-0.916974 10:-0.477993 11:-0.29709 12:0.267446 13:-0.862123 14:-0.787635 15:-0.318496 16:0.292012 17:-0.861316 18:-0.786953 19:0.160043 20:-0.112854 21:0.210145 22:0.0350258 23:-0.613195 24:-0.32435 25:0.168293 26:0.46532 27:-0.669037 28:-0.168061 29:0.287386 30:-0.180627 31:-0.530132 32:-0.489545 33:0.309711 34:-0.0764402 35:-0.554095 36:-0.478208 +1024 1:-0.686193 2:-0.287238 3:-0.399716 4:0.1911 5:-0.811782 6:-0.410596 7:-0.40587 8:0.371241 9:-0.813787 10:-0.3476 11:-0.355283 12:-0.143461 13:-0.665611 14:-0.702326 15:-0.367613 16:-0.101675 17:-0.669242 18:-0.704858 19:0.121375 20:-0.0907118 21:0.190821 22:-0.0465794 23:-0.561861 24:-0.320471 25:0.119512 26:0.373028 27:-0.607581 28:-0.146892 29:0.258778 30:-0.289196 31:-0.479534 32:-0.48968 33:0.265092 34:-0.172112 35:-0.50183 36:-0.468925 +1024 1:-0.681225 2:-0.28414 3:-0.392603 4:0.205322 5:-0.814526 6:-0.405774 7:-0.400143 8:0.368049 9:-0.812049 10:-0.347259 11:-0.346095 12:-0.132393 13:-0.668318 14:-0.700398 15:-0.359939 16:-0.0960253 17:-0.670888 18:-0.70398 19:0.14787 20:-0.0854045 21:0.210145 22:-0.032426 23:-0.564612 24:-0.313498 25:0.131707 26:0.383151 27:-0.608395 28:-0.140245 29:0.276983 30:-0.263026 31:-0.482956 32:-0.478222 33:0.288714 34:-0.170665 35:-0.501588 36:-0.467024 +1024 1:-0.892569 2:-0.804383 3:-0.847795 4:0.160446 5:-0.991783 6:-0.820887 7:-0.845383 8:0.201762 9:-0.990719 10:-0.848824 11:-0.721286 12:0.389681 13:-0.984447 14:-0.939073 15:-0.735994 16:0.412048 17:-0.984613 18:-0.939214 19:-0.867526 20:-0.725564 21:-0.78744 22:-0.278205 23:-0.845544 24:-0.804405 25:-0.792683 26:-0.219875 27:-0.818866 28:-0.840835 29:-0.755527 30:-0.235529 31:-0.821942 32:-0.910385 33:-0.761155 34:-0.226281 35:-0.816569 36:-0.914363 +1024 1:-0.665287 2:-0.383525 3:-0.344239 4:0.771075 5:-0.960786 6:-0.388735 7:-0.325698 8:0.366212 9:-0.901313 10:-0.574604 11:-0.119449 12:0.437866 13:-0.881257 14:-0.762889 15:-0.118956 16:0.45628 17:-0.883486 18:-0.767798 19:0.412102 20:-0.0487744 21:0.362319 22:0.665985 23:-0.743635 24:-0.00637234 25:0.429268 26:0.128143 27:-0.567031 28:-0.31632 29:0.503251 30:0.142438 31:-0.571691 32:-0.354661 33:0.506562 34:-0.0797872 35:-0.514787 36:-0.425234 +454.082826618172 1:-0.672118 2:-0.396185 3:-0.352774 4:0.77217 5:-0.966083 6:-0.411547 7:-0.288475 8:0.546356 9:-0.941245 10:-0.580383 11:-0.0199081 12:0.604312 13:-0.91676 14:-0.77252 15:-0.0115119 16:0.630266 17:-0.920145 18:-0.776446 19:0.396348 20:-0.0589256 21:0.350242 22:0.645435 23:-0.74716 24:-0.0310799 25:0.426829 26:0.134494 27:-0.582825 28:-0.332397 29:0.482445 30:0.150215 31:-0.581618 32:-0.364556 33:0.490814 34:-0.0619482 35:-0.527004 36:-0.43104 +1024 1:-0.635065 2:-0.0965154 3:-0.297297 4:0.582753 5:-0.77076 6:0.0407111 7:-0.324266 8:-0.0106023 9:-0.61992 10:-0.294111 11:-0.18683 12:-0.36484 13:-0.522739 14:-0.637738 15:-0.203377 16:-0.319704 17:-0.525611 18:-0.640872 19:0.497315 20:0.052584 21:0.425121 22:0.547537 23:-0.624859 24:0.0962931 25:0.485366 26:-0.0493864 27:-0.409703 28:-0.260792 29:0.570871 30:-0.0335435 31:-0.444382 32:-0.282905 33:0.577428 34:-0.199161 35:-0.395616 36:-0.343508 +-1024 1:-0.631546 2:-0.248442 3:-0.307255 4:0.589962 5:-0.867998 6:-0.220395 7:-0.311382 8:0.039829 9:-0.750445 10:-0.481278 11:-0.223583 12:-0.0431926 13:-0.681365 14:-0.675228 15:-0.23868 16:-0.0738108 17:-0.670412 18:-0.690165 19:0.437164 20:-0.0187843 21:0.362319 22:0.582978 23:-0.691776 24:0.0167618 25:0.458537 26:0.000179613 27:-0.497329 28:-0.326942 29:0.498049 30:0.0527166 31:-0.510556 32:-0.321361 33:0.511811 34:-0.194809 35:-0.444199 36:-0.403392 +1024 1:-0.81184 2:-0.674832 3:-0.652916 4:0.329992 5:-0.986284 6:-0.748243 7:-0.6335 8:0.395861 9:-0.985288 10:-0.772417 11:-0.462481 12:0.548103 13:-0.974067 14:-0.889184 15:-0.470453 16:0.557217 17:-0.974104 18:-0.891711 19:-0.190834 20:-0.374386 21:-0.130435 22:0.0473799 23:-0.778048 24:-0.528403 25:-0.134146 26:0.0113013 27:-0.71749 28:-0.578293 29:-0.0611183 30:0.0869236 31:-0.751403 32:-0.647399 33:-0.0734908 34:-0.0508304 35:-0.713842 36:-0.679101 +1024 1:-0.768371 2:-0.532242 3:-0.559033 4:0.367016 5:-0.955043 6:-0.618383 7:-0.566213 8:0.310164 9:-0.931249 10:-0.653181 11:-0.468606 12:0.276087 13:-0.901409 14:-0.838492 15:-0.488872 16:0.268272 17:-0.89677 18:-0.842455 19:-0.103473 20:-0.262019 21:-0.0410628 22:-0.107564 23:-0.646617 24:-0.4673 25:-0.0609756 26:-0.0368638 27:-0.605263 28:-0.474742 29:0.00390117 30:-0.0689756 31:-0.621289 32:-0.551493 33:0.0209974 34:-0.192919 35:-0.58791 36:-0.594899 +1024 1:-0.745394 2:-0.390224 3:-0.510669 4:0.141377 5:-0.840981 6:-0.498051 7:-0.520401 8:0.0984475 9:-0.810901 10:-0.535077 11:-0.467075 12:-0.0886132 13:-0.726222 14:-0.750981 15:-0.478127 16:-0.185302 17:-0.701116 18:-0.776562 19:-0.0834228 20:-0.240254 21:-0.02657 22:-0.0988082 23:-0.635618 24:-0.447096 25:-0.0365854 26:0.00305342 27:-0.606676 28:-0.44682 29:0.0195059 30:-0.115442 31:-0.592775 32:-0.54023 33:0.0341207 34:-0.260186 35:-0.548809 36:-0.585189 +1024 1:-0.758435 2:-0.460112 3:-0.536273 4:0.278501 5:-0.909883 6:-0.551093 7:-0.55476 8:0.135062 9:-0.860327 10:-0.603999 11:-0.497703 12:0.0761504 13:-0.815617 14:-0.792526 15:-0.513431 16:0.0166384 17:-0.799935 18:-0.807438 19:-0.0726817 20:-0.247887 21:-0.0120773 22:-0.0488887 23:-0.664122 24:-0.446914 25:-0.0317073 26:-0.0528135 27:-0.594802 28:-0.474816 29:0.0273082 30:-0.0488003 31:-0.616506 32:-0.533239 33:0.0367454 34:-0.207103 35:-0.572557 36:-0.583683 +-1024 1:-0.792176 2:-0.830911 3:-0.684211 4:0.178628 5:-0.998764 6:-0.901116 7:-0.695061 8:0.273603 9:-0.998803 10:-0.899827 11:-0.578867 12:0.63973 13:-0.998287 14:-0.938634 15:-0.585572 16:0.650791 17:-0.998293 18:-0.939726 19:-0.153598 20:-0.508675 21:-0.0603865 22:0.329888 23:-0.936612 24:-0.639147 25:-0.0634146 26:0.48293 27:-0.93267 28:-0.633597 29:0.159948 30:0.54213 31:-0.922568 32:-0.738685 33:0.170604 34:0.457863 35:-0.913354 36:-0.759083 +1024 1:-0.807493 2:-0.975724 3:-0.816501 4:-0.162368 5:-0.998242 6:-0.991086 7:-0.813887 8:-0.099181 9:-0.998277 10:-0.991115 11:-0.79173 12:0.250866 13:-0.998512 14:-0.993185 15:-0.8066 16:0.277071 17:-0.99857 18:-0.993148 19:-0.662728 20:-0.933371 21:-0.714976 22:-0.0958117 23:-0.99976 24:-0.970459 25:-0.704878 26:0.0687056 27:-0.999757 28:-0.971076 29:-0.669701 30:0.367178 31:-0.999722 32:-0.972801 33:-0.666667 34:0.378401 35:-0.999687 36:-0.973029 +1024 1:-0.802318 2:-0.949912 3:-0.758179 4:-0.0945982 5:-0.99852 6:-0.980389 7:-0.760916 8:-0.0232036 9:-0.998508 10:-0.979813 11:-0.721286 12:0.337724 13:-0.998705 14:-0.985298 15:-0.732924 16:0.360632 17:-0.998754 18:-0.985426 19:-0.455066 20:-0.825179 21:-0.439614 22:0.129453 23:-0.999339 24:-0.913236 25:-0.443902 26:0.305565 27:-0.999388 28:-0.909309 29:-0.336801 30:0.623249 31:-0.999169 32:-0.923592 33:-0.314961 34:0.617664 35:-0.998985 36:-0.926257 +-1024 1:-0.782861 2:-0.861043 3:-0.684211 4:0.0937536 5:-0.997706 6:-0.92574 7:-0.66786 8:0.17496 9:-0.997967 10:-0.930916 11:-0.578867 12:0.541939 13:-0.997658 14:-0.954281 15:-0.585572 16:0.556291 17:-0.99771 18:-0.955267 19:-0.175081 20:-0.622062 21:-0.142512 22:0.273268 23:-0.967342 24:-0.745829 25:-0.0756098 26:0.301879 27:-0.952177 28:-0.781223 29:0.102731 30:0.489093 31:-0.953707 32:-0.827881 33:0.120735 34:0.408389 35:-0.946652 36:-0.844362 +1024 1:-0.776651 2:-0.614189 3:-0.624467 4:0.358681 5:-0.967897 6:-0.654104 7:-0.58053 8:0.0452276 9:-0.933352 10:-0.80691 11:-0.531394 12:0.608421 13:-0.95838 14:-0.830612 15:-0.590177 16:0.0254045 17:-0.884382 18:-0.899421 19:-0.197279 20:-0.433949 21:-0.200483 22:0.241929 23:-0.863488 24:-0.521455 25:-0.192683 26:-0.370635 27:-0.639668 28:-0.733753 29:-0.170351 30:0.168321 31:-0.783659 32:-0.65275 33:-0.149606 34:-0.403486 35:-0.661433 36:-0.786466 +1024 1:-0.790106 2:-0.51623 3:-0.637269 4:0.323309 5:-0.918561 6:-0.509169 7:-0.624911 8:-0.208819 9:-0.818478 10:-0.744094 11:-0.603369 12:0.322996 13:-0.866783 14:-0.766197 15:-0.605526 16:-0.299688 17:-0.752654 18:-0.872529 19:-0.213749 20:-0.386209 21:-0.205314 22:0.157356 23:-0.805448 24:-0.480335 25:-0.187805 26:-0.519319 27:-0.524726 28:-0.719122 29:-0.170351 30:0.00560064 31:-0.707878 32:-0.629676 33:-0.139108 34:-0.467298 35:-0.60229 36:-0.756711 +-1024 1:-0.784724 2:-0.824258 3:-0.645804 4:0.202133 5:-0.999174 6:-0.901325 7:-0.680744 8:0.297001 9:-0.999093 10:-0.895976 11:-0.535988 12:0.668351 13:-0.998716 14:-0.938135 15:-0.547199 16:0.679271 17:-0.998699 18:-0.938602 19:0.094164 20:-0.476759 21:0.195652 22:0.418995 23:-0.941168 24:-0.62297 25:0.136585 26:0.628596 27:-0.946173 28:-0.600739 29:0.508453 30:0.606517 31:-0.926911 32:-0.734896 33:0.509186 34:0.589774 35:-0.924998 36:-0.740848 +839.0360194824431 1:-0.877251 2:-0.921303 3:-0.958748 4:-0.259034 5:-0.968026 6:-0.962744 7:-0.972799 8:-0.125031 9:-0.977581 10:-0.947073 11:-0.958652 12:0.0394724 13:-0.962102 14:-0.979939 15:-0.975441 16:0.057156 17:-0.9598 18:-0.980871 19:-0.673469 20:-0.884217 21:-0.68599 22:-0.233775 23:-0.973604 24:-0.950049 25:-0.690244 26:0.0143403 27:-0.983702 28:-0.936971 29:-0.680104 30:0.176116 31:-0.978634 32:-0.954655 33:-0.658793 34:0.224237 35:-0.982134 36:-0.954095 +-1024 1:-0.742289 2:-0.550007 3:-0.503556 4:0.521018 5:-0.980591 6:-0.633206 7:-0.514674 8:0.606659 9:-0.978426 10:-0.643241 11:-0.154671 12:0.654408 13:-0.96395 14:-0.850193 15:-0.160399 16:0.611061 17:-0.960605 18:-0.858807 19:0.154314 20:-0.204197 21:0.0531401 22:0.0295996 23:-0.60592 24:-0.308242 25:0.00731707 26:0.191252 27:-0.607774 28:-0.297684 29:0.219766 30:-0.376765 31:-0.532396 32:-0.599622 33:0.217848 34:-0.554422 35:-0.480153 36:-0.652806 +1024 1:-0.731112 2:-0.435273 3:-0.509246 4:0.365615 5:-0.913071 6:-0.497241 7:-0.534717 8:0.3128 9:-0.88053 10:-0.526239 11:-0.350689 12:0.141246 13:-0.851517 14:-0.814234 15:-0.389102 16:0.0309561 17:-0.827383 18:-0.830652 19:0.177229 20:-0.153737 21:0.089372 22:0.0316043 23:-0.570244 24:-0.259973 25:0.0390244 26:0.128352 27:-0.538072 28:-0.258478 29:0.248375 30:-0.449244 31:-0.468591 32:-0.564829 33:0.249344 34:-0.586644 35:-0.426066 36:-0.613151 +-1024 1:-0.779342 2:-0.812819 3:-0.641536 4:0.233276 5:-0.999183 6:-0.88917 7:-0.660702 8:0.316765 9:-0.999082 10:-0.89124 11:-0.51608 12:0.695576 13:-0.998664 14:-0.933335 15:-0.527245 16:0.706208 17:-0.998661 18:-0.933826 19:0.172216 20:-0.447583 21:0.251208 22:0.518451 23:-0.944254 24:-0.575246 25:0.204878 26:0.616741 27:-0.935514 28:-0.585764 29:0.583875 30:0.613217 31:-0.917146 32:-0.71217 33:0.577428 34:0.579896 35:-0.91321 36:-0.7207 +1024 1:-0.879321 2:-0.40184 3:-0.73542 4:0.401739 5:-0.813405 6:-0.0656293 7:-0.736578 8:-0.465528 9:-0.562503 10:-0.597016 11:-0.679939 12:-0.871686 13:-0.462768 14:-0.856187 15:-0.686876 16:-0.809844 17:-0.472427 18:-0.859247 19:-0.711421 20:-0.469264 21:-0.531401 22:-0.331206 23:-0.577239 24:-0.54959 25:-0.514634 26:-1 27:-0.171492 28:-0.815038 29:-0.459038 30:-1 31:-0.408201 32:-0.857246 33:-0.456693 34:-1 35:-0.392549 36:-0.867786 +1024 1:-0.860277 2:-0.574598 3:-0.786629 4:-0.127828 5:-0.777196 6:-0.563895 7:-0.785254 8:-0.818752 9:-0.512383 10:-0.808331 11:-0.762634 12:-0.552398 13:-0.603985 14:-0.857289 15:-0.772832 16:-0.459273 17:-0.623796 18:-0.854124 19:-0.232367 20:-0.349559 21:-0.142512 22:0.188085 23:-0.759579 24:-0.386303 25:-0.207317 26:-0.328354 27:-0.531487 28:-0.605397 29:-0.0481144 30:-0.150029 31:-0.683627 32:-0.674923 33:-0.0472441 34:-0.136389 35:-0.678624 36:-0.677167 +1024 1:-0.708963 2:-0.188318 3:-0.352774 4:0.945113 5:-0.883071 6:0.111117 7:-0.332856 8:-0.416115 9:-0.579667 10:-0.537013 11:-0.292496 12:-0.475854 13:-0.505534 14:-0.674981 15:-0.307751 16:-0.345503 17:-0.524563 18:-0.657948 19:-0.0247046 20:0.0124456 21:0.195652 22:0.842187 23:-0.711195 24:0.279291 25:0.239024 26:-0.69784 27:-0.132694 28:-0.481678 29:0.26658 30:-0.746584 31:-0.223115 32:-0.471263 33:0.291339 34:-0.554268 35:-0.282121 36:-0.444271 +-811.3787732946936 1:-0.813496 2:-0.600478 3:-0.645804 4:0.572558 5:-0.98557 6:-0.569207 7:-0.526127 8:0.377009 9:-0.976151 10:-0.763907 11:-0.367534 12:0.556338 13:-0.961614 14:-0.863406 15:-0.386032 16:0.58359 17:-0.961967 18:-0.861103 19:-0.125671 20:-0.20402 21:0.0652174 22:0.73212 23:-0.836911 24:-0.09204 25:0.0585366 26:-0.224789 27:-0.53308 28:-0.529497 29:0.107932 30:-0.308936 31:-0.553326 32:-0.593928 33:0.131234 34:-0.163835 35:-0.587374 36:-0.574238 +-1024 1:-0.799213 2:-0.781089 3:-0.658606 4:0.323493 5:-0.998593 6:-0.836414 7:-0.597709 8:0.34282 9:-0.998173 10:-0.880947 11:-0.488515 12:0.74935 13:-0.997725 14:-0.917148 15:-0.505756 16:0.761183 17:-0.997751 18:-0.916848 19:-0.028285 20:-0.363647 21:0.149758 22:0.815014 23:-0.951186 24:-0.37231 25:0.265854 26:0.457195 27:-0.881129 28:-0.566849 29:0.50065 30:0.537917 31:-0.875865 32:-0.653809 33:0.51706 34:0.607496 35:-0.883712 36:-0.643626 +-1024 1:-0.788864 2:-0.6061 3:-0.543385 4:0.391868 5:-0.977799 6:-0.696019 7:-0.586256 8:0.579805 9:-0.981003 10:-0.652951 11:-0.349158 12:0.574584 13:-0.958623 14:-0.852669 15:-0.359939 16:0.641295 17:-0.962466 18:-0.846596 19:-0.379162 20:-0.36876 21:-0.214976 22:-0.0288345 23:-0.736061 24:-0.516641 25:-0.195122 26:0.345827 27:-0.806673 28:-0.458106 29:-0.16515 30:-0.178919 31:-0.660114 32:-0.66524 33:-0.139108 34:-0.0552992 35:-0.684597 36:-0.645625 +1024 1:-0.83461 2:-0.884792 3:-0.726885 4:0.0575985 5:-0.998104 6:-0.936794 7:-0.725125 8:0.136852 9:-0.998342 10:-0.940103 11:-0.653905 12:0.502031 13:-0.99817 14:-0.960473 15:-0.668457 16:0.524367 17:-0.998305 18:-0.960274 19:-0.334049 20:-0.671317 21:-0.193237 22:0.238245 23:-0.975586 24:-0.784112 25:-0.146341 26:0.381728 27:-0.975591 28:-0.797854 29:-0.0117035 30:0.529639 31:-0.967872 32:-0.845479 33:-0.00262467 34:0.530169 35:-0.967015 36:-0.846789 +-1024 1:-0.789899 2:-0.502926 3:-0.587482 4:-0.0308922 5:-0.84281 6:-0.625524 7:-0.602004 8:0.384 9:-0.907212 10:-0.525647 11:-0.56049 12:-0.138557 13:-0.755748 14:-0.805517 15:-0.573292 16:0.111696 17:-0.798301 18:-0.770968 19:-0.370569 20:-0.338703 21:-0.219807 22:-0.153488 23:-0.648386 24:-0.496349 25:-0.192683 26:0.253449 27:-0.749479 28:-0.43733 29:-0.159948 30:-0.300268 31:-0.588586 32:-0.644733 33:-0.131234 34:-0.17546 35:-0.618442 36:-0.6287 +-544.6826785752112 1:-0.795694 2:-0.501056 3:-0.59175 4:-0.0501447 5:-0.835202 6:-0.624991 7:-0.604868 8:0.385408 9:-0.905807 10:-0.519809 11:-0.566616 12:-0.150513 13:-0.748696 14:-0.803065 15:-0.579432 16:0.0904819 17:-0.79031 18:-0.769994 19:-0.383459 20:-0.342809 21:-0.229469 22:-0.16196 23:-0.646002 24:-0.49954 25:-0.207317 26:0.244849 27:-0.747062 28:-0.438787 29:-0.159948 30:-0.294143 31:-0.596712 32:-0.650682 33:-0.136483 34:-0.177034 35:-0.622295 36:-0.634398 +-1024 1:-0.815152 2:-0.887934 3:-0.733997 4:0.0397474 5:-0.99736 6:-0.937741 7:-0.712241 8:0.104177 9:-0.99768 10:-0.946954 11:-0.652374 12:0.48015 13:-0.997693 14:-0.962225 15:-0.668457 16:0.501185 17:-0.997765 18:-0.961973 19:-0.296813 20:-0.668794 21:-0.280193 22:0.371116 23:-0.988209 24:-0.749532 25:-0.204878 26:0.385069 27:-0.977527 28:-0.796946 29:-0.0715215 30:0.606136 31:-0.97323 32:-0.831616 33:-0.0787402 34:0.630256 35:-0.973814 36:-0.827042 +-1024 1:-0.776237 2:-0.784385 3:-0.621622 4:0.226759 5:-0.995001 6:-0.861213 7:-0.594846 8:0.289124 9:-0.995624 10:-0.883415 11:-0.477795 12:0.637185 13:-0.99376 14:-0.923655 15:-0.496546 16:0.657499 17:-0.993935 18:-0.922725 19:-0.0605084 20:-0.479673 21:-0.02657 22:0.571389 23:-0.954878 24:-0.534996 25:0.0463415 26:0.463869 27:-0.926805 28:-0.642948 29:0.26658 30:0.54677 31:-0.91545 32:-0.725175 33:0.262467 34:0.635177 35:-0.922606 36:-0.707377 +1024 1:-0.754709 2:-0.674739 3:-0.596017 4:0.194227 5:-0.967279 6:-0.766937 7:-0.596278 8:0.0858264 9:-0.951632 10:-0.826812 11:-0.522205 12:0.323342 13:-0.948237 14:-0.89547 15:-0.53185 16:0.364708 17:-0.949877 18:-0.8936 19:0.150018 20:-0.379236 21:0.0483092 22:0.491002 23:-0.887784 24:-0.421936 25:0.097561 26:0.209113 27:-0.821279 28:-0.606434 29:0.256177 30:0.231482 31:-0.81846 32:-0.682631 33:0.265092 34:0.340932 35:-0.831745 36:-0.66294 +-1024 1:-0.719934 2:-0.511555 3:-0.506401 4:0.631209 5:-0.978667 6:-0.540303 7:-0.385827 8:0.522858 9:-0.971564 10:-0.68887 11:-0.124043 12:0.605876 13:-0.951854 14:-0.837967 15:-0.15119 16:0.674408 17:-0.955409 18:-0.829902 19:0.0898675 20:-0.255631 21:0.0603865 22:0.58132 23:-0.841341 24:-0.240944 25:0.097561 26:-0.0114952 27:-0.671328 28:-0.542433 29:0.144343 30:-0.190167 31:-0.62796 32:-0.6204 33:0.133858 34:0.129849 35:-0.684978 36:-0.541184 +1024 1:-0.708549 2:-0.364331 3:-0.460882 4:0.519066 5:-0.90082 6:-0.341303 7:-0.453114 8:-0.0551659 9:-0.788482 10:-0.604948 11:-0.431853 12:-0.198233 13:-0.701043 14:-0.764296 15:-0.458173 16:0.0791655 17:-0.743604 18:-0.716564 19:0.0891515 20:-0.219691 21:0.0555556 22:0.551568 23:-0.803521 24:-0.183333 25:0.1 26:-0.155725 27:-0.585494 28:-0.539057 29:0.136541 30:-0.311785 31:-0.559417 32:-0.601088 33:0.133858 34:-0.00952562 35:-0.616959 36:-0.525705 +-1024 1:-0.773339 2:-0.844603 3:-0.665718 4:0.128783 5:-0.997211 6:-0.91136 7:-0.675018 8:0.220673 9:-0.997635 10:-0.912521 11:-0.562021 12:0.59075 13:-0.99745 14:-0.94489 15:-0.574827 16:0.605558 17:-0.997476 18:-0.945181 19:-0.253849 20:-0.608895 21:-0.210145 22:0.332148 23:-0.96846 24:-0.707226 25:-0.197561 26:0.407262 27:-0.956277 28:-0.724223 29:-0.00130039 30:0.487339 31:-0.946799 32:-0.808699 34:0.502234 35:-0.947814 36:-0.809787 +-1024 1:-0.803767 2:-0.941435 3:-0.73542 4:-0.0905959 5:-0.99768 6:-0.976825 7:-0.766643 8:-0.00517066 9:-0.998266 10:-0.974749 11:-0.707504 12:0.355632 13:-0.998453 14:-0.982436 15:-0.71911 16:0.376967 17:-0.998436 18:-0.982484 19:-0.484425 20:-0.812406 21:-0.468599 22:0.169164 23:-0.999299 24:-0.894316 25:-0.468293 26:0.326156 27:-0.999172 28:-0.896219 29:-0.352406 30:0.646802 31:-0.998891 32:-0.91298 33:-0.351706 34:0.653152 35:-0.998906 36:-0.913107 +-1024 1:-0.772718 2:-0.853189 3:-0.660028 4:0.103661 5:-0.997399 6:-0.922636 7:-0.693629 8:0.208033 9:-0.997685 10:-0.915172 11:-0.574273 12:0.569511 13:-0.997573 14:-0.948982 15:-0.587107 16:0.584557 17:-0.997584 18:-0.949255 19:-0.240243 20:-0.630797 21:-0.195652 22:0.23255 23:-0.965184 24:-0.756184 25:-0.229268 26:0.447768 27:-0.968907 28:-0.733459 29:0.00130039 30:0.505649 31:-0.956324 32:-0.824782 34:0.51612 35:-0.956375 36:-0.824968 +1024 1:-0.701304 2:-0.515366 3:-0.513514 4:0.12437 5:-0.896597 6:-0.635781 7:-0.468862 8:0.210537 9:-0.915949 10:-0.689219 11:-0.315467 12:0.138143 13:-0.886169 14:-0.859277 15:-0.33538 16:0.086349 17:-0.876061 18:-0.869609 19:-0.0103831 20:-0.404336 21:-0.118357 22:0.324682 23:-0.864823 24:-0.473441 25:-0.109756 26:0.108609 27:-0.782831 28:-0.60217 29:0.053316 30:-0.0225928 31:-0.770103 32:-0.724263 33:0.0393701 34:-0.0799048 35:-0.752615 36:-0.739223 +1024 1:-0.685365 2:-0.427292 3:-0.483642 4:0.121121 5:-0.844719 6:-0.52658 7:-0.453114 8:0.00786668 9:-0.821322 10:-0.621577 11:-0.367534 12:-0.168048 13:-0.764362 14:-0.814969 15:-0.379893 16:-0.158036 17:-0.761608 18:-0.821609 19:-0.00823487 20:-0.384146 21:-0.120773 22:0.297048 23:-0.840309 24:-0.445533 25:-0.119512 26:0.0272437 27:-0.73639 28:-0.592655 29:0.0247074 30:-0.101633 31:-0.733151 32:-0.711947 33:0.0131234 34:-0.143934 35:-0.715461 36:-0.723165 +1024 1:-0.768785 2:-0.985473 3:-0.8734 4:-0.154791 5:-0.998955 6:-0.990783 7:-0.875447 8:-0.0910136 9:-0.998989 10:-0.990873 11:-0.846861 12:0.25834 13:-0.999094 14:-0.993275 15:-0.857252 16:0.282729 17:-0.999084 18:-0.993294 19:-0.883996 20:-0.97906 21:-0.975845 22:-0.18732 23:-0.999982 24:-0.980971 25:-0.978049 26:-0.0289177 27:-0.999986 28:-0.982915 29:-0.973992 30:0.256994 31:-1 32:-0.983288 33:-0.976378 34:0.273032 35:-1 36:-0.983346 +1024 1:-0.852205 2:-0.920999 3:-0.778094 4:0.00596058 5:-0.999722 6:-0.961094 7:-0.796707 8:0.0946546 9:-0.999741 10:-0.957124 11:-0.733538 12:0.461041 13:-0.999711 14:-0.972385 15:-0.746738 16:0.4802 17:-0.999723 18:-0.972413 19:-0.227354 20:-0.686475 21:-0.149758 22:0.411316 23:-0.99895 24:-0.820163 25:-0.160976 26:0.614557 27:-0.998992 28:-0.801723 29:0.0403121 30:0.940309 31:-0.998428 32:-0.844909 33:0.0524934 34:0.938839 35:-0.998351 36:-0.844872 +1024 1:-0.773546 2:-0.583511 3:-0.513514 4:0.448328 5:-0.981428 6:-0.683929 7:-0.550465 8:0.597726 9:-0.981042 10:-0.652381 11:-0.309342 12:0.660597 13:-0.963406 14:-0.840618 15:-0.321566 16:0.646715 17:-0.961349 18:-0.844311 19:0.447189 20:-0.111669 21:0.386473 22:0.212 23:-0.66372 24:-0.266719 25:0.370732 26:0.626318 27:-0.731952 28:-0.161504 29:0.485046 30:0.109725 31:-0.627498 32:-0.455843 33:0.51706 34:0.067783 35:-0.615741 36:-0.476929 +-1024 1:-0.617057 2:-0.232617 3:-0.300142 4:0.279517 5:-0.801576 6:-0.327703 7:-0.312813 8:0.547644 9:-0.833342 10:-0.268167 11:-0.217458 12:-0.0543702 13:-0.678292 14:-0.676061 15:-0.221796 16:-0.00807728 17:-0.683083 18:-0.677144 19:0.609739 20:0.0995681 21:0.487923 22:0.0244922 23:-0.386841 24:-0.0451325 25:0.480488 26:0.478123 27:-0.507847 28:0.07006 29:0.615085 30:-0.308119 31:-0.333879 32:-0.311021 33:0.629921 34:-0.313604 35:-0.319211 36:-0.31983 +-1024 1:-0.835852 2:-0.978584 3:-0.883357 4:-0.12934 5:-0.999458 6:-0.987411 7:-0.882606 8:-0.0616284 9:-0.999547 10:-0.987762 11:-0.85758 12:0.290072 13:-0.999523 14:-0.991003 15:-0.872602 16:0.314464 17:-0.999536 18:-0.990904 19:-0.682062 20:-0.901301 21:-0.654589 22:-0.0132644 23:-1 24:-0.954145 25:-0.646341 26:0.150293 27:-1 28:-0.955358 29:-0.591678 30:0.462552 31:-0.999989 32:-0.960094 33:-0.593176 34:0.473594 35:-0.999985 36:-0.959976 +-982.1290528436919 1:-0.746636 2:-0.702402 3:-0.524893 4:0.415735 5:-0.993341 6:-0.770544 7:-0.437366 8:0.290479 9:-0.985924 10:-0.852203 11:-0.284839 12:0.584899 13:-0.980333 14:-0.902558 15:-0.300077 16:0.606485 17:-0.980514 18:-0.901688 19:0.438596 20:-0.335531 21:0.357488 22:0.724908 23:-0.914465 24:-0.3575 25:0.363415 26:0.157514 27:-0.803041 28:-0.621325 29:0.641092 30:0.162901 31:-0.808255 32:-0.699007 33:0.643045 34:0.230515 35:-0.812936 36:-0.686781 +893.870197304652 1:-0.784103 2:-0.548768 3:-0.635846 4:0.175537 5:-0.874638 6:-0.51998 7:-0.616321 8:-0.461577 9:-0.735496 10:-0.777481 11:-0.542113 12:-0.634209 13:-0.67295 14:-0.890635 15:-0.554873 16:-0.583581 17:-0.671769 18:-0.890209 19:0.602578 20:-0.311002 21:0.408213 22:0.619835 23:-0.877478 24:-0.34745 25:0.478049 26:0.115312 27:-0.777979 28:-0.613246 29:0.693108 30:0.0136745 31:-0.764429 32:-0.696825 33:0.721785 34:0.0877479 35:-0.771518 36:-0.686407 +-1024 1:-0.706065 2:-0.489645 3:-0.446657 4:0.778834 5:-0.979397 6:-0.448423 7:-0.30136 8:0.266565 9:-0.942025 10:-0.738941 11:-0.0949464 12:0.453871 13:-0.929199 14:-0.838068 15:-0.108212 16:0.50549 17:-0.931243 18:-0.832736 19:0.406373 20:-0.171423 21:0.352657 22:0.910546 23:-0.86414 24:-0.0585065 25:0.385366 26:-0.319812 27:-0.524717 28:-0.578523 29:0.576073 30:-0.501993 31:-0.54896 32:-0.661696 33:0.585302 34:-0.266256 35:-0.588352 36:-0.614548 +1024 1:-0.668599 2:-0.263015 3:-0.325747 4:0.98478 5:-0.921555 6:-0.0146546 7:-0.298497 8:-0.546296 9:-0.614117 10:-0.657849 11:-0.215926 12:-0.72593 13:-0.540859 14:-0.790294 15:-0.220261 16:-0.449146 17:-0.590303 18:-0.753758 19:0.417114 20:-0.0869196 21:0.396135 22:0.998264 23:-0.827541 24:0.115803 25:0.414634 26:-0.565121 27:-0.348062 28:-0.565592 29:0.581274 30:-0.826478 31:-0.387722 32:-0.647116 33:0.608924 34:-0.512077 35:-0.457862 36:-0.588963 +-1024 1:-0.658249 2:-0.262366 3:-0.321479 4:1 5:-0.923886 6:-0.0108434 7:-0.297065 8:-0.547268 9:-0.613737 10:-0.657858 11:-0.214395 12:-0.717576 13:-0.544125 14:-0.78999 15:-0.220261 16:-0.437395 17:-0.592783 18:-0.751723 19:0.391335 20:-0.118778 21:0.347826 22:0.946121 23:-0.834138 24:0.057238 25:0.395122 26:-0.550637 27:-0.380505 28:-0.585569 29:0.56567 30:-0.810024 31:-0.418271 32:-0.668763 33:0.595801 34:-0.47098 35:-0.490748 36:-0.604177 +-1024 1:-0.810805 2:-0.941118 3:-0.762447 4:-0.0683018 5:-0.998576 6:-0.97443 7:-0.76378 8:0.00684246 9:-0.998801 10:-0.974835 11:-0.716692 12:0.366658 13:-0.998798 14:-0.982069 15:-0.729854 16:0.389989 17:-0.99883 18:-0.981965 19:-0.372718 20:-0.786828 21:-0.359903 22:0.218786 23:-0.999186 24:-0.884364 25:-0.334146 26:0.378201 27:-0.999275 28:-0.89026 29:-0.204161 30:0.701324 31:-0.998872 32:-0.906998 33:-0.204724 34:0.710957 35:-0.998913 36:-0.905936 +-941.5211835217729 1:-0.679155 2:-0.442676 3:-0.459459 4:-0.0255313 5:-0.826818 6:-0.602434 7:-0.455977 8:0.276292 9:-0.875864 10:-0.554762 11:-0.361409 12:-0.231715 13:-0.758269 14:-0.828681 15:-0.381427 16:0.107317 17:-0.809093 18:-0.783436 19:0.155747 20:-0.290233 21:0.00966184 22:0.0490233 23:-0.698513 24:-0.420383 25:0.1 26:0.236759 27:-0.732825 28:-0.451084 29:0.227568 30:-0.328702 31:-0.629964 32:-0.685557 33:0.220472 34:-0.0130174 35:-0.687098 36:-0.620132 +-1024 1:-0.675223 2:-0.472942 3:-0.456615 4:-0.0773223 5:-0.836637 6:-0.656086 7:-0.440229 8:0.443015 9:-0.927679 10:-0.579625 11:-0.31853 12:-0.15622 13:-0.810166 14:-0.855812 15:-0.33231 16:0.174658 17:-0.855971 18:-0.818737 19:0.200859 20:-0.320336 21:0.0193237 22:0.0845981 23:-0.735975 24:-0.449196 25:0.112195 26:0.247967 27:-0.766227 28:-0.495128 29:0.253576 30:-0.241384 31:-0.676013 32:-0.698708 33:0.254593 34:0.00639564 35:-0.71654 36:-0.649519 +-1024 1:-0.659077 2:-0.431534 3:-0.438122 4:-0.0380828 5:-0.820362 6:-0.600759 7:-0.430208 8:0.277924 9:-0.874057 10:-0.553077 11:-0.333844 12:-0.2382 13:-0.755663 14:-0.826982 15:-0.350729 16:0.0706536 17:-0.801405 18:-0.786815 19:0.200859 20:-0.310289 21:0.0144928 22:0.0873324 23:-0.726587 24:-0.432498 25:0.109756 26:0.192186 27:-0.739991 28:-0.494784 29:0.23277 30:-0.275805 31:-0.655286 32:-0.690458 33:0.24147 34:-0.0403731 35:-0.693795 36:-0.642278 +-1024 1:-0.655765 2:-0.426299 3:-0.43101 4:-0.0350169 5:-0.819199 6:-0.596913 7:-0.424481 8:0.280818 9:-0.872728 10:-0.548796 11:-0.326187 12:-0.240897 13:-0.75328 14:-0.825193 15:-0.346124 16:0.0733105 17:-0.799372 18:-0.783425 19:0.207304 20:-0.306741 21:0.0169082 22:0.0820196 23:-0.72185 24:-0.429685 25:0.119512 26:0.191813 27:-0.738537 28:-0.493472 29:0.243173 30:-0.284881 31:-0.651338 32:-0.689628 33:0.238845 34:-0.033697 35:-0.692475 36:-0.637317 +1024 1:-0.817015 2:-0.970005 3:-0.84495 4:-0.143813 5:-0.998183 6:-0.986631 7:-0.90408 8:-0.0554764 9:-0.998415 10:-0.980107 11:-0.842266 12:0.282361 13:-0.998567 14:-0.988977 15:-0.854183 16:0.304042 17:-0.9985 18:-0.9891 19:-0.892589 20:-0.952254 21:-0.908213 22:-0.214203 23:-0.994263 24:-0.971624 25:-0.990244 26:0.0388252 27:-0.999806 28:-0.950211 29:-0.916775 30:0.232689 31:-0.996086 32:-0.972177 33:-0.918635 34:0.241207 35:-0.995593 36:-0.972807 +1024 1:-0.81805 2:-0.98414 3:-0.874822 4:-0.155391 5:-0.998992 6:-0.990996 7:-0.89549 8:-0.0831701 9:-0.999133 10:-0.989434 11:-0.863706 12:0.263616 13:-0.999225 14:-0.992814 15:-0.877206 16:0.287789 17:-0.999206 18:-0.992771 19:-0.794486 20:-0.952709 21:-0.842995 22:-0.138173 23:-0.99995 24:-0.976384 25:-0.860976 26:0.0365621 27:-0.999941 28:-0.97175 29:-0.825748 30:0.324035 31:-0.999944 32:-0.976644 33:-0.826772 34:0.33754 35:-0.99994 36:-0.976841 +-1024 1:-0.742289 2:-0.396505 3:-0.522048 4:0.290942 5:-0.851252 6:-0.390981 7:-0.551897 8:-0.094192 9:-0.746365 10:-0.558128 11:-0.444104 12:-0.299338 13:-0.688029 14:-0.788918 15:-0.470453 16:-0.295358 17:-0.668598 18:-0.786083 19:0.0741139 20:-0.232869 21:0.0603865 22:0.187788 23:-0.688179 24:-0.295935 25:0.0536585 26:0.0783616 27:-0.629095 28:-0.421517 29:0.243173 30:-0.310717 31:-0.583062 32:-0.623304 33:0.244094 34:-0.22847 35:-0.586967 36:-0.604144 +-1024 1:-0.744152 2:-0.409411 3:-0.529161 4:0.278703 5:-0.855815 6:-0.4115 7:-0.557623 8:-0.0431197 9:-0.772478 10:-0.564574 11:-0.453292 12:-0.255879 13:-0.708155 14:-0.793366 15:-0.476592 16:-0.240752 17:-0.694324 18:-0.790463 19:0.0433226 20:-0.233825 21:0.0458937 22:0.193603 23:-0.68826 24:-0.289494 25:0.0341463 26:0.0433371 27:-0.616875 28:-0.431596 29:0.214564 30:-0.303507 31:-0.582637 32:-0.620384 33:0.217848 34:-0.23122 35:-0.582428 36:-0.601117 +-1024 1:-0.737528 2:-0.526486 3:-0.512091 4:0.482066 5:-0.958587 6:-0.55898 7:-0.474588 8:0.479015 9:-0.959978 10:-0.654828 11:-0.286371 12:0.446287 13:-0.927772 14:-0.833189 15:-0.303147 16:0.475034 17:-0.928186 18:-0.831362 19:0.0404583 20:-0.24869 21:0.0531401 22:0.24467 23:-0.726284 24:-0.308454 25:0.0439024 26:0.160876 27:-0.678296 28:-0.424799 29:0.219766 30:-0.204236 31:-0.62764 32:-0.624726 33:0.212598 34:-0.139492 35:-0.623917 36:-0.603928 +-1024 1:-0.838336 2:-0.918694 3:-0.803698 4:-0.00807799 5:-0.998307 6:-0.952645 7:-0.806729 8:0.0655799 9:-0.99835 10:-0.954214 11:-0.75804 12:0.439439 13:-0.998594 14:-0.968417 15:-0.763622 16:0.452434 17:-0.998427 18:-0.969228 19:-0.602578 20:-0.749954 21:-0.47343 22:0.220097 23:-0.991698 24:-0.818511 25:-0.485366 26:0.398001 27:-0.993298 28:-0.817851 29:-0.378414 30:0.638329 31:-0.988008 32:-0.850586 33:-0.370079 34:0.619916 35:-0.986764 36:-0.85573 +-1024 1:-0.799213 2:-0.853842 3:-0.709815 4:0.131983 5:-0.997981 6:-0.909821 7:-0.712241 8:0.212057 9:-0.99788 10:-0.912768 11:-0.632466 12:0.595789 13:-0.99781 14:-0.941616 15:-0.637759 16:0.60327 17:-0.997704 18:-0.943266 19:-0.371285 20:-0.632903 21:-0.231884 22:0.336873 23:-0.976324 24:-0.727873 25:-0.234146 26:0.481967 27:-0.974187 28:-0.730442 29:-0.0897269 30:0.679896 31:-0.965879 32:-0.779752 33:-0.0918635 34:0.587902 35:-0.957364 36:-0.795549 +776.1055932034805 1:-0.725523 2:-0.715681 3:-0.509246 4:0.229488 5:-0.986873 6:-0.833643 7:-0.490336 8:0.307745 9:-0.986603 10:-0.843012 11:-0.321593 12:0.530398 13:-0.978991 14:-0.91037 15:-0.344589 16:0.505474 17:-0.976575 18:-0.914249 19:-0.075546 20:-0.544369 21:-0.0845411 22:0.24285 23:-0.929509 24:-0.673437 25:-0.0756098 26:0.312814 27:-0.914369 28:-0.69495 29:-0.0689207 30:0.371661 31:-0.88407 32:-0.725077 33:-0.0734908 34:0.258521 35:-0.868344 36:-0.755162 +-1024 1:-0.730491 2:-0.700753 3:-0.536273 4:0.114414 5:-0.971879 6:-0.832125 7:-0.533286 8:0.169799 9:-0.969754 10:-0.840748 11:-0.514548 12:0.31794 13:-0.949079 14:-0.89841 15:-0.534919 16:0.264566 17:-0.94195 18:-0.907326 19:-0.0504834 20:-0.53877 21:-0.0966184 22:0.183268 23:-0.913284 24:-0.673609 25:-0.0780488 26:0.243828 27:-0.89582 28:-0.699438 29:-0.0793238 30:0.313186 31:-0.86725 32:-0.72074 33:-0.0892388 34:0.173741 35:-0.843857 36:-0.753391 +-1024 1:-0.735045 2:-0.702668 3:-0.543385 4:0.113581 5:-0.972197 6:-0.832777 7:-0.539012 8:0.166436 9:-0.969689 10:-0.841531 11:-0.526799 12:0.319461 13:-0.949196 14:-0.897922 15:-0.545664 16:0.257062 17:-0.941297 18:-0.908148 19:-0.0719656 20:-0.542602 21:-0.103865 22:0.185868 23:-0.914601 24:-0.674027 25:-0.0878049 26:0.246508 27:-0.896851 28:-0.699064 29:-0.0923277 30:0.317548 31:-0.868517 32:-0.720588 33:-0.102362 34:0.17479 35:-0.844457 36:-0.753716 +1024 1:-0.79735 2:-0.853635 3:-0.681366 4:0.127816 5:-0.998455 6:-0.918932 7:-0.706514 8:0.219325 9:-0.998477 10:-0.915529 11:-0.595712 12:0.587875 13:-0.998295 14:-0.94813 15:-0.608596 16:0.603811 17:-0.998331 18:-0.948269 19:-0.182241 20:-0.585313 21:-0.0434783 22:0.291664 23:-0.957529 24:-0.718103 25:-0.0682927 26:0.490394 27:-0.96406 28:-0.713337 29:0.154746 30:0.519431 31:-0.947424 32:-0.804118 33:0.154856 34:0.531906 35:-0.947255 36:-0.803055 +1024 1:-0.735665 2:-0.369216 3:-0.485064 4:0.338156 5:-0.856287 6:-0.370966 7:-0.4932 8:0.131388 9:-0.825492 10:-0.543064 11:-0.404288 12:-0.092587 13:-0.749935 14:-0.775701 15:-0.427475 16:-0.0493903 17:-0.748701 18:-0.772357 19:0.0640888 20:-0.170496 21:0.0748792 22:0.270944 23:-0.683071 24:-0.216802 25:0.1 26:-0.198861 27:-0.472182 28:-0.44504 29:0.240572 30:-0.411993 31:-0.510917 32:-0.592566 33:0.265092 34:-0.40023 35:-0.50689 36:-0.600846 +-1024 1:-0.738149 2:-0.42487 3:-0.466572 4:0.482721 5:-0.922077 6:-0.440272 7:-0.430208 8:0.428452 9:-0.928662 10:-0.593914 11:-0.272588 12:0.243078 13:-0.873298 14:-0.811469 15:-0.284728 16:0.283435 17:-0.875668 18:-0.81044 19:0.0891515 20:-0.15976 21:0.13285 22:0.378518 23:-0.718194 24:-0.188225 25:0.168293 26:-0.128898 27:-0.51369 28:-0.439315 29:0.295189 30:-0.359866 31:-0.524086 32:-0.578242 33:0.312336 34:-0.348694 35:-0.517338 36:-0.583531 +1024 1:-0.739805 2:-0.508244 3:-0.477952 4:0.604956 5:-0.974963 6:-0.550078 7:-0.425913 8:0.568116 9:-0.97193 10:-0.657207 11:-0.105666 12:0.607508 13:-0.951941 14:-0.838263 15:-0.117421 16:0.620729 17:-0.951987 18:-0.839192 19:0.117078 20:-0.200489 21:0.13285 22:0.352478 23:-0.746649 24:-0.261772 25:0.143902 26:-0.0204615 27:-0.588991 28:-0.447917 29:0.274382 30:-0.266014 31:-0.584656 32:-0.601972 33:0.291339 34:-0.267667 35:-0.577353 36:-0.611207 +1024 1:-0.713931 2:-0.396502 3:-0.446657 4:0.431536 5:-0.898251 6:-0.414881 7:-0.410165 8:0.422055 9:-0.915065 10:-0.562617 11:-0.281776 12:0.150453 13:-0.841117 14:-0.797938 15:-0.297007 16:0.221818 17:-0.847703 18:-0.79251 19:0.101325 20:-0.15181 21:0.144928 22:0.385007 23:-0.712715 24:-0.174374 25:0.180488 26:-0.107344 27:-0.515081 28:-0.425028 29:0.308192 30:-0.342233 31:-0.525022 32:-0.56972 33:0.328084 34:-0.34569 35:-0.515538 36:-0.579269 \ No newline at end of file diff --git a/checkbox-support/checkbox_support/vendor/brisque/svm/__init__.py b/checkbox-support/checkbox_support/vendor/brisque/svm/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/checkbox-support/checkbox_support/vendor/brisque/svm/svm.py b/checkbox-support/checkbox_support/vendor/brisque/svm/svm.py new file mode 100644 index 0000000000..688efee031 --- /dev/null +++ b/checkbox-support/checkbox_support/vendor/brisque/svm/svm.py @@ -0,0 +1,444 @@ +#!/usr/bin/env python + +from ctypes import * +from ctypes.util import find_library +from os import path +import sys + +try: + import scipy + from scipy import sparse +except: + scipy = None + sparse = None + +if sys.version_info[0] < 3: + range = xrange + from itertools import izip as zip + +__all__ = ['libsvm', 'svm_problem', 'svm_parameter', + 'toPyModel', 'gen_svm_nodearray', 'print_null', 'svm_node', 'C_SVC', + 'EPSILON_SVR', 'LINEAR', 'NU_SVC', 'NU_SVR', 'ONE_CLASS', + 'POLY', 'PRECOMPUTED', 'PRINT_STRING_FUN', 'RBF', + 'SIGMOID', 'c_double', 'svm_model'] + +if sys.platform == 'win32': + try: + dirname = path.dirname(path.abspath(__file__)) + libsvm = CDLL(path.join(dirname, r'..\windows\libsvm.dll')) + except OSError: + raise Exception('LIBSVM library not found.') + +# For unix the prefix 'lib' is not considered. +if find_library('svm'): + libsvm = CDLL(find_library('svm')) +elif find_library('libsvm'): + libsvm = CDLL(find_library('libsvm')) +else: + try: + libsvm = CDLL('libsvm.so.3') + except OSError: + raise Exception('LIBSVM library not found.') + +C_SVC = 0 +NU_SVC = 1 +ONE_CLASS = 2 +EPSILON_SVR = 3 +NU_SVR = 4 + +LINEAR = 0 +POLY = 1 +RBF = 2 +SIGMOID = 3 +PRECOMPUTED = 4 + +PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p) +def print_null(s): + return + +def genFields(names, types): + return list(zip(names, types)) + +def fillprototype(f, restype, argtypes): + f.restype = restype + f.argtypes = argtypes + +class svm_node(Structure): + _names = ["index", "value"] + _types = [c_int, c_double] + _fields_ = genFields(_names, _types) + + def __init__(self, index=-1, value=0): + self.index, self.value = index, value + + def __str__(self): + return '%d:%g' % (self.index, self.value) + +def gen_svm_nodearray(xi, feature_max=None, isKernel=False): + if feature_max: + assert(isinstance(feature_max, int)) + + xi_shift = 0 # ensure correct indices of xi + if scipy and isinstance(xi, tuple) and len(xi) == 2\ + and isinstance(xi[0], scipy.ndarray) and isinstance(xi[1], scipy.ndarray): # for a sparse vector + if not isKernel: + index_range = xi[0] + 1 # index starts from 1 + else: + index_range = xi[0] # index starts from 0 for precomputed kernel + if feature_max: + index_range = index_range[scipy.where(index_range <= feature_max)] + elif scipy and isinstance(xi, scipy.ndarray): + if not isKernel: + xi_shift = 1 + index_range = xi.nonzero()[0] + 1 # index starts from 1 + else: + index_range = scipy.arange(0, len(xi)) # index starts from 0 for precomputed kernel + if feature_max: + index_range = index_range[scipy.where(index_range <= feature_max)] + elif isinstance(xi, (dict, list, tuple)): + if isinstance(xi, dict): + index_range = xi.keys() + elif isinstance(xi, (list, tuple)): + if not isKernel: + xi_shift = 1 + index_range = range(1, len(xi) + 1) # index starts from 1 + else: + index_range = range(0, len(xi)) # index starts from 0 for precomputed kernel + + if feature_max: + index_range = filter(lambda j: j <= feature_max, index_range) + if not isKernel: + index_range = filter(lambda j:xi[j-xi_shift] != 0, index_range) + + index_range = sorted(index_range) + else: + raise TypeError('xi should be a dictionary, list, tuple, 1-d numpy array, or tuple of (index, data)') + + ret = (svm_node*(len(index_range)+1))() + ret[-1].index = -1 + + if scipy and isinstance(xi, tuple) and len(xi) == 2\ + and isinstance(xi[0], scipy.ndarray) and isinstance(xi[1], scipy.ndarray): # for a sparse vector + for idx, j in enumerate(index_range): + ret[idx].index = j + ret[idx].value = (xi[1])[idx] + else: + for idx, j in enumerate(index_range): + ret[idx].index = j + ret[idx].value = xi[j - xi_shift] + + max_idx = 0 + if len(index_range) > 0: + max_idx = index_range[-1] + return ret, max_idx + +try: + from numba import jit + jit_enabled = True +except: + jit = lambda x: x + jit_enabled = False + +@jit +def csr_to_problem_jit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr, indx_start): + for i in range(l): + b1,e1 = x_rowptr[i], x_rowptr[i+1] + b2,e2 = prob_rowptr[i], prob_rowptr[i+1]-1 + for j in range(b1,e1): + prob_ind[j-b1+b2] = x_ind[j]+indx_start + prob_val[j-b1+b2] = x_val[j] +def csr_to_problem_nojit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr, indx_start): + for i in range(l): + x_slice = slice(x_rowptr[i], x_rowptr[i+1]) + prob_slice = slice(prob_rowptr[i], prob_rowptr[i+1]-1) + prob_ind[prob_slice] = x_ind[x_slice]+indx_start + prob_val[prob_slice] = x_val[x_slice] + +def csr_to_problem(x, prob, isKernel): + if not x.has_sorted_indices: + x.sort_indices() + + # Extra space for termination node and (possibly) bias term + x_space = prob.x_space = scipy.empty((x.nnz+x.shape[0]), dtype=svm_node) + prob.rowptr = x.indptr.copy() + prob.rowptr[1:] += scipy.arange(1,x.shape[0]+1) + prob_ind = x_space["index"] + prob_val = x_space["value"] + prob_ind[:] = -1 + if not isKernel: + indx_start = 1 # index starts from 1 + else: + indx_start = 0 # index starts from 0 for precomputed kernel + if jit_enabled: + csr_to_problem_jit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr, indx_start) + else: + csr_to_problem_nojit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr, indx_start) + +class svm_problem(Structure): + _names = ["l", "y", "x"] + _types = [c_int, POINTER(c_double), POINTER(POINTER(svm_node))] + _fields_ = genFields(_names, _types) + + def __init__(self, y, x, isKernel=False): + if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, scipy.ndarray))): + raise TypeError("type of y: {0} is not supported!".format(type(y))) + + if isinstance(x, (list, tuple)): + if len(y) != len(x): + raise ValueError("len(y) != len(x)") + elif scipy != None and isinstance(x, (scipy.ndarray, sparse.spmatrix)): + if len(y) != x.shape[0]: + raise ValueError("len(y) != len(x)") + if isinstance(x, scipy.ndarray): + x = scipy.ascontiguousarray(x) # enforce row-major + if isinstance(x, sparse.spmatrix): + x = x.tocsr() + pass + else: + raise TypeError("type of x: {0} is not supported!".format(type(x))) + self.l = l = len(y) + + max_idx = 0 + x_space = self.x_space = [] + if scipy != None and isinstance(x, sparse.csr_matrix): + csr_to_problem(x, self, isKernel) + max_idx = x.shape[1] + else: + for i, xi in enumerate(x): + tmp_xi, tmp_idx = gen_svm_nodearray(xi,isKernel=isKernel) + x_space += [tmp_xi] + max_idx = max(max_idx, tmp_idx) + self.n = max_idx + + self.y = (c_double * l)() + if scipy != None and isinstance(y, scipy.ndarray): + scipy.ctypeslib.as_array(self.y, (self.l,))[:] = y + else: + for i, yi in enumerate(y): self.y[i] = yi + + self.x = (POINTER(svm_node) * l)() + if scipy != None and isinstance(x, sparse.csr_matrix): + base = addressof(self.x_space.ctypes.data_as(POINTER(svm_node))[0]) + x_ptr = cast(self.x, POINTER(c_uint64)) + x_ptr = scipy.ctypeslib.as_array(x_ptr,(self.l,)) + x_ptr[:] = self.rowptr[:-1]*sizeof(svm_node)+base + else: + for i, xi in enumerate(self.x_space): self.x[i] = xi + +class svm_parameter(Structure): + _names = ["svm_type", "kernel_type", "degree", "gamma", "coef0", + "cache_size", "eps", "C", "nr_weight", "weight_label", "weight", + "nu", "p", "shrinking", "probability"] + _types = [c_int, c_int, c_int, c_double, c_double, + c_double, c_double, c_double, c_int, POINTER(c_int), POINTER(c_double), + c_double, c_double, c_int, c_int] + _fields_ = genFields(_names, _types) + + def __init__(self, options = None): + if options == None: + options = '' + self.parse_options(options) + + def __str__(self): + s = '' + attrs = svm_parameter._names + list(self.__dict__.keys()) + values = map(lambda attr: getattr(self, attr), attrs) + for attr, val in zip(attrs, values): + s += (' %s: %s\n' % (attr, val)) + s = s.strip() + + return s + + def set_to_default_values(self): + self.svm_type = C_SVC; + self.kernel_type = RBF + self.degree = 3 + self.gamma = 0 + self.coef0 = 0 + self.nu = 0.5 + self.cache_size = 100 + self.C = 1 + self.eps = 0.001 + self.p = 0.1 + self.shrinking = 1 + self.probability = 0 + self.nr_weight = 0 + self.weight_label = None + self.weight = None + self.cross_validation = False + self.nr_fold = 0 + self.print_func = cast(None, PRINT_STRING_FUN) + + def parse_options(self, options): + if isinstance(options, list): + argv = options + elif isinstance(options, str): + argv = options.split() + else: + raise TypeError("arg 1 should be a list or a str.") + self.set_to_default_values() + self.print_func = cast(None, PRINT_STRING_FUN) + weight_label = [] + weight = [] + + i = 0 + while i < len(argv): + if argv[i] == "-s": + i = i + 1 + self.svm_type = int(argv[i]) + elif argv[i] == "-t": + i = i + 1 + self.kernel_type = int(argv[i]) + elif argv[i] == "-d": + i = i + 1 + self.degree = int(argv[i]) + elif argv[i] == "-g": + i = i + 1 + self.gamma = float(argv[i]) + elif argv[i] == "-r": + i = i + 1 + self.coef0 = float(argv[i]) + elif argv[i] == "-n": + i = i + 1 + self.nu = float(argv[i]) + elif argv[i] == "-m": + i = i + 1 + self.cache_size = float(argv[i]) + elif argv[i] == "-c": + i = i + 1 + self.C = float(argv[i]) + elif argv[i] == "-e": + i = i + 1 + self.eps = float(argv[i]) + elif argv[i] == "-p": + i = i + 1 + self.p = float(argv[i]) + elif argv[i] == "-h": + i = i + 1 + self.shrinking = int(argv[i]) + elif argv[i] == "-b": + i = i + 1 + self.probability = int(argv[i]) + elif argv[i] == "-q": + self.print_func = PRINT_STRING_FUN(print_null) + elif argv[i] == "-v": + i = i + 1 + self.cross_validation = 1 + self.nr_fold = int(argv[i]) + if self.nr_fold < 2: + raise ValueError("n-fold cross validation: n must >= 2") + elif argv[i].startswith("-w"): + i = i + 1 + self.nr_weight += 1 + weight_label += [int(argv[i-1][2:])] + weight += [float(argv[i])] + else: + raise ValueError("Wrong options") + i += 1 + + libsvm.svm_set_print_string_function(self.print_func) + self.weight_label = (c_int*self.nr_weight)() + self.weight = (c_double*self.nr_weight)() + for i in range(self.nr_weight): + self.weight[i] = weight[i] + self.weight_label[i] = weight_label[i] + +class svm_model(Structure): + _names = ['param', 'nr_class', 'l', 'SV', 'sv_coef', 'rho', + 'probA', 'probB', 'sv_indices', 'label', 'nSV', 'free_sv'] + _types = [svm_parameter, c_int, c_int, POINTER(POINTER(svm_node)), + POINTER(POINTER(c_double)), POINTER(c_double), + POINTER(c_double), POINTER(c_double), POINTER(c_int), + POINTER(c_int), POINTER(c_int), c_int] + _fields_ = genFields(_names, _types) + + def __init__(self): + self.__createfrom__ = 'python' + + def __del__(self): + # free memory created by C to avoid memory leak + if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C': + libsvm.svm_free_and_destroy_model(pointer(pointer(self))) + + def get_svm_type(self): + return libsvm.svm_get_svm_type(self) + + def get_nr_class(self): + return libsvm.svm_get_nr_class(self) + + def get_svr_probability(self): + return libsvm.svm_get_svr_probability(self) + + def get_labels(self): + nr_class = self.get_nr_class() + labels = (c_int * nr_class)() + libsvm.svm_get_labels(self, labels) + return labels[:nr_class] + + def get_sv_indices(self): + total_sv = self.get_nr_sv() + sv_indices = (c_int * total_sv)() + libsvm.svm_get_sv_indices(self, sv_indices) + return sv_indices[:total_sv] + + def get_nr_sv(self): + return libsvm.svm_get_nr_sv(self) + + def is_probability_model(self): + return (libsvm.svm_check_probability_model(self) == 1) + + def get_sv_coef(self): + return [tuple(self.sv_coef[j][i] for j in range(self.nr_class - 1)) + for i in range(self.l)] + + def get_SV(self): + result = [] + for sparse_sv in self.SV[:self.l]: + row = dict() + + i = 0 + while True: + if sparse_sv[i].index == -1: + break + row[sparse_sv[i].index] = sparse_sv[i].value + i += 1 + + result.append(row) + return result + +def toPyModel(model_ptr): + """ + toPyModel(model_ptr) -> svm_model + + Convert a ctypes POINTER(svm_model) to a Python svm_model + """ + if bool(model_ptr) == False: + raise ValueError("Null pointer") + m = model_ptr.contents + m.__createfrom__ = 'C' + return m + +fillprototype(libsvm.svm_train, POINTER(svm_model), [POINTER(svm_problem), POINTER(svm_parameter)]) +fillprototype(libsvm.svm_cross_validation, None, [POINTER(svm_problem), POINTER(svm_parameter), c_int, POINTER(c_double)]) + +fillprototype(libsvm.svm_save_model, c_int, [c_char_p, POINTER(svm_model)]) +fillprototype(libsvm.svm_load_model, POINTER(svm_model), [c_char_p]) + +fillprototype(libsvm.svm_get_svm_type, c_int, [POINTER(svm_model)]) +fillprototype(libsvm.svm_get_nr_class, c_int, [POINTER(svm_model)]) +fillprototype(libsvm.svm_get_labels, None, [POINTER(svm_model), POINTER(c_int)]) +fillprototype(libsvm.svm_get_sv_indices, None, [POINTER(svm_model), POINTER(c_int)]) +fillprototype(libsvm.svm_get_nr_sv, c_int, [POINTER(svm_model)]) +fillprototype(libsvm.svm_get_svr_probability, c_double, [POINTER(svm_model)]) + +fillprototype(libsvm.svm_predict_values, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)]) +fillprototype(libsvm.svm_predict, c_double, [POINTER(svm_model), POINTER(svm_node)]) +fillprototype(libsvm.svm_predict_probability, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)]) + +fillprototype(libsvm.svm_free_model_content, None, [POINTER(svm_model)]) +fillprototype(libsvm.svm_free_and_destroy_model, None, [POINTER(POINTER(svm_model))]) +fillprototype(libsvm.svm_destroy_param, None, [POINTER(svm_parameter)]) + +fillprototype(libsvm.svm_check_parameter, c_char_p, [POINTER(svm_problem), POINTER(svm_parameter)]) +fillprototype(libsvm.svm_check_probability_model, c_int, [POINTER(svm_model)]) +fillprototype(libsvm.svm_set_print_string_function, None, [PRINT_STRING_FUN]) diff --git a/checkbox-support/checkbox_support/vendor/brisque/svm/svmutil.py b/checkbox-support/checkbox_support/vendor/brisque/svm/svmutil.py new file mode 100644 index 0000000000..288a434739 --- /dev/null +++ b/checkbox-support/checkbox_support/vendor/brisque/svm/svmutil.py @@ -0,0 +1,442 @@ +#!/usr/bin/env python + +import os, sys +sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path +from svm import * +from svm import __all__ as svm_all +from svm import scipy, sparse + +if sys.version_info[0] < 3: + range = xrange + from itertools import izip as zip + _cstr = lambda s: s.encode("utf-8") if isinstance(s,unicode) else str(s) +else: + _cstr = lambda s: bytes(s, "utf-8") + + +########################################################### +#### Debian: merge commonutil.py into this svmutil.py ##### +########################################################### + +from array import array +import sys + +try: + import scipy + from scipy import sparse +except: + scipy = None + sparse = None + +common_all = ['svm_read_problem', 'evaluations', 'csr_find_scale_param', 'csr_scale'] + +def svm_read_problem(data_file_name, return_scipy=False): + """ + svm_read_problem(data_file_name, return_scipy=False) -> [y, x], y: list, x: list of dictionary + svm_read_problem(data_file_name, return_scipy=True) -> [y, x], y: ndarray, x: csr_matrix + + Read LIBSVM-format data from data_file_name and return labels y + and data instances x. + """ + if scipy != None and return_scipy: + prob_y = array('d') + prob_x = array('d') + row_ptr = array('l', [0]) + col_idx = array('l') + else: + prob_y = [] + prob_x = [] + row_ptr = [0] + col_idx = [] + indx_start = 1 + for i, line in enumerate(open(data_file_name)): + line = line.split(None, 1) + # In case an instance with all zero features + if len(line) == 1: line += [''] + label, features = line + prob_y.append(float(label)) + if scipy != None and return_scipy: + nz = 0 + for e in features.split(): + ind, val = e.split(":") + if ind == '0': + indx_start = 0 + val = float(val) + if val != 0: + col_idx.append(int(ind)-indx_start) + prob_x.append(val) + nz += 1 + row_ptr.append(row_ptr[-1]+nz) + else: + xi = {} + for e in features.split(): + ind, val = e.split(":") + xi[int(ind)] = float(val) + prob_x += [xi] + if scipy != None and return_scipy: + prob_y = scipy.frombuffer(prob_y, dtype='d') + prob_x = scipy.frombuffer(prob_x, dtype='d') + col_idx = scipy.frombuffer(col_idx, dtype='l') + row_ptr = scipy.frombuffer(row_ptr, dtype='l') + prob_x = sparse.csr_matrix((prob_x, col_idx, row_ptr)) + return (prob_y, prob_x) + +def evaluations_scipy(ty, pv): + """ + evaluations_scipy(ty, pv) -> (ACC, MSE, SCC) + ty, pv: ndarray + + Calculate accuracy, mean squared error and squared correlation coefficient + using the true values (ty) and predicted values (pv). + """ + if not (scipy != None and isinstance(ty, scipy.ndarray) and isinstance(pv, scipy.ndarray)): + raise TypeError("type of ty and pv must be ndarray") + if len(ty) != len(pv): + raise ValueError("len(ty) must be equal to len(pv)") + ACC = 100.0*(ty == pv).mean() + MSE = ((ty - pv)**2).mean() + l = len(ty) + sumv = pv.sum() + sumy = ty.sum() + sumvy = (pv*ty).sum() + sumvv = (pv*pv).sum() + sumyy = (ty*ty).sum() + with scipy.errstate(all = 'raise'): + try: + SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy)) + except: + SCC = float('nan') + return (float(ACC), float(MSE), float(SCC)) + +def evaluations(ty, pv, useScipy = True): + """ + evaluations(ty, pv, useScipy) -> (ACC, MSE, SCC) + ty, pv: list, tuple or ndarray + useScipy: convert ty, pv to ndarray, and use scipy functions for the evaluation + + Calculate accuracy, mean squared error and squared correlation coefficient + using the true values (ty) and predicted values (pv). + """ + if scipy != None and useScipy: + return evaluations_scipy(scipy.asarray(ty), scipy.asarray(pv)) + if len(ty) != len(pv): + raise ValueError("len(ty) must be equal to len(pv)") + total_correct = total_error = 0 + sumv = sumy = sumvv = sumyy = sumvy = 0 + for v, y in zip(pv, ty): + if y == v: + total_correct += 1 + total_error += (v-y)*(v-y) + sumv += v + sumy += y + sumvv += v*v + sumyy += y*y + sumvy += v*y + l = len(ty) + ACC = 100.0*total_correct/l + MSE = total_error/l + try: + SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy)) + except: + SCC = float('nan') + return (float(ACC), float(MSE), float(SCC)) + +def csr_find_scale_param(x, lower=-1, upper=1): + assert isinstance(x, sparse.csr_matrix) + assert lower < upper + l, n = x.shape + feat_min = x.min(axis=0).toarray().flatten() + feat_max = x.max(axis=0).toarray().flatten() + coef = (feat_max - feat_min) / (upper - lower) + coef[coef != 0] = 1.0 / coef[coef != 0] + + # (x - ones(l,1) * feat_min') * diag(coef) + lower + # = x * diag(coef) - ones(l, 1) * (feat_min' * diag(coef)) + lower + # = x * diag(coef) + ones(l, 1) * (-feat_min' * diag(coef) + lower) + # = x * diag(coef) + ones(l, 1) * offset' + offset = -feat_min * coef + lower + offset[coef == 0] = 0 + + if sum(offset != 0) * l > 3 * x.getnnz(): + print( + "WARNING: The #nonzeros of the scaled data is at least 2 times larger than the original one.\n" + "If feature values are non-negative and sparse, set lower=0 rather than the default lower=-1.", + file=sys.stderr) + + return {'coef':coef, 'offset':offset} + +def csr_scale(x, scale_param): + assert isinstance(x, sparse.csr_matrix) + + offset = scale_param['offset'] + coef = scale_param['coef'] + assert len(coef) == len(offset) + + l, n = x.shape + + if not n == len(coef): + print("WARNING: The dimension of scaling parameters and feature number do not match.", file=sys.stderr) + coef = resize(coef, n) + offset = resize(offset, n) + + # scaled_x = x * diag(coef) + ones(l, 1) * offset' + offset = sparse.csr_matrix(offset.reshape(1, n)) + offset = sparse.vstack([offset] * l, format='csr', dtype=x.dtype) + scaled_x = x.dot(sparse.diags(coef, 0, shape=(n, n))) + offset + + if scaled_x.getnnz() > x.getnnz(): + print( + "WARNING: original #nonzeros %d\n" % x.getnnz() + + " > new #nonzeros %d\n" % scaled_x.getnnz() + + "If feature values are non-negative and sparse, get scale_param by setting lower=0 rather than the default lower=-1.", + file=sys.stderr) + + return scaled_x + +##################################### +#### End of merged commonutil.py #### +##################################### + + +__all__ = ['svm_load_model', 'svm_predict', 'svm_save_model', 'svm_train'] + svm_all + common_all + + +def svm_load_model(model_file_name): + """ + svm_load_model(model_file_name) -> model + + Load a LIBSVM model from model_file_name and return. + """ + model = libsvm.svm_load_model(_cstr(model_file_name)) + if not model: + print("can't open model file %s" % model_file_name) + return None + model = toPyModel(model) + return model + +def svm_save_model(model_file_name, model): + """ + svm_save_model(model_file_name, model) -> None + + Save a LIBSVM model to the file model_file_name. + """ + libsvm.svm_save_model(_cstr(model_file_name), model) + +def svm_train(arg1, arg2=None, arg3=None): + """ + svm_train(y, x [, options]) -> model | ACC | MSE + + y: a list/tuple/ndarray of l true labels (type must be int/double). + + x: 1. a list/tuple of l training instances. Feature vector of + each training instance is a list/tuple or dictionary. + + 2. an l * n numpy ndarray or scipy spmatrix (n: number of features). + + svm_train(prob [, options]) -> model | ACC | MSE + svm_train(prob, param) -> model | ACC| MSE + + Train an SVM model from data (y, x) or an svm_problem prob using + 'options' or an svm_parameter param. + If '-v' is specified in 'options' (i.e., cross validation) + either accuracy (ACC) or mean-squared error (MSE) is returned. + options: + -s svm_type : set type of SVM (default 0) + 0 -- C-SVC (multi-class classification) + 1 -- nu-SVC (multi-class classification) + 2 -- one-class SVM + 3 -- epsilon-SVR (regression) + 4 -- nu-SVR (regression) + -t kernel_type : set type of kernel function (default 2) + 0 -- linear: u'*v + 1 -- polynomial: (gamma*u'*v + coef0)^degree + 2 -- radial basis function: exp(-gamma*|u-v|^2) + 3 -- sigmoid: tanh(gamma*u'*v + coef0) + 4 -- precomputed kernel (kernel values in training_set_file) + -d degree : set degree in kernel function (default 3) + -g gamma : set gamma in kernel function (default 1/num_features) + -r coef0 : set coef0 in kernel function (default 0) + -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) + -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) + -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) + -m cachesize : set cache memory size in MB (default 100) + -e epsilon : set tolerance of termination criterion (default 0.001) + -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1) + -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0) + -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) + -v n: n-fold cross validation mode + -q : quiet mode (no outputs) + """ + prob, param = None, None + if isinstance(arg1, (list, tuple)) or (scipy and isinstance(arg1, scipy.ndarray)): + assert isinstance(arg2, (list, tuple)) or (scipy and isinstance(arg2, (scipy.ndarray, sparse.spmatrix))) + y, x, options = arg1, arg2, arg3 + param = svm_parameter(options) + prob = svm_problem(y, x, isKernel=(param.kernel_type == PRECOMPUTED)) + elif isinstance(arg1, svm_problem): + prob = arg1 + if isinstance(arg2, svm_parameter): + param = arg2 + else: + param = svm_parameter(arg2) + if prob == None or param == None: + raise TypeError("Wrong types for the arguments") + + if param.kernel_type == PRECOMPUTED: + for i in range(prob.l): + xi = prob.x[i] + idx, val = xi[0].index, xi[0].value + if idx != 0: + raise ValueError('Wrong input format: first column must be 0:sample_serial_number') + if val <= 0 or val > prob.n: + raise ValueError('Wrong input format: sample_serial_number out of range') + + if param.gamma == 0 and prob.n > 0: + param.gamma = 1.0 / prob.n + libsvm.svm_set_print_string_function(param.print_func) + err_msg = libsvm.svm_check_parameter(prob, param) + if err_msg: + raise ValueError('Error: %s' % err_msg) + + if param.cross_validation: + l, nr_fold = prob.l, param.nr_fold + target = (c_double * l)() + libsvm.svm_cross_validation(prob, param, nr_fold, target) + ACC, MSE, SCC = evaluations(prob.y[:l], target[:l]) + if param.svm_type in [EPSILON_SVR, NU_SVR]: + print("Cross Validation Mean squared error = %g" % MSE) + print("Cross Validation Squared correlation coefficient = %g" % SCC) + return MSE + else: + print("Cross Validation Accuracy = %g%%" % ACC) + return ACC + else: + m = libsvm.svm_train(prob, param) + m = toPyModel(m) + + # If prob is destroyed, data including SVs pointed by m can remain. + m.x_space = prob.x_space + return m + +def svm_predict(y, x, m, options=""): + """ + svm_predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals) + + y: a list/tuple/ndarray of l true labels (type must be int/double). + It is used for calculating the accuracy. Use [] if true labels are + unavailable. + + x: 1. a list/tuple of l training instances. Feature vector of + each training instance is a list/tuple or dictionary. + + 2. an l * n numpy ndarray or scipy spmatrix (n: number of features). + + Predict data (y, x) with the SVM model m. + options: + -b probability_estimates: whether to predict probability estimates, + 0 or 1 (default 0); for one-class SVM only 0 is supported. + -q : quiet mode (no outputs). + + The return tuple contains + p_labels: a list of predicted labels + p_acc: a tuple including accuracy (for classification), mean-squared + error, and squared correlation coefficient (for regression). + p_vals: a list of decision values or probability estimates (if '-b 1' + is specified). If k is the number of classes, for decision values, + each element includes results of predicting k(k-1)/2 binary-class + SVMs. For probabilities, each element contains k values indicating + the probability that the testing instance is in each class. + Note that the order of classes here is the same as 'model.label' + field in the model structure. + """ + + def info(s): + print(s) + + if scipy and isinstance(x, scipy.ndarray): + x = scipy.ascontiguousarray(x) # enforce row-major + elif sparse and isinstance(x, sparse.spmatrix): + x = x.tocsr() + elif not isinstance(x, (list, tuple)): + raise TypeError("type of x: {0} is not supported!".format(type(x))) + + if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, scipy.ndarray))): + raise TypeError("type of y: {0} is not supported!".format(type(y))) + + predict_probability = 0 + argv = options.split() + i = 0 + while i < len(argv): + if argv[i] == '-b': + i += 1 + predict_probability = int(argv[i]) + elif argv[i] == '-q': + info = print_null + else: + raise ValueError("Wrong options") + i+=1 + + svm_type = m.get_svm_type() + is_prob_model = m.is_probability_model() + nr_class = m.get_nr_class() + pred_labels = [] + pred_values = [] + + if scipy and isinstance(x, sparse.spmatrix): + nr_instance = x.shape[0] + else: + nr_instance = len(x) + + if predict_probability: + if not is_prob_model: + raise ValueError("Model does not support probabiliy estimates") + + if svm_type in [NU_SVR, EPSILON_SVR]: + info("Prob. model for test data: target value = predicted value + z,\n" + "z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability()); + nr_class = 0 + + prob_estimates = (c_double * nr_class)() + for i in range(nr_instance): + if scipy and isinstance(x, sparse.spmatrix): + indslice = slice(x.indptr[i], x.indptr[i+1]) + xi, idx = gen_svm_nodearray((x.indices[indslice], x.data[indslice]), isKernel=(m.param.kernel_type == PRECOMPUTED)) + else: + xi, idx = gen_svm_nodearray(x[i], isKernel=(m.param.kernel_type == PRECOMPUTED)) + label = libsvm.svm_predict_probability(m, xi, prob_estimates) + values = prob_estimates[:nr_class] + pred_labels += [label] + pred_values += [values] + else: + if is_prob_model: + info("Model supports probability estimates, but disabled in predicton.") + if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC): + nr_classifier = 1 + else: + nr_classifier = nr_class*(nr_class-1)//2 + dec_values = (c_double * nr_classifier)() + for i in range(nr_instance): + if scipy and isinstance(x, sparse.spmatrix): + indslice = slice(x.indptr[i], x.indptr[i+1]) + xi, idx = gen_svm_nodearray((x.indices[indslice], x.data[indslice]), isKernel=(m.param.kernel_type == PRECOMPUTED)) + else: + xi, idx = gen_svm_nodearray(x[i], isKernel=(m.param.kernel_type == PRECOMPUTED)) + label = libsvm.svm_predict_values(m, xi, dec_values) + if(nr_class == 1): + values = [1] + else: + values = dec_values[:nr_classifier] + pred_labels += [label] + pred_values += [values] + + if len(y) == 0: + y = [0] * nr_instance + ACC, MSE, SCC = evaluations(y, pred_labels) + + if svm_type in [EPSILON_SVR, NU_SVR]: + info("Mean squared error = %g (regression)" % MSE) + info("Squared correlation coefficient = %g (regression)" % SCC) + else: + info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(round(nr_instance*ACC/100)), nr_instance)) + + return pred_labels, (ACC, MSE, SCC), pred_values From de72da3fba781f8294997cbcee42e40f9a77d68e Mon Sep 17 00:00:00 2001 From: Fernando Bravo Date: Wed, 11 Oct 2023 15:52:10 +0200 Subject: [PATCH 2/8] Add camera quality test New camera quality test using brisque algorithm included in "camera-cert-automated" --- providers/base/bin/camera_quality_test.py | 109 ++++++++++++++++++++++ providers/base/units/camera/jobs.pxu | 26 +++++- providers/base/units/camera/test-plan.pxu | 2 + 3 files changed, 133 insertions(+), 4 deletions(-) create mode 100755 providers/base/bin/camera_quality_test.py diff --git a/providers/base/bin/camera_quality_test.py b/providers/base/bin/camera_quality_test.py new file mode 100755 index 0000000000..633c7bd5ee --- /dev/null +++ b/providers/base/bin/camera_quality_test.py @@ -0,0 +1,109 @@ +#!/usr/bin/env python3 +# +# This file is part of Checkbox. +# +# Copyright 2008-2023 Canonical Ltd. +# Written by: +# Fernando Bravo +# +# Checkbox is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License version 3, +# as published by the Free Software Foundation. +# +# Checkbox is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with Checkbox. If not, see . +# + +import argparse +import time +import sys + +import cv2 +from numpy import isnan + +from checkbox_support.vendor.brisque.brisque import BRISQUE +from tempfile import NamedTemporaryFile + +THRESHOLD = 60 + + +def get_image_from_device(device: str): + # Set the video device + index = int(device.replace("video", "")) + cam = cv2.VideoCapture(index) + + if not cam.isOpened(): + print("Cannot open the selected device", file=sys.stderr) + return None + + # Discard the frames for 4 seconds + tmax = time.time() + 4 + while time.time() < tmax: + if not cam.grab(): + print("Cannot read from the selected device", file=sys.stderr) + return None + + # Get the image + result, image = cam.read() + cam.release() + if not result: + print("Cannot read from the selected device", file=sys.stderr) + return None + + return image + + +def brisque(device: str = "video0", file: str = "", save: bool = False): + """ + Captures an image to a file and computes the quality using the + Blinded/Unreferenced Spatial Image Quality Evaluator (BRISQUE). If the + score is below a certain threshold, the test passes. + """ + + brisque = BRISQUE() + if file: + score = brisque.score(file) + + else: + image = get_image_from_device(device) + if image is None: + return 1 + + # Create a temporary file + f = NamedTemporaryFile(prefix='camera_test_brisque_%s_' % device, + suffix='.jpg', delete=not save) + cv2.imwrite(f.name, image) + if save: + print("Image saved to %s" % f.name) + + # Compute the BRISQUE score + score = brisque.score(f.name) + f.close() + + if isnan(score): + print("Unable to compute BRISQUE score", file=sys.stderr) + return 1 + elif score > THRESHOLD: + print("The BRISQUE score is too high: %s" % score, file=sys.stderr) + return 1 + + print("BRISQUE score: %s" % score) + return 0 + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Run the image quality test") + parser.add_argument("-d", "--device", default="video0", + help="Device for the webcam to use") + parser.add_argument("-f", "--file", default="", + help="Parse a file instead of a device") + parser.add_argument("-s", "--save", action="store_true", + help="Keep the image file after the test") + args = parser.parse_args() + + sys.exit(brisque(args.device, args.file, args.save)) diff --git a/providers/base/units/camera/jobs.pxu b/providers/base/units/camera/jobs.pxu index 00a1826a9a..b9c977ed0a 100644 --- a/providers/base/units/camera/jobs.pxu +++ b/providers/base/units/camera/jobs.pxu @@ -109,16 +109,34 @@ estimated_duration: 1.2 depends: camera/detect requires: {%- if __on_ubuntucore__ %} - executable.name == 'fswebcam' - {%- else %} - package.name == 'fswebcam' or package.name == 'gir1.2-gst-plugins-base-1.0' - {% endif -%} + executable.name == 'fswebcam' + {%- else %} + package.name == 'fswebcam' or package.name == 'gir1.2-gst-plugins-base-1.0' + {% endif -%} command: camera_test.py resolutions -d /dev/{{ name }} _description: Takes multiple pictures based on the resolutions supported by the camera and validates their size and that they are of a valid format. +unit: template +template-resource: device +template-filter: device.category == 'CAPTURE' and device.name != '' +template-unit: job +plugin: shell +template-engine: jinja2 +category_id: com.canonical.plainbox::camera +id: camera/camera-quality_{{ name }} +flags: also-after-suspend +_summary: Webcam brisque score for {{ product_slug }} +estimated_duration: 20s +depends: camera/detect +command: + camera_quality_test.py -d {{ name }} +_description: + Takes multiple pictures and computes the quality based on a No-Reference image + quality assessment algorithm called BRISQUE. + unit: template template-resource: device template-filter: device.category == 'MMAL' and device.name != '' diff --git a/providers/base/units/camera/test-plan.pxu b/providers/base/units/camera/test-plan.pxu index db75da7052..450e638bfe 100644 --- a/providers/base/units/camera/test-plan.pxu +++ b/providers/base/units/camera/test-plan.pxu @@ -36,6 +36,7 @@ _description: Camera tests (automated) include: camera/detect certification-status=blocker camera/multiple-resolution-images_.* certification-status=blocker + camera/camera-quality_.* certification-status=non-blocker bootstrap_include: device @@ -68,6 +69,7 @@ _description: Camera tests After Suspend (automated) include: after-suspend-camera/detect certification-status=blocker after-suspend-camera/multiple-resolution-images_.* certification-status=blocker + after-suspend-camera/camera-quality_* certification-status=non-blocker bootstrap_include: device From 9fdf4b299dea2257c68f78ed890216ffd4c6eb9f Mon Sep 17 00:00:00 2001 From: Fernando Bravo Date: Mon, 16 Oct 2023 09:44:38 +0200 Subject: [PATCH 3/8] Added tests to image quality test Included some automated tests to the image quality test to increase the coverage --- checkbox-support/MANIFEST.in | 1 + .../base/data/images/image_quality_bad.jpg | Bin 0 -> 179531 bytes .../base/data/images/image_quality_good.jpg | Bin 0 -> 69950 bytes .../base/data/images/image_quality_plain.jpg | Bin 0 -> 5427 bytes providers/base/tests/test_camera_quality.py | 119 ++++++++++++++++++ providers/base/tox.ini | 48 ++++--- 6 files changed, 148 insertions(+), 20 deletions(-) create mode 100644 providers/base/data/images/image_quality_bad.jpg create mode 100644 providers/base/data/images/image_quality_good.jpg create mode 100644 providers/base/data/images/image_quality_plain.jpg create mode 100644 providers/base/tests/test_camera_quality.py diff --git a/checkbox-support/MANIFEST.in b/checkbox-support/MANIFEST.in index a42af311ba..c8bec6c0ba 100644 --- a/checkbox-support/MANIFEST.in +++ b/checkbox-support/MANIFEST.in @@ -7,4 +7,5 @@ recursive-include checkbox_support/parsers/tests/fixtures *.txt recursive-include checkbox_support/parsers/tests/pactl_data *.txt recursive-include checkbox_support/parsers/tests/udevadm_data *.txt *.lsblk recursive-include checkbox_support/snap_utils/tests/asserts_data *.txt +recursive-include checkbox_support/vendor/brisque/models *.txt *.pickle recursive-exclude debian * diff --git a/providers/base/data/images/image_quality_bad.jpg b/providers/base/data/images/image_quality_bad.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dea1b8d5d715c0db20117ca2e1351cc74cfe43ec GIT binary patch literal 179531 zcmeFZ2UJsA*C-l_2ntG7sv;l=h!8?T2Ma_%0s=}2h?3Ak3=u-FDu{qo>4|_!6D1&B zx=0ggLLf8+l`eSbRfM;Ldd~UI_y7NR_l`Tp9pk-klAS&GDs#=Y)?RC_6?O-9KY`fw z;JR=S9UVQ$1NZ~&e&)KX?S-)ifpm4HK+GTza2*0NIRVTWxH#z;Ky<*JcJb5g+q>Te zaDiWVD1e{(RfYk;!9ZO$;2r~9@&L{a+|z&ybDwdqZV`Zg1+ELOb~bKyw!)qmH%H-% zx`@l5ZAlQw63F>|rzHx@p8?CAfye>0R230##N~Py*3|LLTl1@d0(- z0~g)nzc>XR|Ac>Ui3PL+`pFGVDiGaIoW>sAFZ?x-ObUtDS);$kT|>v9PeP z9%SWZW8;-SA$UUme;IaPgE*K$ujv3`ML_f%bPODHyN#gZ0H6El_TZ-|z%xAq<36VS z%q#~E0tHIhX_{i7XJpv7kC73`^#}4nj2!zoPk_%caT(d{7jfa1zZ3g}S@e8iJ&$qs zf*1tldY9$Ek)ynP{3pdFPDx5BKw*kX$|@JMwBZ+ZboETGTs1W_w?Lw8?d%;KF-`+tznI zl-@pS|G?nT=PzU96O&WZGhY{%mRDBS);Bh{XmZiy{0%=P`-fZ{fL!#9j0}wXX>!rg zd(s5wVBB{C%*1)lXupjMmx%lwX72N`PYUZ2%bys$+Saa~>Ed ze5#Piwf@2r$s$C!im<3kRvxI?Z*moLOaofqR|4uj_cZn`w~;pefm2WKJVBfk$|dwK zW@BtuQO8z%dddTvW7fAZEKP0<=eUpUf+F|Vjp>_SyO5=H43iyxAULmuAEy%Y{+hPC z8_#K%KW-lPL9K3oUAp`1@bSp~aL&7F1y3XfFBjBkpDdcvNXg+FeOgrhGBeFTc1eRU zL@K|~OUigRj1*O`BwjeD?x+y`$a(J6)9~{EFSid^^%$LV@lX`MClp8);8b7+zYj-@ zA2Qgl?j$*(W7clWSKL!tsqx%37!R}W1Viq;=Q5&X;{Is&d5BP0-^PkgJh$j5VG2JS z*c>#v_?WbhDQHI_r*7MjWW^N+H>@woB>1xt^-W6lsqv269S z-8^U~D(p+aWK`UcYVqZc-lOsYKJ3!`NxkFTX~aRCbM4bC-m4A0IrGrR4L}R)S(({{ zw&cS;r&b@oKU*`i(WPgnq^KbJ{6SQY#J#g$)v>y0)6k&#rppG}R&c4qV^@zuJ~X_M zGo6;Q%=8`j^6V?fJN%-HSvs2j(jmx5@tK_EUW}mRbiHN=zo-@Zk!_C>ByKvKbeb7&)A{vyIhQ z_@aNPPi$^+={{)kx#|(IxVR40)Pe2uE^8jW7idCkJLWR89v(CCJ?5_Bw_e;E0i>t{ zt@5(#D1-z_xXm@uo`7~AhVOIvstC12sXcxnYX7{UVTXHxpqrL7ClgR;KA;#;bid+Ui%ci{{_9khSIKj7{!Bt`^R_R_c~MKlqwc-ladh zizdTEi)&r&gos{v=E9YUnD9;3|!!@%Y&hJ#&Cp4{deqtYyCJtd@K64(-}}IWO(Xb zdh=r%lP&`dTml9^-h?0C=+>Y5s`Kot;uw#}UDu0a1|L{e4M#NJh1N%;eF>uEAhffD z>WpTWPp$Ht)~zWvD&lE7TEfx#UF>**p4$EnHJ3Tsua7? zeM#$ZGhX{G;)NZk198mZMvfFDZ67SpvP@p!kN24K9FKZ!73`ukL$9>1ho{L)$>rR- zDmB;z{#fYo52tpy4UFmFAb0D2XLYG}ha|;QsFgY%fNP-}pp1C}(x7 zS0M$F@%U}F;N$~dy&Riw;^(ppHhQ(TuDp2vgH8ONAxHb1euHo{SzhPt&8YjD_bv_W zX!ax;zS;%Bcj85#x{Zkq3(K+VN>J0x+Qttfy_HQ?6bjyIMoNb(JP~;H^s=YJV$NJ= zAb&oKsnYt3V?LSAEqCc&uaku-AHD`>IJ94lu^Zn?pV5zt3FMDC9J95I2mnS-`*mev zHU2}yBj^1i@hh5fd@Hs?K%ywpp1X3`rO zp-L>o)5jc)AU-tj>y^6wD%;Jt{>sEu1@|?nW{;p~pL;0xPC0G0)`%c#P;KOAflKEs z?sRs~cCgAHK33P0_JL{J5naFSgdo?v%@hjc4>#Cc&$Uwz3w<$4xUrS?j{?65pOo!4Jf(jW@AAxL9>728p(S-(PX0Dge;wQYJcf|yyUXhb3&6a zitox2%M-(Smz8H97o~2?V~zz+wF%UIN!~g8z1HtjIM3BrHU`pfLF20uy_CeLC%k7G zSm_qHZ+MCa9SDl5Lne7X`9d@kCBv>4-R%>JFO1jd9ajr*hsZiVeGGack~oz%VGOKET3xsqE10oB~Q*wsZg7&}qNpYJ8H zm?IQrWn9vmf|5M+2|~^3WPTn)IQ7C_S6;X3zbbA=^$yW_=MctJ{HDW++{} zU+=^6>&;JPX66kf(!+?8AL197x4MNH728#Ny*hPQ6qe5JzcZS3WS@rPwx4SVyo%9xD(G6`8u#vKcR9*!9(1*M8{4U zy+OI%Y)DQ1*5Fl=Iv&^gL6hBsdsZ2kEvtWr`WWjI=$82yIDxL-^(0d zo<(>QV$^5u14A0CTyt>jq(P}x{t22NaJCQ&xoot} zM7eE)>Yp~3JXbN9vm;<@>YSswc z`j{)mUvi*p*r`q6HbZ~7_6=~{%;hPGIK52U0B-X^v#Qh5DTnqS-2Un=EWTgwg@A3; zo3xWc5bZe+<7W@6>^weqQPX&1shQtZD#KVwp0}8!#6vUWkIsD4&a+L>smjU_6I@jz z=qH|ieeWwI+$$_Idfeu&2k~D2JBQ1I!m-5D2=Crfa*o-~h4O_!ezUj&jZ%SqpyjlZ zk(R|=orwgCmX9Yf7d0cb{xDB(4iWm%0V7^iNA?L6+rS;4KAWmK>Uq66Avq0#$P!6- zV1RJcWofw5z6+B5eAUM-Ys9OAO^CZtFlPL8^DX+REEv4`uup`hXgXOGb~X$Bq(Ay( zoM@JW_&wuB5Q})JjKXvX|9B$02f9=0Bs1q~v(V>qIPv%bYqe4M^zG7Mwr;Hl1Mbg= z2U!-{N(~=Fok{BZ<6C9K^KDQOrWrE^=WN}j2M(3Ob@=w5uG8;TpiV*cdGvf*Iqsct zF^RuwbxT_-!YoH&>99$&Z*S4FW=ZRQ6mxHC^>~`{i&#updYXQ0?}5x7kfE!TTSY=Y z2&DRG_4$KK1f(om7e>1HEQT6YoohYFcGbQo7LKkk*=dUiD5-aAyA20VV-OS`2Ak)u z52if~zYw`UO-H=Q^`OFsg##Doy?_7GGoc_u=_729KJ}tBO)ixj>Qy(qFnq-&0y&WQ z?sC-YA3cz($%!aKSA-sH>W}dAxxg$&GFR{6J!wgfIoKP!D;ydv*%sr5@Q&JbJ0DzKnz$S!U!MS_r$I_+!QHfV6<`F37)5MX_#uc)37vwykjdyDY>$ym@37 zG>Y$xod2=5J-xLwcdV^_@M&Q=tyIR(8XDDA`-_%gj(NDfGC#{l7o4e|tL`BF3)zg> zwwJ#D*NG~s&71}4YzLM&VzO*PV&ATu#vcBg>;RL6R>eDL2Vf>r^tR3ee*A*D@96h$ zo82|LpxV*YLeelA;zfSa7D%S=qdB6ei$~d=LE~|MU1YwhPDB`Et1e;&MaUs; zU9fY+==iwWnfMr7LHl6Q%C;h!8p3K`Dqgr-I6F5RVK3ZGXM&2Cy2u`J6#%Ct%Zdo^ z6>-C=iY<0a!v5dBR-%Z`9{#oThk;GKnO6m3v=cQvYS`L1ZtGt8(tLuDXc)8M$ANmv7p**#l+OMf5Sw?q0uA zuV8R?CT=z~&4FRcit=C>L|IM=3p^@5)0q-%dvKP(8yI#TLZ>o#@ z86u|n*-sVgUCtP4g5y~|Nqm#UyBGkXJDq| z2`mwIztF$by>Q|BWn)9QuD&*~{S9ngKfZ~^5g36jcbv1EtMSG2!oW_f@ct>#0bpOB z9i$3kut5`Uox6Nl|M!0Izu(uWw5@Frh$2Iy_3!!rV+xxsuvh^0k%fU$XVJG@-2nUs zfWti9Zqe{$0OtlKY_K>iO2s``@ zNBs>)JG$b4G73N$Ff;}S zKuW7Xddy#GV(B2z;b0J`tnsfjR1yeOejfzl9lT}ZYO~i4?KA|vJ#bWHDF*~%vjBm( zfO8iIEPv_^$fMV4$a` zeE?ttKKqzy2M_ig*uS5Nne_lG>%jvD53(KNWM@0Xap>Sd_9N^ZT--c7JgkS0@*d&l z<>cn!-a9VA0MudJ$Fgr93pd+AHtzpr*xdnf|NGIB-8aA?3c649w;AYw^8>#RQSbxZ zfp*$}rk`K%^RNMM5J3P)-aCo#I|p#(p9d^Y8Gq3|`8wHBXQQ>Ru*pGU~)N-iO z*8=rdmxUSMh=I=PKLv%6`ma3Exf1_IEciAZd(3&Wgo0~Xj>I=5k5D&q#lj2{rsv8Z z>uWo9otk>{;e9*jdEtjFjG%btla5rA1M}9kJL#7SGM<^nCP;QgE0V4s;d`vZ2-4@g z4HC1+M4*Jj9%%K(GCl_BH-?IvM&kLoxVX!pm-8AEQ>-gjhr3r)eZMJ^v1x8ulH+4v zjJ@BU<)Y)HKL-LKh*~XKcx+BU zi!+7`l)}NnobZ@4-OMn+UfTRQ37cO&+%~?XY<-KKUPu3_m^hu7-VL3w2mLz9$t6us zF*C@%+IjOsUkFS+H75i1}=Ul_#6#T=g*%J^{K(*<^B87?D9 zEv-97%rT@h*4^ImB6+h;)|D$Qo`Hr>^qOyqycpKKpOAiE=dBJxPmkuj$atF4-!-`mM9h8MXP3SF=2g_L0KUNp(q#;e(E)K@?DHA5OSE`X zdEIKMtz~RcX?98k#2BL!tfSA#d{QioQDk*U`~dYvuKWouBhKVdvAgz{#Z9Xaxr1En zIo7G)=gaZet&CD3{WwXzMVG}*zU?K@ZC!R<&_nUdFint(LT+IIa@suGP1boP^V!Jc&IP(M}{W-=rAiWzP z&Jyx)&XZBfbcfrQ$uC`}KlAkqDvXJ+i`y5U2c2LR6E~yQz_6u0D$rRHIpdma*1Tk% zwxq#nFSWVtU^>RTEbO=A->}fh#}?;w&#qL;406z$d|C41yQn4wVm!i_z#_~d-mR`U zw^FI@92J$E5uFq(BjaN#j=rX_w6R^QyKE=lV{^$iRG(3c%*8kY4b4MB3og2C4P#5D zdzK+!4&UpYW*%UY;7pLCduYx}u>g zr342nd+~_nI<=+(0nsf4n~HR>{6F{%Aa^cfMB5=@q2n}PY2voY~!b-B2tPmCUGypo(!V&Jdp;XUZh zXQ&_|a#AjGX|BX630CXlc-NMZ6XZ0Sofav1N#;m_!AEb3y4y(nJJUREva(&ebl1oa zK8GZ&HB-rZua?RcAPG-xpJ~ksxupe~TqhJ{6k22&Cv@FU@0?8IFACN=shB-Pc}{W0 zscj9P(!UMT56{Fm zmW$deB!$w%vP}IBN!=1^!c-S=Ed^6nh3-g|IODtEpw?69NMs44)_7k}ul3j1DKKc$ z@8lyajkPuzLR3*_nNyeMdKAN4XD7v(wPIL=IaO!pY^-r;uM%7id~3cf>6pUQWO+IS zax`yJ<<^Ql&f}5K=HF($!_Q9V61n1l7PKanVex1(HAbLLW zm+*CeQ;c14!=|~%cc)J2Xx}A}U0crhDd*nYTv?6-ofB)yqr9&p_jmWp%OqMDr!3pG zwFz1bCz{AeWpA#|Sf`|P+}EgPzs(Xau6s1{Al{$?iSpUpL9(tU=f{Fo$53 zchfn!yJ9J|f7Dj2c)gg6pQrRswIx~3Q0kC{4foSaD_vXEW+U`Dz%~%a(23!Wu)M}t z<`{9Gk^9$b4r`J!c{b)I#q?g#7++KofZEdSn@8;-mJ|?pr zK1|1$-R;|t9M-&uN9R~SBj0#<=!~-vzSe6hK~6+mT&y%Pm@rd+3B@8DD(-+>*|PjD z$m>1WC5x*;;Oby%sWs}wXAU{DIXvNrQldJZu11zU;A+bu>1N)(%W}zUu6oq*DGnO1(W z#@AZp1oI(%uYzk#77jY?dMK2M-R8HJ$jy_&xA#pMyjod)q>!VPgDV?Ggr?jg+_HwH z5FPYi+)J#Ug?pxolulCaOD_w@axsR@M9t-}EzgY_q$*I?iX?)PI#Wu&EWgklWvx(w z&9(@73_IqTqzyat3D{k8&2xzI+qfQOViDdc&|il7fn0OLzrU+LD1a!7M`$ecANlU;zB z!gUQ4NGG;isKOAoGB-o1LMX(KMJYLSU@b2>i--ztP8xAxQXU|n)T;grz8-P*(9q6T zGB#d4_JdQv+{J*1!6NM>KTR&rU&A8n^>g87q(+vMWV7h&r!)22&$2iUEp{JpuMzSX zYBNoko1G5tN@^SXV=fEB6K-7542H(fItNQ5U9po*#msk&r_)|2yis1wxrq4g+3%gw z1#~h+>Uyg82Ng;IYXyqk*!AJckXh*z0xwybNFq#y^bdpvw@)MzFw>*{WkWqR|mx5>Q!5U%?5>AI|fVoHv&MEk_j3+`%6ZK`5zVhZKb=7$}Jt5v5`X9T2H z$zZj#v$5u+rzMk9&2b@}FRTf6dPWDRvapiT@SST8s%D7gZzDhWF$M zTkE(Pbd<`BcWF$XHmWoWYo2L`bxh8}nEGvbFO{wQkvCDZ<+C>5b$Z^HE73v*+39O& zsHt(Z=lgt(WSY@^gPN;(jd119^~Y31k?!BrEiq+D)g3R8OLh&4k=VZcO4HK2C@vTY z6$X*r8xFj}V!ehE8?uH+%X6cYM|F$!A#dC|B^7ZTEUD0% z$@LN{??k+5X=sZ^z@<&%RA0AqjT@B$EA1BCT%Hj8;p1tizfzVPypMdds0$$@jqFJY zrx{P`+B;RtjJJFlaAN};BEe2PSjo)L_mTdTQnF&{#=_^Xl!CZJ2DNE#^ThF(P-M?-5>k&^(UZ~> z-zW7}w#s{#q2L;(g$inK`S#1_fAr*>- z`-?=R72bUqyq+SbD%$hM%u3-@mlDv9lIyZNu4HA1l4voq<)BZ-QcLdLNIvgDF%MBj zL(`sbsm^p~6LHx?-^w-Awymn6kEW2&=T7Xv$ix#0j9$j2U1~FW%frFpxfJUqr!2m) z99AS#>GaB$dX__6dR#%y3(_%b&%?MM7LrIk3=*He0(8JG71YF=ZOGB-99MDseo~L? zcwI8*AJHZ+0=Ad36{cqT3+|>F+HPGXi{p?~92VJg4pSmhn%6!;#shpQ1jhsXFvu>`|R(^Tl+8 zTxfnJ7HiIdG##>*=FXCDQ=9LED^38Dop07Dk*9ljCi}ZYpVrh2`*@I+mX~JzMSx)s zE4Z&PXI3Lby@ax=r0X zfk7QZ8lp&shMSg#WBsASmP0F`WQz zzo539X&3dV^br;+;LztZ3jr%UO_}LB;C9i|IW3YL;OG5CvW(P0PEIfvG!t7q9;)TA;8U*t$F&)~>dZInn^&07D> znN(D&zq-?K``FSqOSg--d2ghBU&MULWXprYD$7|!{dX*(p`~P`*?t+BD35wM@zW35 zwKI%7l1Cr%Oc!|Crvb0+Gz&vTL>1sXY3|J>SuzP3NK3(j4pxd7JfKIHxIx+Lj z|BGPfq0ny>gfw!BkMOD#UtCP|+sU2R>ZxcS>aTT)=?Zq=`Nsm( zF@5sgrS^}CUx(H}$+@YUpDzPZGHGUFyFL)^!CWhidTyX%mR+29bSxpP#JmXWSTj>H zLd`D**Vb@BIQYz@sx3I=s7mWCWGBot7>JZ-FG3#}$AyW3=?&5p+b;l*^A{}WDmNg?jxTO1TP8WJo_}>cq}$ibw%0D; z2C(whIvOd%Z#vlbsNjHbN4xPpYrpDma z8X;V*@)%D(5tF_Akuq9VH8N!3YvO!U*>BFTK=C+##M^UX^g1VjdEO;MJBR4D&z^?4 zQ`OcVedmR&0|KOsSU9z`Vp8HcV~?<;gvxL+=arlQ*Z6GBPovYoNW?eAwA%crj_)ND z-Rl!-(c!uvS?nriP$ye?4330Pn_?WP#g7m^FFt0vbw6b6OAmAigx7Fk6R6)!rJ0mI zXRVL5bu}jw99p`pwa)4?=9R_OUY!bpS9HRV--@DcG3!5mC>$TsKho`&8)=^yY3FE) zYBj}VV*8IJ@I4g~dG3bq{@6E-$(qsomR~13v3*OlzVEM%OX-bZiLs{kYko}hR_QvP3N@^jp|G-jXf84Rt zEPZZkNoV4jDC&z+k!H9H-Ux zj?3pbpvf=qp|D^~*t>!5yOyIlBj2`E%Th%|K5Q%@skEs|$@O$KrA@Dj;_R)}v$u2Dr!z2iAz-NC4hQT|!yzxig6Rr_ypekLCZ|C9ND zN&|<14GS^g2cN)(1+d%m=e7kS?U#`!I7Pr*qVoH=Au+(t1v5~BZXZ30jj#!<=FwbM zKG2AWi80ZC0BsZJUz3<7Cl~Nc3vxeyzv_%-2b)7f1u_XfZjQG9fDt$o;zf_^+)PUL zHCW^DiJ@f}{GY%CX9D2QRN#@VBl7X+;+@#oJ1M-1vfq6dC>OBjs!2%Uf1_`E<3>N{ z=J)Jt(Dq@-&6XGKgM9x2yu5t8yu6CQZ5zE93lOA1Y-|t#?Xq__Uw3M8OFR0$-+=!s z?n%w|KN`4k1887G2}|*+D1Bv(YVH*(kN5|$(m)`B_3hi1O+a{{1`Tf97+xoM@$&I0 z#$kQS9>GR#4Eqaze9+q+ckLoh+5?<;KL4@lUlc}rpeYT>|DGZno6oc!ku~fW0+9L_U}77~N=g-f z*A#j60qbYMp%{ERTnb{L2-FPyZDn3w7_2a>rl+|KT9IE39S#8$=^k0jFxMIXH=%x_ zH*WN#OO{#ikK=TLu7{O3y852}ZKg=pU)V*&(b~9OP}H(wGn;)ZKh^zA^@my^Smx0u zK4v-u$vinZXFMQ0pa|ewleF^^yHkL^#6Q~MjLTs&4}}6h?|f4J?l*UT-g#jK?{N3+ zy^X&&u@ytRGWZU)yvh63WF+ga)>-*4N?bbI^a`JYkX%lcT*yz@paiz{qSSirRT0aJ zL5{F!i-NsMtP!NQuj>o`C>tM{Oj<^;xha;g4##|0v-q>YJ%pDR8jUZ1<7vNev+vW$ zM}-`OE3Dmj^|vXW#6Hj+%k9fAws8Kbor1t9OE~4*)SUua9$ifi3kiY4fe#Is*mgl~aafWgKIdRp zo=NjIKQIRH!J-xK5Iq3&H^>TgKjRH@BAQKL`?FpQ;|-xtYSdA6*K)hVH+sFnONr>X zQZ-cFsSh-1XxCxw!T{6^~XKU{B%UhE-2$N{(FsIsVYtip^E#8H6WQ}_bwydsHyxpM3cFZ0PFNq zJ$3eukYn=TEr57^U66J`1A^@gHc;`^+%Cv+uO}W8(5;U6v1i1eHVyLiS4__@gQk~J z$LG(zTN28ly#U~voYlABk&G>IASt_`5kGA_Y zi0CEqG{jn<1?@GxC)n%uh@>g-67X;yq`e!o@~D2>ezlAFo1PUyvn# z*U1M0@9~Tou zOP=jSw_#aWR|y5;w3%VTE~7XWzc<$`Ehh1l!cv z{1p98Y>?yTB}nVgN7%whGZog3*36Fo#+L&xj(ryArTDCo^>sU2%dajMaikqpXZql~ zszZ0^#>nE@(7}r%gC2@qg=AHWwz6SOXbz!91)Kg38VxI`GNDS3?WtRQl&p(&-I{5@ z5~uM5OQPXm3V)tXA7YHkHjY9x+y3eXH%hdIEjFU~4Q0spH9Lv7hC+I03KB;$puBg& zBVISMo^5CC{pkm`H%fjGb51phH`i6V!izTHFTo~;tBZ5EbRuPTVbfqm)}XOJYqr7A zK_|#@4!l8grq;SyQBKPQ*!!W$e%SkA1Gej*aeqKWIl-c|>j-ab;ZJ?US^D9~+xR)~ z_^5$EJF?2KaVVsOzhG_ND4f={Z=kXl2S-#-zy5IR7cV_^C#rtnnM&4ue6yIqbGY%s z>kf~4QX`!R^JE`ujs7R4J~+X$!pS1Yjs^dn*gHWk6|h|p@_NXSfYs0>@D<>DZ4PXc z!W)~S7@NYE&Kq0*ixd26870Nne<-bO-+Tim4A$PSX&LSXx?ZxTpei6RA(A5)n$p|CjL2%UB}dnGvqd9Zn$ z*9H;OfMd(Y5wIjHVEA>OY>K2Yq8R7Rm+l!GCb0cW!hWFJ#Z4Ar#i`K3{72BP>LGnzIr=`!f}mO4aA)xlu!U zr#t=gOJ=<8Jj+?^ssvvMTxkS4DFKb)Ei8?k!;7!M>P}W{bgnB_0FO`&907rFgH~h* znQhM2gq#N3gz?3uEItr;+Z1B^)9NF2lB0aQ=`d&=n=_8!%kMzh3HAfmuuX$a_PF7h zsqz0Xk|C$eASx<0wVhO}Jq=0kBu$AgINiiCtpeH+mvGw7%?{)nr3Au-2OO5YVR696 zSKz})^ZK!J*Pcm$nVRO)V6-n0+e$HttmPXC7#=`19N~TWwlM-wVZ#yrwY-Q3(nXvP zrHt|gn-gIc#6*Qwl!Xi(9lsPfh9>(s`%`66I^(tMj#p()7Nn62PxSl z3Qx#vkeQ-g(1}MCtX^2A_uvVO*l0Mq4J8Loaaw@Jay( zir)s_#E11VU?Sc-$%~=9nWXoqYW`i&=?LPL9{*~$o>XWq8R2BDf-_9ZYeD#>W@N8y z!e`q_4)PFP#UP|UaY7!#AU@fHLj(VXq9(*y75}xSy5~cpOaqn#sBH~aSktkAC-}1J z)@*=n9tgCvzHLEtjN6Zt0PoMTp3=!q%emh~I_yfKDhhbSyDl9k42X_JaXw!0I$44=mbcM?1g@Xq9&FA_do?+AB zuA3LY4Fte+Sltr9SsN&;B@6a&S-{1Y08NpsMh!!od$0sw0h+~lW5f93d|5H|sesx- z5Mm#wyC4DU$$o`8wwpLK_6IR-)G?3ZSBXohVJlW_9|_{-ebxkz9LwNVeAdev!5WyT z8#SsY&|Bk!HB>CA%Kl--ZbJ8(`lMa5i9lw?2z@;Z%3{um;*Jn!_wLaryt9`Q& z(iA;@dyF;Ffnv3VOGh}~gc$UrF|aze)lbc3u-LHWz%$M1{KXpc0i+K@&Fg?gH*hWw zHcLBJ6kjzppN81HV5Pa#TVRUNTCfYcWEnzTzT}E0Tv{3$P8zL@=z60F815_3{aG*D zGf62xm>Sr@#|n+Qs3Gu67jaoCU_kej7~xqu{@ zbv(l|@FXj&yr(v&5zRWtq5%zN-#pSi>Lh4}8v%OYtEP@W@GcJ`tn3?Le2V34a}c!e zp}<5q9HIGf9(bEs#`!MTZ|9G+kAA}0gz^@^rEtJ#bhZgz$IGu6Z4S(~!vul1ym(FO zDadsh>&}(M9!IP-v6rd=FI`5q6MF}S5SatR6up&U4N`BluT#DA5gD;|^HJU&;)EQI zDSQ1hO&{+^&qXqw0h}np3K#$c(#>Ooy!l?f?yEBW&B-RYLgji)Umft{_Ib;No(6Wj ziPJW@1}+6QN)}k+{K#TSl%>L;4g75K`E5 zg!~M!Y;DUPn&CZS+=t0<`wrR`&3KZ&H z^n|E;G9NFXn0QzY@#3)05Aifius+rh8U;8sFhXS^q%ap8$FXxG_ogu^WEHIOL}tx{ zE`&pCwA=Q;2wY}zjrV0!bvKwrVzkuau-8qUbQdSkEyWEit?K~smRMCz5UN% zT*71n4AOrDT*iU9N;kkJPHsIk4{m3Th}@9}3n>=7GoL`rfxEk!0q?P2h34k@mldG( zi2d2C%jWAkGkN@1Xx%F)5OK=7Mm8NGNwMmfwm#UOop9Id`n~b$$iUQ_cwo>0#sGk+ z^xAb^fS;SdyF>#jDk{Fnz^^4R0w-%8fnPF|@m=UY_u^>X!Qn5M%-*5NCA?86EVl+O zY|nJV(P1$TSfhVxU$C`Llb1u*DCClvM2GvwF@~PGFPr>&RInyAX6j23Sc+cK6JY9j zJ?!QVe2`d=kyV#blO zvyQ<1`S@feN`My_MDv<#>k#55Ei+Ult^ZFI!e18=aWvX3H}8=5 zk=#6ii|`wxOWhQoO<-iinmBEeXaPCA!I)XfF1+Um&lPvhH>nWzR%h^Wcr5+s1lnkM0&fRG4D`dr%lZKWpwoYgUh z$LB9WL^UFQO{4eb(!f{CA5>VfqC!;XWXMP)D>0yOGtXmKfFvMr5dm4(ODeczlAXYp zTjE{l{kf)XfVzDjni7Jj4soEKhPaS)dViDoeXlRA6|cNC)BqVAX-))Mmsv$GdnpEa zeM_N*Uw}Xj0K9i%;{vHnOkz~T>|}Gp@dyFd9VcfzQ#ZvaDQcLYvuO}7%k&bjTkTj| z1djYt*_1g#M7rhm;&qdU1*Wmb%F#X%0Wkd5>$d|yv%i-GG!9-jWwYhP<*kf(s|<|z z0rPOSK;&MNdtZvYcYt+(jv8u22RB^ zeGwjYYAlZ!m7Z!}O=C42jAX*EI{7$*MY(1Je}-^qb23r{EA18`(8UC-e-!J02pceJ z(0~?e69$$>C^%dbuakm3t{9CBuHJ^rP_BuGj1EJhj3Cfl zRX^Qct?;#G|^mw2;G3xX~~9-a+7OBP|{%z^YT9 z=UYvhk;6ZE)tKJ8?Sm;V8y-7~(jEN-1o!m%QH#KT*^+@E>$f$Pca9~QZHmnJ-3M=& zIUzzMZIXegh-Z3e)8i2put^}3at9tcjGM+f@ng;}a$=8jc5`AnM^d3r$hN~4?W10? z1CHFmJv8>M0q?V}9aXHaX{m(d`$v(uR5oaP zs;k6jiA8GD%T4%zZYj38R&WR|n%z5Bm_%wh*~-VK(22*n!RKy79WzZx{4%m3YG~zGA@uaX zUInmKK}XLaa;|~%#Cand6q<0C@q)2S{Q_A2Nntma>mAY99>~+8#W$b#*>aok#60}6 zw|@cbZfMdCcB^vTdM%U8_0s)TmH2!>{mmUyuWJeS9o#MqCY($=di=oW=igq>eU(4G zP$hk+b2_6aGhCdf5481nE-(Lj1}F|jR2i4)>_{LZS_|Mc9BA5Afe$=LT%{ciYf7`Fr}`^J(e7Z3vV* z=m79_?lPcI`jDSSrQPYW0R_?!78?7s>NJ7>rrf-Mr;52!;T8;VzDi+O+eS=aSyUC{5lQrnJR-6ofqAc_AEV}Bk9<^KMU<73~m zW-nvOnylrJLfIQ+OFObVttjb~eUGvhvc*KGsBu*4By<>(EIE-Rr7R&iCE5C3&-+3^2_Pnuu>Z0Jpnb+}XN-VeC;^znr`T=Ffv9Q9?!o}KZUhNBdP zxogkc55ZZ)5|X3YSgno?n^NR9yNuF{J>f@lSJ|^Oz5Ua{Z!)oSvWR(=MY6|1r@g}B zTNbHd@B~Z#fb9NXA29s|uY5uOxIePMz%wq`Cy8G9D)7mk`RiB4!hD$ChCQMRCn-#g zg!!2V?EJoVT=0u zi2_1D_+INM_UqduCtMZFJIJ#qbA~!2dCXd4DYM`Sl(8O+bdwC3wn(?Mp*A6uyIO?kQ)xJkd_na>N z^kbiEZUERIywxSsU1|FC_kljbe>)}m?0Sab_-KC+Zbk1D-Vz7%>U9@HJY2677fOqc zUEeAq!NvRgZXZP%Sry*s3%jHYUNvmfeI~#2?1oLkQoa=(Mk(3pvUTrW2hN_+4E0T+ zAE=;tN3up@-6x~!iy^oF5itMbFjrdL(xLuWfJJu{q;?X*bW+iY@^uoz4K9+R+$@ChG!4MsWPBb<&;duEGX=1lPK*dk=eGvqtIe)&v*O-EgMyLI@>??f*7H^nV;={4h|u zVhmA`Ls`L)=nbbw`%PCG4hoKr2hJ6{oe7U$YrYccpTx?X31(Au27fIT@Dai35#Cs- zgHK+WJp%^{Ps4VO%L@+r8iibZDbG+v~i z`P}S0m%w-bW+tE6J9`I$Cd&lgjIajS$W4_7?^1aFF?l*pfaHGf;F-E7mXGG`c(fz+ z*eu8X5nNXu9Ni!P^>Y7lknmBdX8$B~!uc9}rJW_*CdV*&sMNrdw=p8E@h3qzz(yge zvA%BOu3&`};TE@?)iP%`zI{!(|3dhgw9xL7#`_T-SbWvMVy*9uNxuw|K~WZ~6Yo6{ z+v%B=7P1`Hk;Bnm+RF6spAJcXEA;5RPaKc79IGwR=Z{=2uc-hW(3p`m2F?^&fV>{u zYy@Z_{0p2QvK#c_prES_e_ip2`?f-GqWhee4txxh>Nw`JSuT5nU(=4UYOgptOx?7E zd9~)6KF7%9BJjlBH3n3TT}7qWE+_u|W8bePx+*)sJ&Qk$zEX^=O(<1A!Ru8#*e!G2TD$r3eRWTEl-q~>R{%l?@Bd}(bQD4V z;0PfIks;fM_h`<9ok=J204`@ARbl$|pk~8G2G=@c-kF=w$zO!t@vT4=l?A2@U&a z!Au@Lb}{nQHWWtruyfkV4!(*43YHc*&D@L`nHT@{To6}RS`m5V}=B3{f`Ecm$)D7ufMfZF>-p$WevNzaXDZSj2 zc;u0q^Qh>a7L+L6zI{3KlVHowqveR5+*DP)up2@`5<`D}TG-A_$*e9pm(h5uU!?pS ztAK4n$B@aV)2HK34(W9;1tO!wt!wG+)2#8|=Sq)O$aax+(tlt1kt5i_Du6*!sf&Pa zjBs>AJKZ$wbgvWxRArx0;=KN0Kmx8G8|Hc{1583L%9J0#szE!>?*5B(tN+i_qrL2Z zzf6=0;BZk?#6Zx0ygTdwi2l?)_guP-SOz-}@Z3>8r<>4_!9poXR5xdSnB}_HNbWw3J5YUo0Jeb$saz*g3rG5Hekv!w0g%m} z(|`58`&JeE$sY5$1L#m?be0{k*Wxd?9dO(UXU4yr={0oA*`UpM)1j^Ww@h3X$TI^qX&e zT-~eBJ7Cah=5E~VGI3(URlE%QeG@gF%_Oz@p}v;mVsQ$esdnZ)*ZrU8w-Z{fzlK5O z-U#-OdaO=dcaDA^6ZMgn_8fp`+6s=0!W#o{N(MsMPlC-q4Qizsc;oJ%nhOz!EgoWj zYZ?`}F~?vhYe!Gy{hUHGa8+Fgj!NU^2eJAkoYi?Z?RPp7oPH{p< z8;j+kQVc%TWf-ng@^&;+WA8KIbkUO5f(7?%>CRE=@ro_ate*nKsmn-LG`9Y=V!h7o zSoD%GBDmu9FklD2UDtR@p=YCw%x!7tuC`+N*wU=J(Mfu-pM2xSc$hUC%ZB}y) z=YkynY>e^nRYyt6J*@x$1iYS>9))j973%9L3yM?QdtMaz2KGdG&Dyg^yD4SmOuI@{ zr#*I6BE9%b;e2kU6k2cm5#H@s-MF>WNHHZ_wxIC%y>C$`#cM_ymU1=t7$NRCB<#;u znbF%~p}8pvne+n)q=gVpe_}`#pfHqAQ1I$*J*5r*N04bjIsFgF>3Qj;d6(nD8__``1z z=alEZ{K7T`A0^EnX&4gA<>DAY7>uM*aO*ut zW9;ZL)F4;-s+s2BUO)Y1&ox%EgU?C3jjw^tm4D-3BdAoJH~l{M0Z{ZV<8_eWKMb4= z7OG=7tpUn~8lEyT2TmR2uMQDPp7pa*i25tyc;6y?r07{_pPH^Lg!m@WHQ$Jeex_{a z%;6P>_1h8NSeqMuE@Ad*8;rz)2nRWbY3(xn6qig|@&qO@b$|u%s#lSsu0-|d{5H)( zx{YYtbg`ARP+EXP3|C^*@xH8j3wHZ;5D-pO+}iglQNe4KL)^Us>Hak?b+g_DJ{v)Y zd0?MD>m9RBPz(4y*YAK%;u4Q~CW*TkIz$0yg%i=)ewBNXVgF$+bDC|bUW$f<6k8%V2~yQPnHyBV@?}2>`uCD( zX$UOn5fAWa5daED7%ml!Ub`G0T$5fE@2Q6?CLohAihJI3PLB<)p=w`9G0z(hHIxDi z#i=B6QslaknCo6essS*Ior4KrJBYTR*wbdvyNrOq+3A);hqQcL9vT^XGcLXT_n59z zGa7+b+*Td;O1tn^=HTy+vIFm=Vi&Tf!h4M^N#qM5D$k?NKqbKcualAM?+Z@W$bSzW z#`Du715Q`MS<%u92StDt)G;8yh=nCrEk%1V%c=V|jH6o{FsP3Z4EhAy&RIauYRb>*#>#Sj5@KBoJVdDu zpDA4LYnvCex9@59EC&6c`g%Sm*{W{r${%xwum12X`HRK>fxfK?YqB`Zr#T zJ=6-c%i!T%|9V67{l2u|EVAa{0dFTBSdk-dWFfoJy7}JG(SlH4JuM{Oo^%lBOxEGL zb1QI6AXD?+fz-en_no$Fovf{+s+S^LO?hI7ZBuLZZ)keZ=Xkhre}v>~^}`bdCW83^ zD6*{dd1Np&9LGWd!%ET~_6hTO>X~br!Ez^4Xs6-RfndkQ(RYTOg$6+N^U7OW^OE2; ztBHkrVfVcySQaB9fU=XHe|>fc#Q+*Gz;Xk^(^w#5?0`oTPEz&&gysDCwNRTzvgT;; zK{Zg67PhaGKa+PEj5xh2{Gv=SxsaB} z7b)ELS}RqeC(4;gQb|+$&%^&$UoVhKhv(TpQD|$t(Hvr*)8=VbHxK}FUKmAJ^64fF zx*qu4&7>W710;u-OI|W#Wq)+pDdq?zU5SSKm=`M6X1{dl(+Lix69D8+HiI}qL!Xdp z7Qmpmm$D=->wVJjy(Nz;t4;{Vs~)dW6C6q#FUY)5R2mFwEW{S}f*=Kr(V&Xkyf0tb zaVT3{JC14XHwF?;A&j)H3iRC=%#>8C;O?@jAo{`A@|;@S)g5upxGgW{wZw>1e_Soi zHv!wQP^6lgM1ef9#w(=wA1Gt}9y}msM+2WrheD4%w0uGf2U4JjU>fc|-Jb*m`m$Qi z?*}^F{~(HqPY6$LPnZWzTKWILkUykuEFpL`*poC+=s$kWA1?jyRoQe#L8unxO;>K_D^ z9^(J4j-Y@h{KSJCBX=&eV&R3ILxB9i$*cQyLheWxen6RR^E3;K1%Avu_4_j+N8Xq!F7Y zTgo6L&gy$Rx7jA?CW2M}(X~@P6;f-ME3?NMNbLZ&St#()&}B&Ujt_r@v)QXDIB8T_ z5)Z}m6#8alILCN=Y_CvtBVL?e){WTYespBA+S zYE7xf`(~LvlQOATX;AtD#6<`XJ=;+o%Ef8(H)A28BHvTHq#6fEp;GBtIq6^m?zJT( zTH@k1P=P4K`#`8pdIkxm&-yG~)aS(j;Ygh%QH@&8!;3t9uDghd(@m>x?BUkY%v9zQ zL0u7d2q#y5F*CJnK{oP0^0>8+LTcToZTEa@MyO*0H-*HI;eDQ@GFZo50O)jJqVb%V zf{E$CDXZSie(XO0Ct>tZcRtI7&x~G~zzzaI@RR0w(L7|tDTEtT*tG|pU7Vhc&)fiM z3;@r0kjA_@f8Xf1{-He-izpm#k*4CD*W7FDSW=2%>N1OUz_#BaLHcE>(K85a=Hgfm zdQ9BafD2$u*&VA-F&rMr9xkAOi27!tw9ck3P-gxLz^yXlk5)VIv`O9k@3JUOo~sMN_;$aw5zR`lcr7|@ILKXwxDDl%?s8EmD5>!hENZ& zT#<7b=;qLH+hp_<-w$PIvKbFQvxkIuS3I6I&E0e0l;fL)Fta8dZizqUFzE*@XBqH; zOT+JsmzQ!j>7xn9>+@5`B<}9wqsYAES^v;EZ&$qpu&{F(NTBf)gQ^t0a;5wN-NF9b zH{bnak`JVhCkD>DB6L%EI9^9g9SfM>h429rm@!cyxd3B-D3#sGNh95rWqmVxLwjDq zPp#>Xznd#MCw-_`j@+Q^Ej1qIvp}W0@&6TzFtfsBN8{bD1&>5N9E345*E}r91%9T) zX+n^a|49gbd+mchhMeY;`F&VB6XtJh|GxJXa5Ml5pwkr^Sfql_-p~qIl#Wqiwpm9- zQGYUDtj&T6a3um|sAd)mrQn!35I{Vz>eEJLWKT7cqdY9=sthcPM~WjGfXG?@Qc_wQ z1fJh8;7JFd^q=&1g$jv;Pz{KDRW5=l;buBq7b85P?vP8wU3ME@T~C#4fEdua5XSy7 z2@>zoz;Q~Uo|Xe(qV7S)Np#d#iU&wU$;|Z-p|+0MOS8VbL^CnNAG@LO8s$}(R!3~o z&4lYntT3Rithc_)Y^-kM!3*{T7ERhevWJ%}-O3)>49yYvJ=mG?+bQkMu6*;tiPne^ z0{b|PEEQcz|Dc(tk&zu3nbn(x2(zcSk*#oj^tJ&;ApwbnlIaImIlM9xU12_l8%>04 zH7-I8#wK^a(fPMs4p1Tk)kou@1ORM=ZLzZGoi8>or%)yI*JuR0XDda|+aojk@y(k# z%|~V6T$uBsvnI(sS@+iC%0X0Tz^u&+pe&*RJw+yBuM;Hty7qFMwjOj&4H-&zjnggm z1Mu^AGbPs{0^p6##s2Fkeb7(l|FSnOk8KW#8(sDqNe+|45`smAFSW{1q*3?_oM6&) zxC|HHCqz@PqFcUC@a1*-G(g$+RCq~e5J`Xm?ERS0xBZG5tUwg80-{*MK#~|3fRfp zjPTvFe);X1DJU*>w^Z)D67?5Tz``smFT&LWJ+Cs2q>5x%brB!C${0zHY0Zk(ab%Py z1Ll>I__eQDl>EgO^JT`aom<`(YFS5laxXZIWT>%%K!s#W$s&G^G#mNia~Y;%t@aE| zZ=XS%hst^os%DjG*7^r3lE{;ub3JNNyT~QVt(&ZmbgEOuN};uTGfVnC`Afh0Wta$R zk`Z0-^~+#aYR@Y6*spWa)=*Y-_?d$W*GN-p(dtNE$c#%~h|oOZ?Esdm>>(soCR=%J zM^K(GMmzKM`7zcn4^Dtyi7~xzM;Oi`J46;2S_UFEus^s>7^_y~m6v&Qyro6PS}QM$ zTO!@Ua?qvLE-UvtB;oY43qdDj#8php2Fh5!%+5!OwI^Tu2xKAPY<6C??&SKCmfrD)O;I^LxxH0V-B5^+n2GUlt{|oEU8$pZ&FCkWG z+v+CiKCd6+c^^0@DVLCt3Aq$x`430r3X8&?onm=EH-D)ii)>TR*vYqTJ(5dqSpOub z%7sX`1dF`l`TP4^o|ov5u~svr;JM%SnFHGAL9&(UPA(9}Q8{CP#OR}RPV35JFt>LL z_g};YbKeJ}xKgZ}sqSkJ@W+X#b0#uA9m8!GLz5c13V?AFkTy zS7i87PzahwC5rWudFzgfxWCr12~8->KURggFEU_y?T~hSnBjJJXqp-}L(u8`KI}4> zDcA(eVBpFlQlx-|xj6(*lc+mZ#71bqS!F2Nh&6oi)_j@eN+Cn)kM?~qX)NSU-K!6V z-+zapHEi$&ME^j?HQCP!JRATdNW~B&*l#1%t1P>`Q{57J9Z)0EFf_P;_<}+x6zDPt z8#7vH*EKdHiXTzgmcJTG2Fy|@u_KMdh3}&YO4hHkix{_ABEuDXP(oskZ!JXDI&q7y z-MB$B(P1-(scu3@mDmRNfV%PdI6>_T88k$`qK=0OF-F$`i-D4w<0pcCm>UVXgY>>T zr|Su*U6@|lRcS(N34%!Zi060*vRfYpyvhc4YYup@9<`T*sQfzGL~7KScdwCq?e*Q@ z!!SECT~HDp7JE0{w9iq9NjLcv?5})kA1?rIO=j`GJ~0rD}=c*Xbr}ywTQgLvy{3wZCROC(U}_YM+(I zEtSkS1$aF*@O_Ta)wf7gfeO4wu)wuugDr35m zs}0QzbYYF2PpXL5Wa6E@DmF>gyr#z9XIBYpsIB&$%iJf!X#&XM2Io-l^-!VVX8VWLA1sH{ae0yAfjqq4}_XRr$98p+u)de6ifth7R9MpDVYSnBm8cb2~;iQK~me`%|F5iGI@Ke8AXw>8UO#m0Z7F4__Ak%j}_{ z=1cIoeTI%Ds8<7u`W?^{g)AAMC2(U@SwamQIP?T;8f9(UmJ{rB^KJi*n%Bb|LDU-H z3_;c%G8f?)3a)D5|Z2!sM4s1%$;Hv453 z{#s=G6mCTSVq}1Ppd9|i??Tv1h@eR*6nUde0)0p*L@gDV!C$MK`My3TRz*aUNzeeq zN*=%4_nY{yDarKU+_b|&5P^>8{nx#w6zAc2`|mNXF{ejlVs?qD!#qH4;QoM6Q7;dW z9tbf`JOe*Lo;La$&#%%*|ar ztq5d*s4v6KiWVs}7!=9xBL;XPpl_DoV@J9Lujq5P&}z93#L;SwWV~^(_RRr)etUBG*JM?KvT+Mpo_y+t=rxMc6s(ml5nsgtO02 z-B!JuHVz$sG@O7c6LfP{T{36f?onW7|6QkU9x(x?yT!XM2nd}Ix{xf)dy*NHKyMY9wU?We$G zuPn?(Dqy`Ffj_)8^lxHH=u}k%VvEq#0m>#}2CsiXJynVotGmDbpdQX8RaXqD{*FPo zu>mWnx0BC0vs?0`mW-H)S$6c%?2jHo`XG@&aUgq?WAzf}610L?jG{6z90MF+?mN9_ zaMR8)XQRjLHJ}fM_2^jj=dZwiD~%XoL#{&>Vu~5x&xKXPHzWJAy+iyo({meOk-pE} zL=<~f06cJG5>^b@F8CsZWA?r+Vo4?IC#%~KW;Wt&!lh1v0#x9U5b4h3a0zTUrhg`y zleZaI07%HU#t z`=l93g{L>R(N2CaVQW7%S>Pq@e3SSCz|y{Kg=nXA3!>dYEZQ+6Dve3fYqlw&MjJ@v zJt-N~Y}^2T874+{PCo2*dj9g&PIF>>TA<9|uFgLe&DXu{Ob&Jg@M&Ke|EoP1+v%83 z&8L!VYQZbYhCVe{MDNYQI$4!o(SkF?VXUVWqiz71#WBc?YHQH2jD&;cUNK#Ze4ibY zXGWOLsfDEG=S9#THyL|exsq<=QD;|A=73 z2#`1-_a8uyX8O=VlfX%>557-zJ zoLt-@W@rGM4eOLqj6#CxX-{Y?H3YF7B&F7cP~&D~pRV5*HTg7>K^gnBy>4SpOZ1Z< zFXQGDIW9Ujz0cmcZ?~O)h=7*OJN_(fu=M+1Cd1`vKH}1jWed>HSXP_EU<1fhS;nu` zp<*ClYNzMwH~u6R4%u{djeeP-$(28Gd8nE3Af$5O|9BLH0|`1oTsI^${}5Rc@G`Jr z%nc}Ha!Yc`mz23}ki>HXjQ3{wsXcvSaL~Ro_B@$}bbS~^Ad;fTpuq+FKjpDV8}sRD ztcJcgrWHJmm3}A=wyy?h0&E}eNceDs)>HT>MCAxz?9pq}Zc@;v(EnmKV*OAF9Iu?p@p2j2RHbRHd)>eP> zJg&DDmFQ#H$K4Wn)o% zeFOM{@=)Vrqb6NM7ZGu6*QO~Ob>V9f>x7()QGdlm`~I=sjxaV-NNh9% z|2sVXI6uH$^dki1j-F?OIL_vf!aQVVQTi&Xg&_~&Hb8|9$O=?fdZy*;O-VBQLzc#~`MaZ3veQQR3AF3Z7753F%%pRxkr|HmBT zF*!UT2qKq=qFh7u#~n|bL^mbjxgJac<6@v-O@#*{D}e6FP|T#`{vO3qFP;aC4=B(q z&mvBhY2)L$?a=O8+QIBt;EDa))H`F7j{k59{{M0cvfx9A!H6FEFknvc1TcwFLQvKK zR2q&v+A3HX`V?#Sdjx&%KM6ksY_-m6Lks82V~I5-cZw+MhrVd4RY>&fX9q05F7sIA zX)DqU2EM|vQUyS_4RXww6JXvQ9?XN2 zSEW~)cI4-e=dUz=nqvJ->i|RX-+ukTNT?xEKvS;ddGnJGu!E^iq#4cB9Q^BBRp`?c zbh+=`!K%7#7QjG1q81Y^b8NEXd(V^2cyGpAY$9McbVVc`!s@0-k%YPn6z1R*+RQVW z_paIq3d#jfd)5V4?f~1&%kDYUE8YFKS;f+PAhJ&`qI9sEmLpvGF8E^ZQrhYd(-kyE zn#akmL;`!?uVZ~yk$8=Sqx}~GfYDvJ%5*hVZgJ$J@>YChPWGHi1z`zk-_!I?tl{UQipe`D`3q^j=Etq(lq1~+x z+I-M$rw)pM+QzM>j5-KVxvM9^XZ?%!0|Pya#YwSJBr4eO4K2r4nT8G9j4oV6y7d^R z3SEHVpr;sHQ;TGM;Hj?jA$+O2tUjkg&M(|syPOo+X9JD3OA56=TL0WUy9nx!idj*dxkyoGaSgo zEwN7=xWh9ly<&IEL?Hg%zGG$Ek0^1bDBkjfNdg0L$KDD5(Bvc|pZ<8nTOp#yS za0<^Ytm*5pVoV?57Faf}A8LA|%d9fp7AUU*il@P*3Hlw3*MV9C^?6WhR>GYO10FW}>H=P=JtadPQ12)?5GQs$_L1nbbLUzkOtk)j91VW0*edT)TzOAMWG z;#Fekl_Rl=lTn=nYJcI8RN56${E1y{gStfoGsTc$oSl!xL}x(FCx}@i$U4u0QDK%0SmoQ2rJviUPD4wNZpzEF z8$X3&vGb0ai5|fPZPH!h9OJ`d$Ldp9^fd8|0uQmACNPMDkrPac`FBz>N6vy{FGeKQ z(Eh%R)8b7trf`3N<{BC7MIv`vk+kA}T|#mzToa>0$YI_YVN@8aFctYA2?&zbllUFF z7aoCb2{fTK2(S}Ye!NKMK92d=#{t6$Ib`O&o-{IYL-xin?k1|qf>I;5#<)m^JcA~J zEl;P8?dyFkI+WC9)BNP_!p;1ssg2+t;0w$OSXXObnYZ-Wn;_{N9N%Yj{sZb?g^mdJ zV=9gYY6AV!RSCL-1?1fGOCSHM`bjKDud&J}Kxj|CFah@yhUgNgIo^O`C6VqikV<5c==cB%<3FIA0#(p^_%(ekt*k57 z8(eIR-%QjhsPsJ5Mt;)cj}GTU-aS%D=shmCg|Z|4|+aeq4yi$?kK|py-`> z3FW9$N|Em3mdTh}RI13V7-RNzFf&WnQO5V;oP$poqY>7ch-&Dl$_cMd7J3u8)sR}W z>iO3q662ua>kV61*E{y{CF!vlHa@^7%{YR*{M4b?$BCc_(q#09<&gm)tJ-WXUwssV zGVcdAFTtAkzj_zZ5YA|a&-&raqbAc4L8wP?%tuk%%TKLBrD57YL9*$lnFhEehUbmb z+}7IDyrB}qH8^XD$8ZgnPz;x08xH(%Shft?7~eqJ`xCfMm22x63}M}RV_zv6vjqV{ z8{qfL6v(@7h3_pVon>IQ%+sIX(8}51;C}O>-|51VXzDU65kZ|HWka{#>^J8QNJr`T z@0Z7v>kLqR3lVgv$D!D&&gE`pp6`J*@3Lizy@})s4!YE$d_nATJ?j@nwPe%{-d6@V zGZFm8dVHVZ`9YfBaNEd&--tZe)x8aC4iS9dLtI~&pHP~Y8uGwdd3WquN1IBCq3;Xx z)>55%ia=vf_d*-%CluyODIhX&XVGz%daNa#qPy~?14Rc>2W24T^U2V-3^^f!b&0}o zi?8r1#5)k10lkzC)Ho6f3$Yfr;>YGUXbeU#iNliSKiAc9rvnbJDVViX=DJ$I0Mp`p z?1CkH&!!D4!q6a~YS?Os_B1t$Q6w3%4Z>m24FXF1ZophXz~Ks^FOXIdHlslMN4?!L z(@+e~VsqlU!8x$7Xqzgxv&GHflhM6n$9f-Ar3bObf$B7>^bgvjZ9|XI3~k(+dnr0JzM2UGvsso%%@ra#{fc`g<@s;I%3=< zXmJ86{L3&VhMop7)LX+LI}=RYY5e8}$ATpx09Q*fW|1uLH$AxsE*p599p)DxaJ5@I z((#*7_G@%2JnZ3Rx2QzS2MS}rajIf3ql9DwtUY7N2dkEy$w%nrvNB6AqA9&n&&9Y4 zBpl{F2^3n*j7_@}MG=F8j?tIt{t=Hy7UW<*+6{W4LV|V#^a!M)&MdjsAn5a=2Gs*0 z6mS=ZX26_RRZ0AQw5w1-D#}3!}BADC}I zmGg8`CxPptcF?l=hE8}6V)!4uk)^7^PpLrLwHBDoM2fl-*G+W*75Dkr2sK7c# zB|!yN1!WbW<){`5eS7RmLZDmik_vf$XN{nY*u_(joJQ`9HIW1CEyRjWjB>uq4w{(2E>{5!J z7bO!W_Kzvxr7(M=loaj|jWprDv~9*M019sfF3K|xX|id+Mhs{Z)Cm`N*=tygrm2wH zBbtkNET;T(W4cjrFLV`XbdU#qJe;?jLhuB$W}7@I4k%sVMBaHpjuvlbRV#4^Ym z0oy=`3(p*akU1EGz+;@|s*<+-*b7dC=#4-CTlmY1N+LO?4h>G+5=A4E{OQo>!}$Dy2c^{wNdF2q0hfTRql=UM=TXe`;>e79 z6JNue%kE=t*mw#~Vbr-?OuVn^aN#97zF<=tr{{-Ug3ab2R|$ek=&3Id^-ZD?{VNJQ ztB+T=9WCr1I}$5E?iYF+t|kUun#xdjT?IAVTz}T53Y&9(yEG4% zmgGROq57J?pT;S@NKSE1pN>J*h6K67Ah0N8g?twDB7j`AQEl}_i1PTP>cp#Z&fZ_~g5#|QimIO-Q z1I2JD1O$=npnew7sm%r*nT7_kSPN5C3rNQ5Hzo=gm>m+jwvW%pYRT%nUlfLh1s1EB zpM*rHpJ;qssCn-*J9VQ`^W4*rLDzX@||7Bl-n4z<@bKnHaH)|pFDZMyksfP@nMnFc+_mv$RRb}Q;8h+GPo>w!`eI0M4`$2nb{I!f(V2BzVIS*nRy6Y<%WQ@ndX$>>8yY zfSmipCGbU?w_P}d7g{tJr$uJKHh{={&3dsYjo_{kYVlzDOzb@(zZ{TS{k(MS7WfBbJx;8`8 zwgYp6@$0KSea4bgAySjjO2-y#Fwpx$Kxyr<#`(=5GDaKnzKqYGA1&`(G}tt?uKDXv z!o_2Qhm04{y+ki9I!{6`lb66rOTfce89cUZSzlTT-W@o$!Ak8|@W!QI4BG5Q=qW)h z>>7e@5WS6xH4>F*#rPGB0n@GUVhUae#F)Q5)_wG2c0M|doV+FWG11x|dd*kO3b&9+ zVE;T5qbr)0v@ew)I0uPP8?`T?e&$MttV00YOBDj+qFT``|QNyo@e9g`M&P=A%Pk zvXO|1uZN_d+Pq}&K;ywTa2sa+4Can0Q${o%0#)|#Uxfp*y$1V7gU!w?!yWPpxU=jr z$^1)QA0`Itp(*ZRa1BxBzGM>G>eQf}YhDW@B3O4GTukwON^KIKJhl&%CD_KbDN}s% z$lb+Q)oa@1SMCSTN*sZ=Bfxw@Aa!$c5cU^sJ4;Iosi+^q(70!ajTJslNr(i0c%u_? zyH=P^r6WX86i2i<{0JZ;=>7Y2nz02kff}%eHU*6aO|vaFO*Jom5-yLu6a8r7gNwS} zMLwo>Hd;s($o#AA5XuR=b9ycKmZ}$qn{Uwy;fy?{Q&7`zoj;?AB??Ti#S;Zq(l(*@ zcRY_0awq|D|9Ib4e$5n^r(~?>FVa+o>58JyZTM0EhSixEtT{ZqMhV*zz$3(%;+9FR zy(x9!Bx5Fcf+TG63f9*@D>Q$W(4eV1u_m zA2VA7hM2Ixk4F1BIjzJ>p($zXxH$a{YcNlbgl~gsAL4 zgps@jO?>(Zc;^%cFO4sR#{h=G=IX%hRw8|vTFT^Ey#$M%>Typ(du{MzEWQH}Tb7I2 zL8GpJZ6YusMZ?Gpy4?>Iefr-*k!^YH^D98cqGKIm?(~HJJncxJK zfD+=1=0h3)>tuYq0(18gHh?n>Y-V0T!zbS&+lLAG8v0y_-WR9q?p8zl31Z2pr4BCX z-F0O~>#%-7q^HKCLOc}i0Ji*hp(5nETk{EEk0Jh3Tjc(`7X_zeYydES5f(bJ(Fso=+lW~v0dblY>NXru~OMSLY%4Pt8v*okq;2f$HapN8i8rV`9S z)K*6-Td1U9C61sL88eOIx4~BMU}$n1W69Qq(gwU0I*I*b$4%&k3sy{k1BjJy zlUv)4<<-1?%Y`IZG|b6tqx9i4&X&VO$563D_1l?O+|IxkRFI=sv_@iGt<~(y;hh;1 zgD`WClx#qv=uo3>rXkkBu>$sBmAEup#EqMfT*R~50(v0&FNU^KpmCfrC<$hb;o@+^ zo@Ch9$-*ITN}Go<5mY*fO~yp%CR`K4d#SE(%q6uN^=vxpe_j28kAf4+=}ml_p{$4Y zeeRRtjsdy$mQ>9+J2G8*1p-e2J54RU0RkPB=$$^*l2AxQQv*n}S(0FPF0lnofvq$U zAL{20Q)Dn4*y(BFxr)}ohkQVJ=#(u3-3KCGP zd{mudPvJB76wm45d#QW`X%V!SalD>`o;?qU|4!%nt$bXMHJc*&B@XML`k#htW`yWzy?smkAlb@igFUU&DHI8*w^8FFmK$j0 zZCaalO%wA=Sf2=^1wTv-l+b)~Rlo%wY?90nTSdeo*qtEpTWO_T+O-^NEhGzRc{dA3 zEK5}UX|ayhIVEeEYQPLTemGLWXc%B=E}=^BI@N|YCBuJ~R$ag$4XQKvy_7C4K>cFS z5>n-QHgyse%Yz3LaMM3RjHJ5=vqCaHQ5bIJ#|sJp+Se*)t3mJRs|!m+2p!-I^jVWU z0TDs>US=BqQn?MrKA^V=>uNR9QiTNzH@LWsZD zZow3GXP{G9)y@~8znXyo>ir}v8f~WodGWPi*HDgAO0!J~0Ex&79$O$S5;ZOLS2cKK zU_)RvF7?P_QG-*X7YI$L-GdSRBVx6D7!|-O3kdRn^7@W*tto0;srf>n=evFmyE`o{?^+Jb+qErH85&bpxo*+8hqeARHa&EUO>7B z*nH{{`PxP(6k+{?7v-j`PCb->opMR0X&AQz*>zVa67VrVZ;mw>q9)n>w60Y&>;=OJ zAgI!ArQAYBj?Hk%EZ-c93TD`3n5a)X2v-t~pI`8&=qGM`yVo$s%kU?GHj0b{njlz} zX~dp9Xj4xJ)f|-kh8EFqdf#z#0HgoT?5rmDE38v~wW>7>;LZKN1ne$^n?Z^49I)C7 z@^V0DLDqU3Ric+FYW!kG#RX8H`#e`A_b^6x28t;t^hfQF#-Ti3y}qsblklsz_DgBh zI~=&U@0b2goFMS*!6KBvuhVz;_;-x3uTZjG#k_B?E} zjW=Eo>oFEWF8~#lu@?ZMj1b9(8w=D0@t)cd(6zT|b$#H>t_F_h(z5VOECJsF-?>EK zVB|K55z1tEYoUvJ7ro2SmH29#Z;rQ<)%c7~Sg7Ws+zg%HO7jIai@N|G5%@LLfEz_u z4z>03>g6EM*IW4JMXv^9g}TtZ8d&Jl*!t6$fxbMZ^osY_w36rgS(D}aj;XC~R*#d( zyj5HI;SQN>yD`@2Zgs4NFvbhP`j;oRuwEh5=1^%rMQe!Tw3kKGhZCbWG#)Apl(T-T zn$Op?pn_p?nTw%#v!Zttn~YtWY+9b83^Pbw(N(9N<}x%8ak_6dbSXF@Kn+VfD<55L zb!mA7bB6C>&d|fsk|Faf5LTFbp)2t|G}LS^Er#@Z=g;$@*6?UyK8#s|*di=J$thk~ zkRxPG%L4SlvHyE$7j-qQXaYxlZ)h_&mzR|kEK$F~1zTa`29-adkj0#8{tXp3!fOV*tS`Ur`(Bn}yImyv2uba)A~+xhc`GNJW0+@MFn-E7-(^t;kx6 zz)M6ibUS8U*cvE$&yj#ofPBecu*d7(8&(cMNvaQUUg76PfiB;_GCF*q8)kkP50 zj@`m}CCoB|t%EMTea3u^`nl#WBVc-U8#zcH_PffZ*a-(>k*OQOGFT!74*c)oivK;I ze?rWUWF9kr8l2SsZ8qp-(O*Am zE)0Mzw0vj{7S?JAp>;_<;A30Ng%J_52N8x6Bl-M^_}2~eZkjkMs$(vwGJ>aF;zjJ- zAsjMe8y0(D9Uk94)cTNxmLi4ajXbMotm|oC%zh2);xn0Ozqg_Ig?hMpcIF`J^=9n2 zrv@1}y{Z5wq^ZFg5q7LtgK{gUpbV-m!WEXWk=UHJUAHAN5)$q4zWWV5)2`3t?bvkE z8|z>MAgD-JmXaVDRd5E{TP{gW>;Fj+b(9IP-6Cr6ebO*e&&XE3{4iskQ;sPLlmW;9Q#oQ{UH@$7J}zs6}@W4#~mXh$ilNC(W@P&6x0-BLrCM4 zd{jv*%b8BhQ32%3rFo}+q^aTEPy>;u0a0?lC z8wV9=_%4>`E|l??t^2gI&a~WyBQ3g>IkbK62CYZU^>^;>nRO{D(Zc$DESjx^F4r@5 zaClkeXv}$%E+OI6AY>KVE z;ewrP5KD^Os3`X!lYm7ca0f1T_GSRDIyU`Rt31{)6`(zdS+|CEwT7Gi;;DPjMSy{P zu@koW?#71w^H37Y=gjN0Qz#g_7?C73(|6TeRj|Dv^-+3n@xn#h7i(*OXOY=yVOtP* zPGZBgxwVB!isZ01P1Aw@P3Zp^TJyT zVpePI#L8d#liyzi8&qXrTr4pQ~>(mkA5{&O`=vjfT=HHs8>?i@95i3 zUJD3VM`u;AOA(+PN`FAr?5D6TP59ZJ?2oJbZOIpSK5Z$}tm}TVZCh)ixVO|#LeaOF zukTD;=-2`!jg`p**%r21n?8(!n+O&e(6P6~p?8Hgrm>KG06$QhlhL7Gr`|wC$xEjO z4W~-hf<~BiYdF%wLZcn9L+e7gVPlfN1mp$SXy?Oa7S&L9zyEEAVUK|LHs35SDfS5? z2b-S+Q;ip_PhvfdJFJJ+esF~fhW&!}CLhh+i~V=u`#AV@$GtcEDiarN)HZ))RM+5}A*qS1lIK~q* z{_%^Fft8SrLUiJFR|(4Q$F3PJ?Rtu^gl2R2M#ovP(1>4r^5dOc_>*jtkxIhTKOF&| zc+HnaEya?Clc9Y(svlZa77_;v*BxBtNW3N8chJG`UtxL4S1CIc(NCO~|0#N;*iW24-M#FWs02*?I=zZ4r% zMH^u?!Q5~A2eRM8#$o4_z~a7Q{kg5J?0yPbxfj-K>pnJ@wcCg2qiMJJ`L5)`Ss%4; z+a;R&zn{A|-TU6sX|zDE_2Otq;Cla;zAxd|Fgiq8@u|XoTDisSRJEss(C$qX^E3em z@0@4o&q7(2lpC#>rajOXpyzpxz z8+Z5?x|}wfxTZ=7$0$537gqV&Zb)s~E7d#ga^=zL;0$xilpyq#KfgJy4$e{(OP5}# zIm+;0VlYA~zu6b`CBLssSlzkajd(bU~KTjs@o@#H3^g|mkoQ=azU;}o?z zIG(VLG%^MS8)AAMe213#|ecqFM!E!@#?k+4G7(NLWuy z)_s(D;ixDJ1$~dx;b>U1x1MNcBF5^(vm1~&yMsV7U^JcI7Sb5yQ9}mWGZ{`B*JJjP zH^S$(!!_kK+2*i6GV^%*l(7y4*B&9{ZcFgh|7G{7D~m-boG!U$5m#NOeiBNFu^fX+ z)+Z_|#&wFL2(~6lYyi~oK1GWp^wm00*m!K7@zL<3DJ)7t`!}>?Djj^G7noK7hb6p7 z5kp_9;D4m?FJ8t?(vCvMZ|xiYAa1_TQicj&;$y~1R{c8XUidCTdFpWm zW~g+VtO^hSO6tPLz7AL~AX8XnWPMbWnZO3$98eCES+e3VmAfH{y%c@`Eaqr=f=wt^ zaMC}FWaBA$JWutsyE^?^`@ricn+K^w``*l^J+B8>wMvsUfp9P|hkH}g;DPB<0u2ca#`Fd_ct^J|_GSOyMq$ses1Ch0Q4h+c4zaBdo!`3xxOAl!+;Np1*tE#Wp#ba!AJ zM;hz|b1w=DubUW36Yh2&RF$oMs4_h_^IVaqL|7=f@8H^Xj~2C>xxCYf@TD^cRcpqN zplDy^FZq*T<>Vs#XGIZNz)G;)&ygiyUg0O=}Xdp3jk-lK+!%_YzBPn&a#a9;O1fjE20JvD%HfsWRmq+%CM*mS40IVa-uS>ek`$@|WZM z36cwoo*?YdC=7Vw2>0NtTY-X%wu zZSGf)T2@iR$fPqH2S6LPkyFiNc86cyzNXw|6lb0FUz@-MOQ_!hm$J6pzwvD!rMV8@z{4MhYoU zG9%LO)@BHcE`ibnr4SOB)U&WX&z$^)n~zro*lH>{%<*eQ!}zMF!DwNXymb45&BT^h z4F;Jo72+c#~f2I5+IIelvnA9_G_2h?W@w;#O zL%F-9eh983c08XW{}8?Vht0c}FSZ}KyslA_|?H z24g!4D@Bnh6va4BC6q8*QIx|vZ^V=wLK0()Vd(dIzpoj_ZlCY(`}o~|-1qN(d>@ai z>6*E&xel+x^YwfkF5}Ufy=4Co*B_Ev z7db3jcpK6(pPUmb4(tF5g@5d>;-pz9grx#z-t_yY;nxV?w&+rB{s4(GCiE{4-T+BE z{jh5L;!kyFC>0%7=KXf}j(OVmU#2OI-d?c$dRNyeKgLnu{!@6S0N?~-6eQ{sjPU=e z9dLm^t5@&ZlWR|RubIC?rnbElW zGu#@(m+!k{&>2|eh(5@=w11XT%}DT)@m(TW@W5Z_bnX>7p{~)-erP z_`q$tbXN{psf4RBZR3j(x46&&9kXBmSUygz*8T}sLZ7ElVRz1R^Izk37bC7apSl((4@z-RB6$quN^s>xpML!%{j_|PktrK9Wapy8{>hny-Yt2S@l zfmyfCa-XRDBwfUOIWKj+Zb;(vcRp9m`&1^shJ^mrJ6GgIcV4m{Ey zGP2@QDJ*oC@ogaOH5tT(gY4s~2hkO9sNFCxb~^Wbtgnch#kJO$e%**WlQ9FQZSnzJd>fQPUSuOV z5~Ppx-NY)9_o3Av9=WV;JpR_zVdKYu6SJ7`7xJDmx*zq0u=e@W7sv%Z$ks^3c1!3L z8Jj?T0;&G#|2A&*ewF^;tZA&DlTL@cI%+n)AASb|T?g8qxb~^mEch;mO5sI!xWJz1 z78n}{izfU81omZ`jCdjMiaox5V{O6p_m$eg#q%l`_WN${CrSS8Y4)jOujAE}Uy6M$ z>vru=<)3x(-00$kF59a8&v7~3xp1YHTIM@mbc4t0ozxA^-x27c_qMq)=q6wE_$q}A zaOy$kr&4&4a04vE9+t{jM;u9Ij4Ruxg3KRFELoN0kzd21hA=7mkqk$QD_;*ZhSX-e z4Ql!Kwhzab8qL;!zLD1Q(O2Z?mfC9fTjY`Wl17~e@kg!sdK9u`d_O{fLH*v#^}&~E zX98C*4lI4V`4rD4B9j_e%81Gg>Q@hEOFx>bI_wDlP@t6r#dvgp#Eh7#C~S4u-Dr;o z%$xekB0}WWayk-onU`g195&l&b%vZ?&2Svuzm04|ACt5U9KZ65xjSRXturG{_i}ES zy-0ZIOJj^{7%%w7Gof9+`YqR;j~~c?=<;RS>M;e~5bxwf@wYcmHIKjta*D~Hrs|I` zRXCK8AJO8%09;vZ7$5Kk1W;gi#LbdgTorj&0;HMLi%cy48oe- zJJueOPWt=Zsomr^#X_zxv`XCeO`jXZ>Sunm)+xBx)Xe+I;YCA^=HBf`x!Y^17|T-S zj=Z>J+1J2?m)Zh>n}Eymk$^x|3CgzBJ$>ay9t@SCQ5L8#x5Fpt0=HPjC%#n0vN3Q~ zSwnoOZg5*>M7~XEt8TEKc5Lj$QodY-E(om>N38p>ZpX7ZN$D=_f6~7jRJX{SUHMJl z=+Tq?Tgr{0uEiUeH3iRvj-in{U?kDCFMGx*an;JK7E9{)K`Avu*Yl75TKi~RBR+-K zBD3S3ol=*U-upKxf!ie)H00_3o=a(O)pp!as*hLzg=MaV@l4#pZghaKad@qv(!$|gJVQpBf)M-MNeG!K zH~LK%$pk*K2p)*N#wpgX^BeAf4&wbus@037Z ztG(G$wWyOO=ba=s+a|TE|5m|` zI$Z#&a&wb<%FRq^`CSm3g6?J*Sjp1l$#2G<*so(Kh}rCQn6>8C*-8;^n>cbD_XM(z z^d+l~_+=9iPQU^{XsTlT26Id12F%NR^5Sl$swYL(if`~#G99_WUh_BCnm1t19{Muv zAV|YJtFP3^IzJMaK$?TAV!YNBlFnX>roK{bGs;_F1eng?_+m8vWDiiWqxqd7Awk`q z#YWR@>^YQ=$4Dlcqbvtk)i&`5&J}Cl-{jHa%f^`>w{buVK;Al1;t94R6g$jZ6F%&t zr9enYrfjy$=ZYLFQ1}?|#7^~O{81Ze-_%@?wiAJb?g@P*a^CR@+ZB@hPxB35pk44< zx>y?AADEN~$pZj}RV(h`aI3rhp2(~XRtA9^%vGH~nGbT?Vv|+D@?r)okMOR-En2B+ z447*_VgXeE`=^{=%fC+$!R9^o9k&S(W+fx059ba>Q+cPxo`3Xb~ye0&6rS;s$=cP^rf|7f{8 za8>`lz?IIvmEzJQbnS}=G#l~dsT+2$e$5p*d4zXY(eKb}?gGDEaEDkO_!fx!Hh%+_ z3b$GeqB3y)G>d1J*`CsP!d&%HnOq2|B(`j@2eEB(&??k#?uhDNlc2Op3RX>D(Dl7*Ro*Yu?@Dt=S#< zIpOTj`gKdgK74PvgEHrX&QbIF%05*wHm5!K0jU9)&O{{DtZ-edPEB5rZ((3?$0zle ze6ePQPjUvW;&6s7+;4M-_;ut>wL2;L^hD?OQzx3Rn(vKowiRe=!VXFHIxKS)@KS`d z!1y-rv8r|q@q)8w&(nO%TKzJ_uEY7j;0IoCGXPR*Ou1%dgm?VP>?=ZdZh=MNjPXhk z@H|<$PTBFAV%BuD*M=C26ng`S4Hcj^6ThxjVkPfBi4{rY0M% zOFo<9d{A<_WD&E`%W}Hpb7s@PN%f=?@K97jJY}0K&<4#)svtiA=qNSU+3aYKO7(nQZ*z-xLUg*(ZyCQam2|_Vi+rz5yg9NgA~G+;-763CFyYez~8JtmVnFsmgmpo1z05uvEX ziAxP-EXxe8{I1OZEko;Ky?taE^|5S>D)tA$Dw3VsgZ*sz*r4B7QTb}Y&^;#pkW0lT zjV;EY3KEe5UlGe}3h#900|?Wx@s!Qxg|jxw{qjT;7=<`^{<4$=SNZ2YvLC$E|IGIB zu%BU5Hf*+VH6?v_O!y74bF+&83_BA0%1;Ky9k{x%rzA^;+qP}Q8F{QO7&ZjBK)?hJ z)mi5lAs8#!3b~j{abs3UDBCaap8SY8$Ovv=6(N$3e5?S7d@R5XSg*<&ScN_a)=m$+ zWGx7NfJ2rAb6*-m?Lxu%M}*+cqT*6Bl}8xozDth`9dt{>wL z)Rc0?4r5z+5lKKvaCR&*D`)36({wOblg8)11G5BKS)!+ek&9E(=JA7mjo8{uo7Jpg3D}Gr992J)b`cxf&jNOL2yIZWY*&a)1p+|^%v1DuFm;>{p zv6pYe$@&AVRk8oJrBy>i6n*4m@UrOu93sP+As`4S8bHEXA|K9JmeJ@Bma5_r!rI{+ zGVs>s^r53VV%}|D_dzUmueC~3$?)Z7Gh{1S7+aE&NC;CRZI8dK2A{63x2S<+gAjig z1bJGX1|-BAAnuC;GT3yu2ABK9az%i&idfY^@H_$XIfV=fr6>)|sMQq^b@hSs0Sy!w zSgImJs|EsIjWKtDsS`c+Ny2iYE=Vf$=`d?Rc?TA8IC#x*&WC6NRc4ueQC_m0JtK(Q#?zz_ERmPOFlSUr&r4GEvoLd?usLE zq>}5l0@1Cm*Ahs}J`zNxh3(7UiSN?oHdmR6;GYv4I~g$ zMg99ypTga8FPxv;li!i;BqvuW4dT8LK&(Cfm)@Cm8GgNS~cq1 z;X-XeI_FcBeWMQ01|I8(f=9xoVxgif*wfIB*Vsl5thyC?iz0V}bfq$w7ikd8yQ)&4 zF)-^Bhz(E$?J5fdFIfA5kRxIrgb#wXbCI!SHX(?w2dtkg79=`5d9Q;Tu>rbazoAXM zMg#B=N@3?0AEJ%RKTo}27JkOeC9NJgB(l7;`xO085IeHNWhZb8fNXXB&N?_nb~L=a z8A5A+bb@Olo3@mef3JcIfz>6Np7RpgYUxtsyyi+%?BZ2!O&RPt3OfQEJOg&-N z`SQHl`P`_Do4k|Xam5~`CCbLAl$-txjx3dq~u+w{S zC=GzppOWPcr`S_htRqM+l$pIsPqb93D?Fd*2Gs|@KlM3(tHV-X5p!Kf%4Q2lFQAB$ z=sRFm(?%o{%TmE6F{wrYBXwY~BLy-$u#6ww4l6?tP&>dvGOaZDS*vC|-Z@4_{OGg3 ztSGfh+U#6^n=I3)I6i!kWYAu5pj!Txe;sF;3eq z#sD}V#B&7sMm7#0@6M2I^Uev2kNRE>0tR?BjwbG0Sppd(nYgms3?0!m^E zqKIP4;xZ)DZV%@eH5)%{tu$sz_bi+iTd7n#Bs^e4HQMoNR--axt)#ntGohIF4rVQec$Uu z!rpHiSq>mj7Y0@rSRK}0j8e&=#LgO#H zyX^)>FlZCdZbDT4PuC$syloP15P)60SMa6qcn@$DttjxzY29 z){*BfZ$o51Sm!_Z`E7#hk2SeF*{!MzA8}+K6lkP+L8#6f)m@g6k|s+%EPt;9$+FJs z0Lwb-H!wer9|+-IV`rOjUFDgw3Anwg4LE^r#yA~-WJ8r9Ny{YiIUDTy7H9!mJl?{G zT7(jO91zgNRYNt^ARF17++iZbgM}w`m0Nnn-OOAG0?e*_DDU0vkocfLldWXF+aaO5 zlO~^ZEsZgD`e9mdm+lUmCG+yDoj~aIM@K{NXlRgycdFPA-wp?Yv~;MMD0CBmq|t z_u>gx-VUI0_z1|%$5T_y|Gt7BSwIm5mK(io&7%%ubA)zl_BsLbISJxh7P9UaIsX|dSO-mI+9hYa@}6Wz!g6w#6?aC|ps zJ`EQ`$*LISF_?R<@CJIINiA?fBoltvC@=bL{_dDp12)mL#$0x!xPBY&Gl*vjAqw6B&J5|yiMIm&8ijGHiM#DC}Y(a z_qY8XroIdO{F`)Fn3OLHS2jZiCu5*cex@uU`#uC^l?`BpJ;~1yL=pjtFwzN#r~`>- z$;=)s1vr2moIsux1^2g)DX;5|NCr$Oy9#$Hi_AFtV<}&7f7RQ z_TzzB<&euDB5e~*7fXyz+rt)dA2aDE)xD~LM#pBmFVp0Fz@3aZ`@5wEdghD# zLzV9t*r|a(gQtNgj;LxLU@4StFxPua*k)(=kx1LfN~za?$8p;C0VK5i5aRj_l_E57 z?t+&|meFCXjgCU_24>~5j3xxg2+}8Bwhg6>K~7N)CS^W&oV`D~HQ(%_Lk8SzO)W#b z)yBAc)_cmGu7rdLwzzoQ&5U@^p$no6?uTn4%W@Ij!2kefzb+4Stnnqzt>a@LJ5OmN z;8&PH>}uwU5Y^glsA@K)P-YjW++fHYj=Pywq-w71PCkv)j38;e9=M>rEKTlWs!8qk zKDdy?)X3U|aJJOV)HSGQ2DI=>*YqY!`I^W` zTutG0hMLI7en@6Uty9SK$Z0E#?Ep3^1ry$|zCjmPDT-zGnd-iIEui1jIL&0nJp% ztmq$Es~#iP)^vZOmf@CxNH5ffjQ%RNKti^zaEPm^6@OgY-cv+xhw6?r`u^hj%@Fl=3L5|B>O0vBmzvb>0MytFs3B@m8z*(At0{#X zoEJ@(xNVeT#PMUvc!%0tX9AFF25_SeB-}~ifCznJvpcWcckocm4^=kzxpMeb&d+O@ zqmInWPG$*YRkXRXQE+tm-Kez*o8IS;Nt^D!{y2fnE! zpi|{mnNTPNhSqxWI2&v^Rkvoo?>;}1+N0`GvTEwcf=Lh>kXgF}hl6IhNv(A>Ekns+ zW!8phT3jwLkKCPuy|oMxF;Ar@hIJZX$1Eh(7CC>wBa6If8xfm>sy zkpl`ZhY-92LgFBZgIX0-K{!-jK5ES2J=R@Df0Z>b>%(gZn?}zDR^=T=6&gdRr9kIU zAK=(Lw_AI&z3L|9jc@tRO8T-?0BBXS%9885UO>hGb$$mBE&%eHUL}$h@ITs!z5~>2#qabK zkB0BC5(noG9*MiN6kr+X0&K91rq2hmu!f1Sf&~E%8SN^8bbZ1=6%Mk^eGsUm@hdb4 zz!<$;$B>LIp=a)L@I=AlffqS8npJcKzk}Yv4V@6mMnMx0f@O0cZpdZ>msB=R1vn7U zVnB*9)9BF!g>cXOCD-a^l4x9y%jLoC)pb%ecDSvvXmdaqW_5oLiAPzu{v50l( z0JhZ#OB>*p4v4@Zn8or(c^dqM3}mV5q!t$l1K_GZx+S9MhF`kqP{`6qMRnQ?CcxE5 zG<^ZwQb96J9-xahLZIDn7!qm+lyO$q`{od_OTV#F4GGOuR}|`5_k+viZgPouwZ9#v zU-Ik3+Qc=@T+g&a*MQ`L5{CjXx=`qSrF7pe(7w|Rc|*WH2>sT80*ZhNbcsZS2M@vf z13=_}viT+;W$8Cy)4;kRY&o9pU+I)|CUxNP~1-lJYUb1O->mUdv?M6*qI=VlubBR1`u?9c)3F3-)xPU8z0P{#YY`{3=L7KF9 z(D*t4(Liq~DdV_v@XA}>MSe$##IN-6dvruA1d)F{R2DCY*rB%_z?o5&3*IbY140YH zF$w}Yq+<>%>*m86c(~=4X~3fr$yzT`48KgHfg~9KIhJPS9opN}yI;H!_q@%PeZcsx zKEkZocuh;t1vYKGkD{L$#;{>PEwBeU`a*3ayx2VC!zUY}cH%C1)~ZjV1FINXS4?&E zuVVg*UOaFU28d=Ox3q(BXDnV4x3WQ>$MS-Iht{e%8 zVWPu@8q)1hZ|1pC*AiOMquL>L6wjQh=3m1i9{j%fN9Vm~}&5M@(t1 z$pAlqq&{^uvJfN>^afb~JgbKt#RB0snv4WE3EE@6sBo_Tn&z8#ht+Q-y8ayA>aiUU ziBQjnMC+Q%yx-C{+jraj{p~&(M&}lpoxJW1HJM!3#eZ;R&->q1Pw+pT_Rjj zav*96>22~(KwG)0I4j1REv=)$ZuM)c$yZEGWoZ!UuqC~C`E@yZ>AKgx_xF;ZVR^b}z-(0gAYQhEn_dQ=uBS-&nU_O2%5}M z9!pYt@RPlhh8lDUwy()?fv1BM(4ZR{cRK;p z0c4Ah15}njsY*TP;X;OX&BI&H^=SBzXil>1Q?QxxB@9voYtXCjiRm+`&ztriTYbAqz4cZIEme%{AHz*T1`mH9k|9sC=0g>Fu+(J1{sb!)~x< ze7hT2u|}zJKgSOS09UKje`cqVxVl4`5)|f{X3fn@6*`Mnf0_1|Pwa<)(S4SQpZyKH zet@oj$Rh9H5U?<$SZu)$3M6UFGABgn%PqJ2!{~>$p{ra=MD5q?Ch1%&SZ-L{VwX)I zK>$s-351d@@P83-=^;q1Av~hCJ`5oY%xZ37pvVDht#C&+s9ngItGnuC?7kAN_r>d^ zEB${}+S+_l3lwij_53m|eYS3zL0*WUGy%&G?{iA_U5i;UHrdJcCz z)Ow&x5(3!;QOuu|c2#rbL%EBa;?6foA!V8M+EQkvLcxR)MKyaU>vgMCvRKU8AvQ0< zd^glqsl3NdjMR^PukU@d&fnS?l(cIIXcTA|85iQEyHVvA_(iw5g(DPNQSiY1D&o|r zRTB((JaQH7ZL+SfYN~AEt61cj*^B61&+3@&!&j@u?pnX#{fz4Bw!} zPZbrlJ<)yZM;)JjZlOAQ3>CjT)PL*zBJX|4#g*p>Zi5tovqM@2hl+K9HGpS`P!}Z= zo47ivKRpANwH{xYrQ5m0(xW3OGL=Svn2L@1p^`8zpb(FdzhQ(m}) zH8ML>%AR$PmHyt(F<3H(r1xc7gEqNIB6zmNFgy=At7|+t$X*%Nq*-q3>yQ32n*U(% zaQdsEpT=6YtDyg?hTUsx{nzlqNY{E!Uu+a5_(DQzJhWGukbaDXgVA@Wa!Wwi#F_ zO%kE)&gp5Kp91Lb*|(UEL(h(^89DFj;@uNIx|iE!#HQx;_Kx2DGOaznHYs%*(qcu~ zU>4G1R#7G#sZnX&$=GA&`HGdB>-3x9Iy?kQ@|dGA4zPqSvVc5*;}MP#`6h=pojZnP zkxM`^F<3Oo$tKW92m}A0Y_(ypbiWv1bdf#gIKQxMTs^q^#FuG*BxF*}QUKiSWgyTy z9HPrR*7Zx?Hj97WuWc6CZ`dcUv!4JORgx{$`$V&Wqs8Qfg2Q+vMGSroY9>kA|4Un~ z*o8|g3Ui-5YN#Lf-Za9T+v#Zc?oCgRzh-QJN6-m+#^+C-|Fg^gsayiTOnayc4-)Cj zn>Ov6nKQl-nKAvl>EC?w%`|wL=-bU(_MW)+?DIFvSM1z(`po?A7W{JTxR|o}{#*B} zS3a%Upm*xBMMQtXyG!_CqHm^sulucZ8MjEaR73Q_9<}tKbhlMg|AP@VQAUImb5CDe z5L0V%X^YbvAT8(0UgAZTP>kDjR}Dx<_==Wl1qp8mV3h>0F1WESzzTmSf4pCzuc+_> zUxQ;4-{e#-hb6ZHE#8797k>z68||E2#+@sc(~V2XjlbvqecvJHrs|MFbOvosKX^_f)Ynj{=z9k`8 zU>%Nw`jh4$bj|#W|4(890byYgl4?a(s~dwX>q6j$&UwPJ$LsJ3u^@YC z>YNA5W4z#XWVM8G9YHD9Hte3vc(#~yaiBxqhl|(rU-UaR zWW?*sDe8vwsWvn!Y7s)iS2AJr!q)Z`Q!DhHgOvlXa|(~mIipNhsWtc@?dWT#<3#Nl zFCNokHjyiphMJ1Ioem!1re`uf?pceC?`>IHxj1KzXXvdn$_dy$2`ioQ`gQ*U8v|1& z7BFjK;Y*DWoWvnvr$*}=Cw&}mI?vpA4ll3*3$gV)OXt{ZvYAOe{K2TmDBskZ>$p*V zDOXOBrE6No-?@}{a*NtCxYU@f5{upJJMu;iKX|6ebR_MZ@sAUO z_Y)%gittLc&J&wG_&aTRYmBT-A|py6D9?38^S+X-j;@2N_GkyRJ9N=PJv?QxU)t7e zQW%~!)ieKPDgOb%9?62)@Rw0+O9*c`c;QvvuulY!E5m4k#X3bBgqGA0kf23TumYbW z=@T}`7hJ(dWKD}k-TPKEuY(AWIhoYoza%rHfNU{uX^b<74uQkJJw@Q`lc)>8DeSBh z{vt70;~G~W&YA6Tyza6`S#{&qs9kQkoTPgXF0Z%q$fwiwT=pJyvS_%)um&Xge#$}q zd17Jz1X&6Lov?+A79JA?5bBl0zB%p;0A8^?zXDL1SOnS@b{kmt07$v91py0{Sl4ri zj9_PfLpMfJ;+v2`x7WeA!}JG^A{{w5WeR!}^4rsggHvCAnbyV&&;svGl2cR6T@p2` z@%MjRAzxGzC;f`8fmFfVm}mi8KRc$c%R8g#f33nhW5j0jyUK z1ctB2jTZ{S|8ODxTjZwam?~&#RykK7D+9k`@UZ%LrK+XK^XphTvfcg&<1Tca-R=nC zpr==ty~zi{gZ=!PnZx7qBkZgX=M0O^MEyohoer`BDG`=6aq<6YMfj$OyCBt=rjiG3 z-pF?GEZHA2CnS|N`;2n93i_N~SSNKTGowhgSyAK1pU?g$g!}J*j-vN#jQE81u`H29 z1@Zl#zKXyTh2K_52r7zQw^w(amElJ8-&Ry8^=bV5VZ@~9=nqJ>rfEn%5EjNrA>##} zRZG_g{{r?!$F%gh|_9-=BAC5;KiV;41 zCSwS!uW^?{(ypsVxK!7b_BAcP1Gd9mwKu9)DppP4LZPo$7~hl#gMwFNN*KG)4Wk9f z!=fIKz7zco&{u{=Z89YTJhfSTn7CGj^#4-%$8wZ`MTSoUM}ghP|q~e{Vpq- zfy6}-foISH14x#cq#clJ)s7 z)B5%p?Y$>A^1%1Yw2?Pji`s|qhfOpx;5N+5c!#B#qM%bphy+UjSM!tktuld z68|6jriA^0{?LxR`~FYzi!l>J$cdH-a1&lZ_(ALtr{^2L@hlJ?m9xb$9u5Evk*<7b z@XZ7c)cCmEb13v8Q_|WO6!EaPKik70XJ^9e`nrfGyI=k)e9MGfg^Uiw187Cqnm|s3 zl_5iW;#;(OI*}g$__23-;dP{@6;wtCzgZd_$ zob>7~NzWSSenpiIAz!9#JPQ;|n=H?31uZzZ(Bf-rZ_w$c`r9?G`X(i;dwq$0b^g%~ zz2}yOOcjC@0o0ynsu0v@@|B;@VDrhv`HV+dbjHelCzI!wz`$DytiCyxREOYK5Z8(! z+V}KI@k-&(yZ;Bg18MW^al*_dJpLF2-8p2^jV*(<**SqF^*g`&;O(94_va{OzpcHZ z#LxAkuk2X6U+FfCEaG)R+60J#EPnNO5aJ91p1vKXu?zy9HOEXvVS#>yY=2VF!X}TY zQGVr(EpH-`h}L^@t|A-Vu5qdV>U{T#pmbWWx1+D9t+}pfF=SP;?||5<&UY_^4e`g# zK%V-Km8F#V0>&RByjh-GzC6E@x}}-wGCR)&pk@lT5Yd{Y1F6q3NO}fP(i29TO*v42 zKn7kW;KiBR{q1{%-9X?89;;518G$E)6BS9b(Ul z+Vblh55>)v=}7%Ow-acw2xAkGvGYgV0qbX7Z4cOE(w2qV<>AUI(-f>f2>4?~z*psh6$!qK_rymlv*)M@zsuS1-YDAT2f3H;Hrw zaRxwY|Fijmwi`iz&_cZqXyNa^ms{z6LvK%H()#nPO~=q7_s-4(9Cw)_Tmf){DKO%7?S64J754Wr`C{0WJv&5fh0U!2#odp(-L%1R24%4o}LLI7@JlvebPLFTiiD z{<9bmspc#0(u9s0W<>zBcTPd zgf>ORXd?ean9%+0{^5*CVL!}5LDD_Q`ExcLz1Lwf(?<&H@HbrEXI$!Mb(C|vD}(lL z9Zo6A5G(`2U_a36N>w4by8X(tjet*&-fjojgS%PpWa%ett?2S&SS5ZD$EE5Vw85}! z&7m^Xic$pOv_Lo~fDLDn9to?BI4-^ZJP6}{!n)=Fq@5!g02N}N*&Kus>v>k#gmEDO z>ozP1=gH4v054YVEkh>k9gZMm5!f^6%42(p&&vxBvAH|sfT%&_@Jl*E85v*XI0~Wa z$>Q;A7flSnq+GHgyZ;>%4bN|WA!OcKhLWzn3a~Sjyx=eKX%ehU4aROteFuUD=;U;O zlOyOLKwdcOnv_Og+!n`Juu~}>%QbTm4}C8heNVI)TkkA0s}AagoIzvcvK%KqhXb>~ z*No+SvN7$&BUx~D?F4+o;TZ4!<4J*Jog<`Ms&i}(7Wrsi%WN$bijqb3v?s3uZ1_0hq0Pt#+Mh4w(t@*JI+m6(rLsodsz{j+VqeUwfmE9eIJ}Mv_%R&# z8hpH1I&c-vJ^q5|mx<#Ygf&Dhkon3sHRE`9G@;JHCF%CZr5@Riz^?5s@N~2ZjwdRW zIx?6Or7LPz0on;3*75_ef%kI{29WJcq=Q<4gao{JH=Nc}<9HNR9!>T4Xj}#R2aKt= zG;E$qKql%b9&vh()vO2(BH5q>0o(ZfAxiWh7~&G3h^p^2OtmdejQIG( zpb9YsG}PldqxJKHK@?|aqKYE`Eh1*=AF^p+_kUZ1glY-(tR$EnUnfL(g;*faj8ywY zFhoBC92ouqo_tgUfC5FcN_r=j_edH`%tbMnhhhW4 z4};Ip^MRv!y084~Z^i!L=2^7*N1O;zkm3gI9LJWPX+=Ab_H22FRrK^XjAH>$e?$Ia zzNjL8Ay6NaNRPhdft7vBy+K9DvV~Lx>=Bg!=tV&5#*{RaJS|0D03T2NmWT?+R<*}L zx*A5LtH5`lHez=$B^#VUazTAMh|;h6IA9GQtFUrFeN>1Qgx{d8w;Gj*@R5#ookV(J zbrA%ii114(UY9>AvbR7LEdBNzXFrrP&ml+=zdVd9p^MrYgUXUFan>Qqhy3Jcb15QX z9Df1fW2)i^XL_{+0zx=OC?lct`LWSND~GA|*hI7cr=YB)leVmDKo^ldGABvWcH#;U zk4Louq%*`ze*jcMaa^hpqJ=7FCXV6y&l-xYgOeIZf(aaZN*LLCHV5yEkihY1wEvF& zv$C;_{Bs3r;{%JJsuJKv6R_c)jzyN%Tr zXjf?>;`Zwi<7_3#9nuTx@4R=Nj%1qs4L_a>VVe|RcQ1szOpw^36oAiWi2zUtym7=X zMhQ~mdbV+?e>D;3b5WcZff6rda#)j&haN6~U|VbO=XFGKWJzx($;*zN0d{@;EZ=YBriZ2PArGl_>R4^JHeBb zOc@2YRlAT(k;g(&=3F)HI3#$~6Uo1RQk>R8Y?|zq#N60j5EqB~-M-z$-8$lo?y<|9KrZtujq% z{x4lb&mGm{W(y)%S&!V%RCNicqZgH(8SP zymm%Wb_&!%IT*9l_+ld53ZbEWKmz2|S`A>~HLj>XCKF2@E&UBTv2Zp7i}lz(KuK^Y z9J>Ca=k-dUa|l3EmKhrNZtx^Wa{;GJpHLJ zJYW&8uMHK09?9ZZ2KoZuL;n60Qyn$zg8ZzdzUT((T7A+hSLMuhHp{(n{*R|peIZgf z=i-AXB=@l>&-uu@U|+Kpsj_!<4D7;eDVxA6Y9KHeZ2o3_eMcwj=`Uql%VyOI@Sy+YBA!rf@p3Awza=E~d zZ~i8`u?_7O+Da@~JwZ?LM5@Od*T5J^h`_>8hUTnC+p;P3vNu zAMuOrL~o1;fntLrOrr7~l7H}56SZgKNZvrq446u4{Zg9 zccMUqbqhlNm&W$ZD2j}Dg5uT-1rYr`a9>yC%hmu}gic|P>=byX-6K#DINlK#>=;DO zr7x#iz||+59zfiN zH%fXtJ)?JV&#FR51Yg~QG;F$c*gD$=1xP}9lQ?VifKNyvQA^FA>a_cTtVmUP`GQLm zwFzKR_6>Aj(UY~LCy)&s{sf7YgA4s353>~tc2F@NOo5hPcL8d5 zARs16Z4XZ@|3tk|&pELi%&t!lwSggHFH(K|7yGO#0l<||4@S8nDw_$EjKUKidijos zT{qhp5LWAX)#>WWDwM zOWHlixe?s6tbUo^im*Wd{z8s>Qx)$)Nlw}=0oe`y+3q6z1n1|N0KyMF-(< z(!>M_1*eb1N6^uMPQrJEue5PF^dW0?<@MB?ss$$?#rT$qY95la>LK}3UAY&6Xf<(4a44OH(11~$|2h3Q;*9t`O zTR|M?inCQXDo6Qk%5X&)!76^3wuXQ^;hz}U`8EK~kDwd{Z-8>VOIj~sL3~9gErVU7 zsRFyg3HzjHV=LryUL4RT)ed9;H{0i;4kGS>pX>4<1%TR+dUI|Ht6CbX8VXquduE^n zY5VQj!86iPlg_pQ_w^{gMLOacz!_ZuuG<~%ClK#0AYZ1sqyd`(9!$ObIRpH@W+!aK zMSy=Rm>+{DH$Xuq@~^S}}CIAJg;ChrA3PCgVXQVNFB57G?i?HzOML zH~G!+#qx41Y~5l5Ad1*ITHI|42wHyH#cdT)REHt~V!o&(CMHULV{;NrQuf#0tQM;t zEe3N`Ow^$O%A;|;|!?ml3Ta|>q3 zoQ7)Kkk686YFe*UJLps`0_z=qOQieR-rczLbwqx5TDeNyc^tk?cL6O!Z-e;G&o=~F zB5O^8I`fpsEe!sUiUB1f`m>*U`ih+9596vBZ;ggco}j-(0h@zo#zO6Y?!pD_PJ~YU_Elb7~H=^d#Oc;?MI|6F=XvQr_t>G%5D080R zI*5i5)LP)3NQ>aW^jt!;-}LQidteP?Q+(xQ_U(?&a2{XgZwvsQB1E+&SO5ZizS*Sn z$-5x>Upqy>fjGg?elaI3K%Bq>1UWb-BQ#HBySx4s&5O~{y%~+& zh%Gt*$-smOXxHt~X(?RVR_HQ2WIPC&^0ln={`A{?m%dAYdfFVmhu_U`Ei53^Ju+Bh z4Oovtz+UY5P*)=2G*O0NFWngQb&Q8f1p%=HG(Dyl0%sTr&i8CoXhKwPA_hPw67_e1^nok$i2$Z^gf$54<0Pi$w|ahn zfmRsdf{>|->(Yx+>U$8OZr1brmk4JkXn9)iVs?f}eT{&553zAvz`Ew!g@DHqfW9vg z8%vTLpVlQJdvb+wCJguc(AxrXN=O(45q9_FUieFpd<&H|P{r2!5PPXmFhX@(KEY$@ zOvjUdM8wppjN7uWs}I#q2qnYx3#yl&p+fqGd;?|dvr znr3$;rK|Drp78UDx9ZZ&6E2vu>J%VfGG9_L-uWic6{zfVHdF@E!mXkS5NjFY`>2h*x z^{9n=POV68#+X}f@kC-xFaeC(mPL>e182WRgRl)PRIE;6?f%!gpSl&XK$MgdNKT|- zS})d|u`6*)~KM8;xf;Zs@!`oacv}n@`oC~zpD z+>D^(B3Y@Ts20iGD8O`F7X|nQgyhpM2)*Q&u0%e~56G%h3SGSt&aqa3_=FuNTcOTR z#T68kY6}%7{R|2=+=8+cF&B%H2Jpu?+;&8STmR`9%$108;!V_J4)t~n5WN8X6M$ra zp5%aqukR%KW)PQk=N{0i!HR}S9B9I0=5-0C?g6!fsCLFWA4`0mS0jvubd4~PNvHnV z95$1m>U#IVPdirfU;2i}TXic3R`$H-&5Q5k%!~6HZxySk9Vyu(s18r?bxW);~sl`-prUj$6+E>$r8;BTMM7MIrdW!eugdrDL) zB}73@gtvhb&Y_wJ_zz-edo9^WjUL_*kVC-B)_vB1u4eVqy%i{hQxt|^d4HA3C zjny1p4&jvt9;&UxI4ylAMFalpm8>3yj34#p9c!3SOcF|rr70&7fwISFD(&GoH^sm4 z)Rxpt}n=jL3Th5?X+;%+Wf*jKY=?$evaa9l)p~~_kHsLgFW?%5TopK|meyJ^=)c zuMtR^5UYxI27lClhANWakKp$Fqp)?y8TLQ@ZnhQ3e{;OhG zpPcQ4Yw~)rPRm#JkzUj`p5i3G?_MtUe)V6!@y3!ZFjs z*N?AJLDdA6oQZlR>bnIUg7KqwJPe+oD!@)E2O}XvC9;Egae-%6Gd(d+3&v1Xn0SCi)uJiFqYu8#78I!PEa8O z?1xZZCKfa#^+*RK^33SRQ{WBKqGd9L0?RnBIV}2G9s|XMDYI zuYs(1Hvek)FsTm_~@H0e%Zy9EeV6wP1Q@ z@pv51aAiMg3!ECpQ&c8@p^*@*q3Og(2#l}+nTAiptMA$L>m;e zi0Jo#-sVLUc`N2BSb4g05qTMf{Dx0YLCZv}#EQA!L|y`gQ)B=zc=Dv7#ReX}dQVI< zyi@GIJGkE3QomUxym|du#{1C{6VQ+w(Z-YM%GSxbbS=`g1xResb;vJh;2bbbweXan znkAG#Oo?VSxO63hr*m)`yfhKlKnlG-PxeZ4@jN3E4;MxlSURwc8xKedZA`$VhCxp2 zFVdlCXp%xu7>~_eK!p?Zgn$+vkVB)}UZNqWD=vL}uHJWhXBOgd_`JQdDK23^D6eli>O`w*N+%SL{S%#!b8R=a z>?61$61@x;rg~s95U@+YAmLL%KG2E-3~oE~wKjQtL3ed>EQ)Xp*aOCZ?4gN;+R?cP ziVT2>KHelf5i0nU9J(rKH`WEml?aBsE0z;Tc?dYksg}ZBKn@2hy3B3;5IoS&hgz@R|}oJQt?c1vJgEPVj^boHir63k7ygXd8~ms(dZr8&vp`ft4$~Y5$Ac;q93C(5_!NJ! zk2~>$-6fd0JSznMy0hl~lXtDyX6f3R>DXylWJFqXqK$k3Ce}&yy^}qo`uiyN{oCoZ2oV5Ir;4!@1&Km#+oqXXE1MH7G=d~crg<6LX zIyZqO|CLoX37!i=p#va^(62k5Cxna_+?;rr7QaqDVM{z}i<+^fAN={S(S}<5!Ef^b zh-FXX6q7uhR=2_>r!aZ#mubNrui=kS+Sy#nVb6uPoH^X`Ba}rG4;KrKn&ZcR@w30^ zIbi(2)WiyUerh&m^JthHo~7mwbZ7xqLMaQ3%(LJZA4!k$dyCW}yu>nkS`6|A?Wj?? zgCp$j7UPwXK3y+N{#8|<&T#TxV+%<%&q6ABRqb+~8jSM6?b8!tZQ zg>`IM`UX`^;fb2NIlDaU-1=;fp}01?@R;avQ8e=oqkdV*4mme2ru-arnRAj;b=%OU zzG}j0y ze*I9RBsZW&x1zWrR%z?Uj;tu=KkS) zded+J1mJqfgUNOtlpc)|hu?!e9KKB3uEy&tVRH7)9x-AvyUuY~&ZE%pcSV2X00JGn z3NIyg5oGE0#6&jH7|uk&E(~)77$#u-V4_(N(7t>1^~2rXU2M)3ctA3v*u&z;=WG&w z5Gi9!7yjUYc-_N{F`eAqpy~$eR?vF0$I#er`LttpBZqQFDH&+{lY_Z-V}*|f8@NTD zLEoRb%086I7}9<0QLy)AtOt+kY1OR%>DsZePaL!JOX6M2y{vNP<&3Tzv13{hw?HJW z1Xh4Y0(Dx)nEPc~xW*hO@w%+e!0!kLm40$k2SIYq2)O>qhr>T2i2gbZ5yt{8yGKzO z`JPdM<-AL|)Vv}8zK*eH$<_|q)Dx-eQJ??jV$?Ga@ycx+YIZf*<=r7tEEa_vqlIzBqY3-x}S>7As%q@JDG4jLnvB19z=HxJ;thGli zGYB5+K+krdM}=N@!lMsb9q=#+B0n%K08+N8#1vK>;@>rtpA%47Ukcpkdv?9 zQ{|h^qKl2yU1E`9ed6KCDKxX7nQ{RNC5P!_7oYLDedaxsp2fm|ES^mM4bAR~jY#f$ z37#2g8hE{^`(V`QOIwz$V@JQjP(VQ6>^a^PS`6iz0*? z%;e1ROoK6|N{zG7&XYak% z+IydSB4jwVcI4A-N%Av3Q@m#CcVPSU#u@81_g8Wb_ZFR3598vQ{a!TX=spFuLBoa( zW(8njv#Q7Aph55I?n$5xJb6iktI?}j~ttp`#w zW{2wE<~i*=GFzU=pdAnC{imrZqL+j`JB98+>zX`%sbkO^+zx6pwvl%oZDqba;h!%V1L528 zc7S?3t7NR}w-f)DEywwi@r@hb^jGhOe7eofZhZ5cTGjQ39sIQCDbDX5LHq`?_2^s- zIPYCAf>}MgJ*ym6&5zdC;r5yadFyhEQ9J%4r9lT74yycq`k4?DvE0&aiAZlgRG z``@DMe}OI-UZ=5$5vuxe0q`M!Y5!NC2ENE!pnz8Lu)r58I)S16zu7fXi*v)Q{W)Uq z$en$L+4|lNxGRGHO=r;3Vdb%|{Jd%H$bA&7pyA$od~Im|*pPMa#f@^o)?Ai;O#wsR z5RRqWV8f~2PNCoP6?-;I?+QF3=vRCWhR^@PHT*lT&Z*AFaQ!cw*}m7m3)p_mf4Ud4 z+B95eR_>g29~hs>_8?=_Q)A+8gLnHQ1oW-CC)p*>JiO;W0Fn3~)%QPuBz%px6&~;m zFgHM=E}xg+r3g{>n$RC2zwQ6ck_P{Smi|vr?!TkV|FiGtD1PA#7J3XC?}-tgM4!+; z*jw9+x;nAF{TOx>?Vl(7AVj|Y;M_lcVU9jw&I%4r9Ao_s0IS>8Jaq!h2HvW?_7{#2 z8+bj8^rh>XD*}6S!*{*s+>g)q9FBjDpG#fIimc{6<~{rK*!J(jyBz7@;I2no;Hwk< z2LowKp`%-~K*GRc()<5f<_FyI1a*qYv+d6K3)dIQ$D*(N7w*@$|G}=Wth?9-*2knR zK7qHwK7XOE<3H!}UN-z6-&FPAdFB755&yr{4?=g_e19K`3qMth@$BxNKKuATcl^)s z`2U_eH2;M=!U8Lhv4R!IkP(p(5dJMch6o4#;Bh4XP;r`TzAI`BO8Pp9y?#Q;A))d5 zzt$Ur7pLMFiyWz%Rh{n@pBKBYuv=wYk(n+p@968OeD0?mxb>JPPw60N{^ZDm>YC!4 z$je`U;X3_)9fC#WsbPQoTHJzn-P+uSfuYp?g@+Vx?&Md+)-I|l^Gu~6Zd|G_dK7=8 zv#*sND~#Tb%`qFumRmHRrVUDV$SzPb&18w4l|LJSm~+7=m)2+5v z?`JjbI%T$5_+wg3ijRrB?goB{eI-iW+088zH(85r92rhiOIte6t9AGBXRxx)I!7+G zu^I1w-uCo+EaeeSjakaEP#SNv+tElYHK{RCVcc4POT^nOTW$3L|&)r z_sgD7TgWEbX-3;Wne~6OADKw%v(SUBn=ErhNPR=vi<7HI-PM!Jgiikr&?HQ+E~X*V zcfMcI!QHZ9GDK3vtR_)QILv)e8aes#Z1R0{52q(O#O-2*z?*$k1TIrH*yyiSF4tI$jk!xk~7H z45+TI9B|vH8FIVS*gHL7NM?w)@|WYf2_5W^xjjO8(;>UezW%;HphI?*{p2$K@LRks zM-#E7)#2NTO#&ru?$`by62HUUN}y9pvWvZxZ=VVaSdl)P_N#j`63Pbmrm~I(13gT8 z^t_7;e$$F8<;&YZ)=&Y=47pq`_)>g3v83Ayl<4ql)|U=zI2YV{;HKbL>3?b20&@?Ir?MIEGm}LarL2E4afg49Eq7ea6Kt?tYoFv=C^;K{Bz;Oet|T6oiFj zu8fJp+G$A@*H)BF161NmAOEFc!?-?kitNxZ5DsE_xPqQf>UM(Qv_iny&6& zxE0^PpVg4qQSmt4o9JKpUFCX-8H$>s{AvLmfw*;RB)26pzMcq&lLhr(-=p{3uRLBI z;cE+`8FiOuUG0b=nAwdVbGP(8p{E{)llY$YW(c_20fc8g5l<#xb|NWULdb~q$k_ir zc=O$>XJ-`U(i|_f-+1iByg{P)QhLLY1=e}y9?XGo=IbSp64GGvkNbQ-mY9U#d=lJG#1qkJ`enhkL-OP({|DmxDl|{zw+&X+*Y|iV5BT{`61ApRO_>9Zxn9U zaqih2DSPS1^+e_$8NYielQe}rdn-uc5gSbe%Hd4VrPG8gMn33e`q=GF!x`|1Mz;Jx zkSn*}v@79axEG_Z4_x{SNB$S?VClnOxHR3s4Xqtt&$R~j!jjpX00}~6-Z|ahIr|6` z)Om{Ly<0PA4%w~ss)4VcSC*UMnVRmbicP*xXfX+fxeEw_$xDD`C5OPr__>&wI|5xi zbQaG?+@5Ak1Y!&ba%G5z9gq-t-c+jI1wOw5@7p*;d0oGZt0U!CQfJn)Oo~*@g`6z7 z2v4}aRDlr;siKdmQ6qsT#O3mVpHT1(=;DC;P@ep}kG=N8V5!w!FJ(<9rD}IifYCzF za7ZRj%>vuBan+J3W2C69BU>Jq@A`hQuU}!c`2Xtg>Oh8J0r*uLM-(o1@*v*Htdi&4 zF01G*CVOd~-+55-)ilZJiu`D8I!B;;+ximZKoh7Wj?UESZ7dV2dTu71J?w;T8H%~W z0;G1D^$GRf2%&DAEW;G8m(Ron@9yuit#faX?r9Dw0096N>u)Aj zI{ZMpSz{F65tZO`KqnVkj3(=JxWoh#0YxvR&Zi{J3R1YDD&|)4IyiGZjZx{wH%VM* z6{w>)ITx}n}36_2E zQLO??B|cf|tIZzv!rwybDdMdN__0p-{f{eBk<_&2gqb5fULAeQVqkneoAe&z;9o_L zJ_Mp261m((0B68UjO9YzI>4>^lK4A6SyXITOIt8Y9*v>CoKDn(i1=0mW#tR>#KK4e|U6Mp~pf;H@c4<$RWn8? z#c%DWzu>d?U2e_r4&~;wdmu-*uCEPOW|)f_P^fSmQ^4W`1WimQ;7i%}r%`w#APQg? z*UyXrJfqvVA?^@HqTXS)OE@@oCC?O9gC`$(56Q%q%Ae8|^x)uWRI)DqoMUPt5lxc% zxlOQjbeWD=)8zB^Jip7EfkrG(4_s(`@v-QS?V}RNEtM}M3K}0Z+kAM_QAy`7Fzy$f z8eiUfy)DYn$&gp0=Z}zTQee1ZC(0Rb84in}fwh}dN8P&zOH%^3tRDW4EWCI2TAblPHox3zh7 zM7%%o91G~!5Z6tSQ`yv(<5{n@StgIc2&JoulUVQ%R0&cdL1g2z1NFt~daJUK!&(Hq72jnQ7HkPskL`B4ozu{6cRJJy_&u z%MbgC3k34xuYOw#D^o*?ic(Fu!=!Y0?V=ng{?iQ--Q9P+aZ?mc@<- zh}>=W4^Ik8i|rU2Z6tQqUq(njP!j5?SNwXUOib;>O_eDB1|iqTf-BW+K->)9rzH(K z@}+_Vsi1a!4|{+Fr3Rnhj(qmH?;+sebzBz~8Km_z-wSn>Ifcb75MwZP0o?G7O1>0_ ztX7hJ-@4%L?33SHJ?zE76CT;j`%hmrtJN2#NUCD4NP0@o`~5iGXJ^Q0196GZNYTvi zK`?eZu$HsQY=2~Tx_yK8Bw)LM-8oUCRsDT|m~-M;m8TV>5P6S8H=TLfMtZU_+or4h zV03xMYsPQq{oIfqj5{QI=ldadrz^xd*|pdmdF|2M9R>c6enu`(&Uc~wLfKy?5yjFNu_>}Fea_^sh;zvX<+33!kzqu(~*(U zdQ+`M-HkHesN^bl<)P8|ZkWIWeN^jcYld8$dwV`ZL(>fkOBl?ohi*K!X81A03_B`o zPxFtjMo-ayx4EAJyhC;aOMq@-n`(!=cTUoG&8?S=-X5_OcER+d_Tk<=a_komv?Zw# z8t>qTYHIp@(P^9B6J~vP!=(49pLZ7~q3`*_-D>54Tq7X{_#5NP$zIBmc0M5gONR#% z)JRa=Ka0H}L8?>KpS%|MhT}R`vmP@c>iJ0B<5Gui_v9>D3Voc63m#f3PH$E&G4fcn z2DDn+BkA>SDNnG2%DdZ&FB_IWq(y11l`GkUe(Q0Ly&V?3^-yMN|3tYsYA}D zK6Oyuq^T%Ra(%8j8FcS5{#o4EPanByrnT$2!*9az$1S@!RsSp#yv;S=^4Dr^Na^#Bd>GYYM*8@z|?gB<3le0{(2%4 z{qJ87T!E9Y{E^0fXBz!okow2FpSVs<2kVJEt=2O15^u4u1IP>$->5v?L*fdPTpj~V zB&lXz1t84dxdA|pQ9Zk&I60{`rkG=?WcRAv8jX{5BqVX&M+X0CKssy`U${idsA#Rs zpqtX{3F{OoFI6(D?h|yYx(h?X4P}xp0LF2;>{a;#LMUz|a0_%?nbCvHu(^U!4Sv!p zDtqYwhIgP^%L$zLd}Holp5KF%Xb!D)bVcS&P}jrATeKmK=%xw`aO;XpnY<|SD&{G( zP(@|;sGDD5b`kkw0lQyy$O@}N_Jr20SjtC}l4h?CAn?~d+tBabq7biQP&~;slZl?| zEdc}Ayy#)qOG#&w%lHwBe3OiV=5zZ3cPIFKy)#-G|D^$jBLepAcgc_(E|NFiFA`6|&b4Z>~hvEGN-zYt|RT zh0zFnO|O2;b9O~8wNE<0L}m#kpuk)`b1b4$Mk`k(Nr91AV%cppPO1}S1q|rhaE?#B zXsNe;f*IoH<@7XOy0N;%RZ_gI16TpS5w!IDk=u3YsDUDSzt`K58@#30=Uhi@6jz(Q=ozb1J6MT6MYwOizN2NAbyL)z<2eNfnjnO6; zUxFH}#nRc1N;ccQ6_KK7{K;l}za&v+#O6GrO zUIq|=dV0d_P{n7ZYOCm9H&$fDm-Amib`_S24ssU!1yv%DJ7TgX1MgzmNpQvp;ZgW( zg@531X8|OSm9?j($S{%1NJOV`*7&4%d`#!f5ZxdGe$qQv35ipj-k4;>soCo>&=*aS zk8{I#6b-K?o zv@3e{d$gK9xvSx2bB0C}&O&4N!k^j-Z(mC9#h>G=qDmrxDu3Zj`I62oH4I{0al#ra zskPQ@`FPQO33G-^0|{|>uex?~e-x{d?m$|Bc?zl$M9^+i6PYxOP?_1!ekmIA@6=3| zA#n~;Ye6M#6*KJxJp7t34c_&w$TUOj+eWc8_Fr+`-8o^M%O&X@6>9F+@ZGP>@WSUg z6tu2L`rBqF>bsbb>Ko7Ndm!ypLu!t|z+)YCsvQ+du6hfLIj17qX^ffNbW6nW^F46k z4W0~$2g9TvD9ub}F_)|C2$h(9;`(lR-S0Q7zR35XR&hF9QneDM%-_|R_4N-()YGYS3iFuQvWMvD6E=r+eRa_HPvW@OQWDBCKYDk%a^`52XEMCBdtUyM4YFV;WqWaJ)66jkB$2J6t*MVCHxx-B|guWt`p7 zo@exaEh9rS46s;m)Z_rWi4=X(={|N#LWV}qq&&Nc^aRW@tOmqe!;lD3jfqJ{zPnYa z@H!%LI`M?Xp{jz7A$L9v_74a-kSX+K2Vb&BxW-ws!_j{y3(sTyfue*A^M1A>;2Ts| zz3!!C{wbg4xqRU>X7^v2o|6EV(z48QhoI zDP*y!%qPlCPgA=|;9rU*F|9I>yF|+vZFKI=>hOLTav)|Ay{-jb@DPXh@Yeh%z| z|D)Cywv7OZMOoL2RT5AO$z#o(y(OxnW6~2v_hg*(#?MZMd4l)!xXT>og#5|=UY!C^q~NHx9qzws1Rtgo%2Z*P@X%U zZTA;{8Wy=}tehN>7Bi6}%y`d>{5})#uvEAZiJPTHDlIS~qa_uv5t>1zHJ}p$n&$P9 zc9^8@1;wow)wy-D?O%L`$zosQ+rTyW@ZO&8lg57ps?e3g8J43grk^@*&FBbfJ#_7p zN39+l*?T@$8oKBJT;q&wCN$MEb=H;ODHLv~I0X3K&*BBxg78)MDF& z8*_IVKZThv>W5e2*4;YZxy&M}$P#}2v)4C>j7l*NlD%bdQ<5h*SuRjUg~x6ZAog{Z@D!DK*1xuiGi_}7^sYc+I?&~+FB?oA_CTp}m6NRS5+?c+}r+b%BQqPzHp+NY0 zu>vEc1REB@zr*4>GBjQ0sDXACb^SW1BV7mk}4HmTx=eXdrbx_v5?=GfIwvyM&u<#LhkIXJ6r#MvM!w=ZK z=8r!>wStht;mR8nis9i(mdru24`&Xd%NZFOmuJ96&k%Uka(#t@zrUJeyN3iXB_Hij z)v+)aL4xH`#hgr}-Dn*W6(SS~p!$j&{s{85JDZyEw_fd(G$^pag1WJ@D=_46lYu?S zK_<^q786zE@09u~h-lFwEaWO~aijkz%>0E@u%uM4`EQPomV%#ZvH2ltDa8h8QB8ZI z28`eo>@EQ-B!f6m0HZ^`1y6alW?>P7%p?xD1Whv#1PoRqLjn;kfwj0i#s{m^jB*L} z_b?lXc3}uuArAY&o>ON6{6o{2`ZIXV4{A?qkD{{{*ki6(Eb@Mz(^?uG6kSR%AZub{zeMkTYKPlP*)8+0g4p&mk$yB}lV`Kam zPKf#wP8M5C@pqr$=Xg~YqFwd-$j_sV{s}C^aROm}CY+|3qkW>=>;eqY?TT~-rhNak z_a9}ApEl^dsj2jRV^LpRG7C$&+p$wCo*kLU9CA~y^(=HjW|~S%w5C|jk{EkrtKX{a zL=@7=P}wQzN>mqt=GccK_gjBkcjEj4#TDz{3m!?g{Y9w2Ur`4F;z{7C3jp_H;IFB% zD=>l`>_Gx;2Ee8-PqiB|%44A+j&E)<&wp(Or{9SPv{M%L8LR_SV)hfibH^kWF9CLZ zUV8!#hhl*&B-q~~IR*FzevT@UUcnbU%PNg*j$U;n{5KuS=2Gp{p<4*RhVUc6N$#{@ zs2B`GMO8pt@Q8CE%`wR+EIq3`sX!IzDo4uGj!nB-Wy+371rYMJEFf zBXrI9M07yM86N;D3IgDD8{`VjvGl6kQeu4OtpPv}c&@fyO z1GP0GyC~VlN=5@H@B)cDee|Uq(xB~rWgrxv3oORE5uIvMldCu|=df?TH3B-I9=}z8 z38dg?LS-F?Kt3bqY0a5A0hLyHy90Yos+oH(b_rf5%Q%JYbgd|;G&t%Sks3jQoJ~QA z)v2)gBHMl+?O2t-1Ghn5bVXw6Y5l+#?1O8u=1=H3Vkw;$<_T%>_&w&gwsY@&)V?mz zID`(-p}ti45R0~kP>k)t%0e!ho&9qz>wx(DLP4-_n zETY0{&)tA}b_KDGd~jTA*&G&fZ+gMt^Kx0v1B#6*R;4tt{)kOg5g+kgX zsg$8o#)+6`$v}=E!2^FNSpP;Z5NfqYgy4&;H%*}inzVaJY%lVFX;o9%kbqDJi9`9n zM^qki>|2YGV515=^?^JQN;*#J8`3{e3lBtt%Xc5@jBD6eN#ND^NZhQ^q;I(VYm3g8 zxweN0F0-shQ(4mKz1=J|OJd@UAqkbR5XL>S!vJuc(p*%)UR+gP3X_nCxZ)k>_9Q~M zAkd>NbJu`>&`Gy2XZCxew}tF>dhrJE*1s^|%-FGJ$uo?s`j)?5Y%@2Nv6MN_dLbd9p$N~hLYZngTN>Zr~e4+Q2i zaUt?k34fjXEmOBwMT4*mF1W(gV1}u=AYFM(>SW%OV29Eh7kUsNwiY5pMvx_QC*Cb! zg*HKV&~A{!$Hw0OSd25U?jV@}%_sW)MJj2vP$L znE(W-fI$Roe^DK{0N*%L+yK52vnh1qDtQ)647NsErde=51UTkt5vg{lP+cW_PGO<0 zt>#(L2U3OOZ@7A-xIKc{9Ge`WHPMRq5+d>K^t3QDBRCel^=awLLXrG$kFrH}9(KU| zm_?xNYnZ5Bmu#V~ugrz|U6EYlJm@)sZgoUC*J7f&agxX5q^Ln$s@OrHmemyWVPQsZ zVI7#0fX@q<9{u3sa1NtC4MuxYI9}G7rDnbb;9fgRD&Pc23GlE40>7AMG)^X%`8{jG zN}SB*VClM}Jth(+_m~dTDTVlF{WxZIN~6iWi@eevx}ogqCwgp7hi;ylr+r-y&7PXN z{%-$@8#*k}uhy18e9KptHt$f{FQ6^VW6mNp>Dt#^t}P)OH(^?cuIQ*U=moNyNQA6q zxvWTJ40{pfIqmZeDj{p1t<Af;jAI^mR&zK&#azHk#Uk#6n?@1eDkz;Wh^Jaq?fTAzjk3dV1f%DJ*LoH5Qu0BKN!i2EvJLa z*bVuEl+l#}I3!9EHq76UDBQ5Z2H}y%(no?8SlTf0sLMC~ViX3-T*f>kG80!W`^9Qr zsVMGG6I$U%{~(+{1zZwPDzK9L?Ta;8s2YwJT!95J9ywn!B z0I7BlpmI{7p4wNW5n-GluUEzf3XPy#Y|POftwNHl-2>s2$m>}F%APQXB88;)^kgLn z@_87-^NgRGO@nHceg-IBgU2JCvXvZAdogb65hQIrwbCCw{b0z|St-0RKUB$tdZ|OpK=Cn1?p_4EgL1hb9pp1& zBh_PV9;7ZqPIRVHDSSs?(Wlv62TtOq>sWzcjeb}Fk%+SP5!f3|_?`pArW6Yx1C02d zc*S1IUHjT~yS_nu7NabiToVLyI>sSqg&(`fivj?-#TMfM{`>dBVBm`ua04cdY}j=$ zkMtXWLJpU`v%YYZl#K@a3PB|wU;{k)De;LrN*7fGk%X@t@jKuQDln=*g5mx|>g{JM zlzQjf6M+0oR9Hl`ST<6)n?d~I5f~qgj`p~6L16}aEq6zbPQ~EQv$SLs%xDWgBa4xc zPrnZOvXE&$X5PB@Wg+5*mF5E)kW~AYt+)$wiQRh5$we=V7R)>`w&w^2(SGU)Wgi8z zImUAsF-0MUXVwUrr2z1WZES(DyW@eee;a`Ke-RXKyf9-6V|LsrT+kM*ww8N)p5-Ma zKN=@JnGB#l&e4i{yT3>bq(}%w$Dx-G#m#>*Uh)d!P42g{d0YZh#NV&qFLqSke_3M( zyj|l{MtuPchWPAuy1T(AT8oBXA?^&md`>4qtMR-MbbM$)6|ZYWqS@aKRy+=Baj-Fa z58hbonL&LAV+mXRVVJ3(`&3nTuef_h{J%)G^xWg4zU@>x;s|LGI?Uai+dY8AW^$N_{D+7SS zX+h|GU+f!%gLoHMb=Q9o#8kTW2WIx*mHh_T;wkF$pD-W!ZU%Tk>;#tWXgSq_fPN|j z0{Vp%EZoJ_T0Z{T#o`9KK!V=zW}|Q7DZh~b%1{ptW__ZKkXZ}0aP&M^>? zA>$Yr`w(gltWT0K2{1oa9kv~sXBZSZkQ@g0T;Ju`$63phoaoPACz{pnG|EQnV zF-BDsOvearEaLbV_KsiCrf+#3ImejrS#dNPg6wQ0RCw$yyvnk$br*{Y_%wXP1kbGD zUCpL*81a|PGx#*L`g_?O3(qlNo-hW};VnBLk&^l$5@?u)#Cq~TZ$fW9@k1*d?fc`Z zqdlkPEl7ro;=}zQQMkdnp9|U!hypi^DNUgH2|85{4Y2;*YphE^=mv&nFx%VnvK_-> z6K|rzSBPp$>hg`EG2}(#B*C<+VMpZ_kvL4~Rm%xsl<9#dlS7RTiom|~&H49kTJxCQnu?6(`7OJc%okcpCdlN=>FreTNpnhX zk;&^77j9+G2#u*(xE<7Y_FD3%u zK*rbv02IUuLxVi~di8WKi6bz3PhN39%FrzdS+((>X*F0FwP5jHCN%{^d`!Yj2nc(m z=|01E0WUb{Bp?#g`#x0TB>?<2xXH`-mJJhKTL7(VkTh9>ZP~|h0MpzvSUHTMmN0J5 zr}qZr9uFgTh3uz|`Wm%AYabxE2`E$6Glea0bGdK%&#kyXlGZ&5<9u9@ljQ&*&qI$D zY_qe>zSiG0vm9qp$h@BpfmQpY-@9~!PLL_V(9I*z@(#)|+rTa;l5aD<+?=^^j6o9g z(;5UN42)7sAL{q%l1Qun2|zhMac58}WQlfA1Z}ogp|0NBM@6}%IX51Ngk>ZNOO-fv za+a6-NG-mccTnP-KLdv|PvuHo)R{?(-2Mqk%M@F{A<<=eWls*)D2vc|O`0Ql99Xgr zeZ~h7Zepi89#W_r+A})2+YzjMs)dL129vkLs~vYpmV>{T`LN}?wbL<4%i>sU)vpg` zG5v*O+b*45tC}C*-~3?CS~UsGgVjToKqNucBMo9)8WcTD;L?wu5==bthGl;AI5w7m z{mD>XS;CN^4;)5_va$xUkO17}t_~>P6PBK#rLmAFva`@x8qjuU5U9RQ{lB%lG^`5b^5jO^*W2lpiaN$N>&~ zfc`h0_h&x1c6Y>l!t5kJQbD*`+D+U{Svo~H57Pkt{IDuxLkrCCj22o%eQP<4irJ63 zixQD_ODBn~X^2RZg}U>Q!lAzf$s1e_?3^IIrjxJS%Vjc8wW+ zo|M*m{#BMB<1?L`)*Z^`YNOw}iJ!gisO*SS1m4%WBCCACu(Rc<=|Y;avjUDc?;EYa+K?U9M#Hc^BOXR;G-$R+ zYR@t8+aAR@)%XWo5gZu@dQ!I5Z~LzDF9%6O9qvx@ptxFDGoI7uW1E=NpZ9GJ8J5GG zb;TLi-bvH6%@e&-*!SSx>{;Dh)$xJVJF!3KxIpvO1u##GWYr^2B=H4Sm=n8)g}$B52H^3ccK9?n%7*thpam(Q0ODK;7o355 zoCN#}ULh#CnL74^4!_RV#p~2TyLLe(U%I&eM7=wy<6pRN&>jw)SCO}ek)qD{|W}R`{~s%ERyAGR|X|+ zyvPga*`0ryvZlt%u5a=l)}XsOTA&BZxC^{8Q2}G4JP=B1FV4~EWt8EOut-^ z-33F=>qI;p3h63|h$KonVTA#1GEj@d#5jk+`)Rq}dLnHS9}~{;@nt3!^YPUH22#p# zhf^H!)Y;Kn2v0F~iP82-D792tSi$Kx0t}|up##(R;IyRj1L3gVxO3?}PH#@lj8qo~T3D$V3$h*i2!N}7pLTuM1L-ccK+ z9bY0haCYAvJp{=sj-t0{v?9FWEq{Q7V=m<44HdjOLfJ~bS>GfQ29fyBCPTOBS3n2I zvdl6CIzU3IKk}a?&Bdg^8b69sWFCGiGrBfQN1c0kD z?x(&w^VAe-a?1cyVUP<7us+?UI?havZSuHj3+oY?3`Vw=sZ{H=JJ)aaxm4S<>ya#H zCO2wR48BlcF5Vz}X0Kw+Oby)p}t(0fFaXl2uYmnTEN}q0phptN&2q1$oU*P?_4;RL;P?u9b z25qNy^D?072`K-<1%edLO&n~AT}>bn6XFK-h1O^LPcDZ7?)qhg#7l>Y8`OUn><2lO z-l_!QD}FK~t}m1pejcP!NmfmcS)j0;z-dZ4uxKXMxk=>zpNQ4*Q1)E`SkAOR45NOj zzK^fA=J}y)?q$?K!pp_CJHw2rpwn6MaI}v~`iL?*Carm6CL$7UlLRDyw28KU8{q!* z(j|Z#CcCRZ+_4&cY&%QTeV=%=L)pGu-s1#%kz>>U!2^FfCWnR#FsCG#F^%P@So<*Zr zz1k`9!f9xPBj27pLh-6dti=gF*U#3Vp%l@~mDH zj7Kmg!20+P5l)eNDdncvNf5G#mPjl(!&jXGLfTF^%$Dv{IREfIo{+#r`&^~<1ex>9 zg9$xKYHo)dsfBB1-);0ZrV}fgCKQZJU>ZNjP-;pYX6VCil-_>0Z#>sREqx!Krd6v0 z2GC@A`pOjM4IB_~p8^NkVv#h@7yRrXp@kW(R9dzA5;7UU-cykP=A#rcQ=aW35tMy2 zBMUT*!db$kI6Zp9%er$Ymm3+X3}!X5=v!{|91gvVyxz#00iE~)GK#MGKTTcpNoUef z*30H`njuY?k-fixxoBKGF@b`}o~f<>bR$R`JVDYI|087L zxZ@Qhy55bAUnd(_R#G~6_Fo!k6}<8YK1vyGp^|`g-f^85tKKP~pviLBKu_49*%lw;vGnU3ZIch>D%fEDI#9u+Ze5tz;sYc)GH+>2GoclE zGmA4Z>B+>GYx*Gra3lOWDAg%HePuQb4i%s~6C+M;D&@W=N`F{hm|bEX)?6_P{-i!$-U zjcZ0c#p+R^a#R5m87OC=vDpkrl8$&onTQ!8K4*J{vHG| z=)|Nu2>=lG5UyX^kPwj3?ud6x2W@em$f))R*rfM9aN0NK8l`p$>RdY{HhfSleT{97 zZhQS}0a0^OX+y-~s~io!7^4Bwvmsd+fKq)ZUy9*+G9K0zi$NI`Kh_8>)>cGIcRHlJ0a1S zlm>!QM(WqE=xbDthg_d_JGi69G~_68znipw-=U>uCJc5+P6C`lY-8sfu?ZLE0wd$?fDVl272IP6gAg?8e##9W^+al~fF=}fKlRUw~K?ss8ToHNe^f2w#h zYA%{sjawpJThNHW{WOHrqodJ3h0xNw!10}HP?@DGn57mru6F~iXc8He&*vJzh?JeP zdDVA1ep>0ue7vd!B^sK(uwWuh5=iB=#2bOXxZzCQ$1K-=v|s@a!>2yP$t#Zc29Haw zKa^nDxnKg@Leu&&P5{y6*_~Q43o5GtV=N=!=(1O80Z~eR6pD*HVAv>ii(3wJpV@E5 zi*Li`W8zWY^ry52G}IoS7#cou43&<uP$EG{ zS>;b5!qupe`_ChlrNzSLjtV1NZIaaV_yMX%GBM{TG)p5WS(N*BE9@pEJ)LH2#jG)F z4dx~|e6zRdITR%CK&>&V-q3zZu;pfUEMzd(X?s3X)9x*W@V#nzUOXS}%M8g4H&+_- z=|khab#+JJCy)l$w+0Rhyu86UfJR16_;!3R*AHCvU>$>B5)S+jn{Sy^40n}B_l2jG zoR?x8Cw5^jP()6=Fg{;uDs2gqtXP2F;gL~B`C3RL5^e5jK`6cSG8=!DA14_Jer_Bk z$^0i(i4Bej6O>YlLXlzVswOgAy6n+`wSw0UWb0hCMSIu2R0ii0ym~oAS8O_dL8Y0o zHEfuuP!gTwh=zNTtPY439`5L~o?%EI8@t6d)@U3rUVu`ibM{eT0HM5f`zRPmbaK4g z5WX{2w`)!vwL0vTC^k;HGS#<97^%C}b7|VYT=-+)RDiRGUViXk4gvdKQ8FP|*4NPq8f5DH7F7 zb}RMGbIA@y|KpP1hz~WNW0S<6S40isTfDi*I{KP%mhsVWEe{zyxD$dwf#EnxyVQp1NZk60o|;N#d)=N8_5pvuMXl(e(TA+$mqG?Y(v{%LTiVKDLRjf_uoSqoZ-5gY9} zLm^T^C=MUq0~|Fq(<~Eqxeal@blMvw@$)F{7g?BEH8Kxhiezw-hB8uKdf&TF{ub67 zH>*8p%sObf4rp!}vrT5=#yM)N3GvGwP-qw(&(M%6UTOD-1o1z$bP>cf76JF;s3c11 zlvcKyYR3&%qe80*tMAfpmXS59Tj~63{8qm0;_9WCS*!_v`0~ol%ymsTctV@T%m+Ny z#8m%#l$om1+UasKTKVE_K|`ew`l)f;#FHs1z4>!B*JO>bQ0T`&>BQ{_ltC*o8EjW> zUR_!7cL;ys>bRNdlZrFXnY=QELW5b9#Cdx2RMjP!IFp~ox>@XK-@j$n;Vy>9uf(yi zFlZdBw*3pon*`v5gr5poO{d89-Lt6O=xzP?ZcJa16ji26D9yZYU7%Q)o@MGkNepW_XiW)Xe^F~;!`o8o(% z;;cVS?WRFy)Kp)wYnFez%|oBq$FRxzN5eHA=w4OAm11m{SO2ueW>9L7p7j)7t}hh| zYa+Mr8MQv*58yT7GCkAQnMu!j88E^eg`dN{h!55*%C)u1vR}~1$!`9sQ9&sk{ecDX zR=%`Ck^qVw9*O;jiUg-Jv0D}E5?LYbX=*tMyJuxOFB6?cw?D7w_c}+Tl$~kq6_qy@ zlXXj=+4vMoQkQFf>8xEMbdTEM3M8&XbV?4Mwr0#s`Gh^NWRuyT%^w2tTK6XzGmlvv zVJ@Nab*~D@mX8XlYH>{rUs^v4t}v#)yFWO@waggweNx3aycsn6M7i|WCYA`6;=Sd! z6vTMTq7y2SGTX0MowKY6^ecrHdu+-&G(0tfD%4E3&x|ytZ9i(-Sg@K8uifC_2t-0- zr!{fBi4AaQSO<&t8;d*=f0k#;xzZS=v-~nqSCW48*~9ZpHsIhn)J4yb z&P1}QDddQ<4qiuvDx{8mWe(Px*CHwA1jdt)c2^439kXu#{TYSXkUXc(vf&)F5TvW?_ooLBKOOhFDI>}44_ZMsKn6P&Y+sJ;CJ94pc z>hT2aqpZoG3}@K1Aouhi{8DLYu8G*?SozBOQQ7dr2cu8$nD(sPX~wTHW_0l$+XY>* zsqq_V+{d4@Oe6@~U=OMZMeeJJhk9ux#pz;d8K`7mCb=AIYxOhOmgBgYt@k3Lc5{4H zs;GT~*3>0xrQiI3@U*I60)Is20u!rZ>b)X%7Q?PTLtrKNSLko+g9YFQA_}mkd45lr zlYjoVu#kb)p72Dc8OiD|xx8Jga{UwPP7)H8kqVY92kZ$b)MhSfT3rQ| zq4Zs(5t7pQ^3)5ugr5jWS<0tTACs|_*+{Fk9m>%VzELI*(PkUk!=p8QO5&SBkiuh9 z7?F`Hr&WiO43JlHkbWbgSeP8(gh z134xAEGl_1A=yxAWf4`2L}jQ9)3a|< z9=nuo#czVjRR*yQf+;O5vzcXrU&?SbDAL}NVvK&&(MtJ2Ik18jjr&~Y*^Dciu10hw zw}jCJZ!ghLHEYSjH;9A`px%;?UsUpw(mmR45FK0KNZ>X=MrB5KTe2LzS(j!)Dw2JO zG-;PAsH&FJ=jCHDkZ=E2{%92A(*6u4jMDSz_tJ~=WG$ui*fDAY4@I*iA?;_V(umwIAMSq-v~TUM9&&EEH6()(j84Ka*a+YKe4!?t&3F{qM}E2 z0~_TZJLbpPmK&aKI6GeinJbBMZ~H=>?C>auSaVH2i5#V@*XH6`nhK{c+IN^zu)5=c z3Y^k~PG8*{>N0IKsirFnuRCGZAI%Dp({j&xn{=Gn64fHaAySMRO?NeuJ@Vz# zGH~)v~{o{vc#@Gg#8T(R=G4>^EAu<>mOR{g-vV^qQ zBNfKbkY&govhRDyT1fUR*`kz4vQ;EX>ixZ@KKGCJ{RiBS@4NS-)0u^tb3L!;@_Jq8 z9K?ZWw?wDNr40OkkS3ft)NiS-$15mkK-YR! z4st2{y{a|KpSK^7o+Fz1IX{}63GB3fGUwg6X&kAD8`n1+_x74KKdn?og7O9*UJT3Y zj(qroW$osno5Kq!$q4qf-ybau1>6vy>v)vDII-Wmd*b0Wt|8|;+AXhT$%^Wgt6{IZ zFPC1`Atjw~uCgglOz>LBVta9eJdo$wW9uJ458=7P&XMS3CU>iyaQkHB+706``KYp-u{Ozt)ZP|SL@oI{b6t` z-d`zQvkrQ|^C4@zN$1ZsAE9d=M*BajS|E?7ta(K+O6HcskQdBVD_76%!^^Le(_;xQ zWSlL+ir-V%lfH5IA2MiV9Djufv^lQ6yc$A^$62?osrmj`fLwu}*qiCR^=aZ~bdB!A z9Y^{fm#&z1V^2``Q(j7C>tg#@*&A=w!E*=698Sd}9(2~_yUc>{scUKDsK=j|uYhp>1WcMc@&wkWu#|Rzpo}C*kxrPDL`mFW4l}L+nWJ zWcc_sqyLz5eXx#W*#7B4)IRQZKwwHLT0P+9zSWy%^8V68nao|ab5HM&^16rBRsFD1 zOr}pA)TKLJ)^|^Q_SL4i(A#yYN5L1C7O!8bX7B=s1SO7kD2IYAa*}**$gE=ExuzQU1O6_p3lpyQ*7M+uuk&# zM>&|lS*3`#HSC&Qmv@s_NTyb5 zbuac^WG2C!Ss2bNMcfmDe2};h`2LkuA1vE{)O9j}ZPDYg;75&+;S*4e%vCwLKHg`! zywCWa<)9L`UxnFbxqVD|zxoG;8cY26RU)zKs43ZRgO}KtIKlfpaq@VDrv3G~!_nZt zLP^DkKRE_-<%LW}CsSh3!OO{<@;?*@5lAC--$8@{Zu{`gCdS~%Ex&Q5^G4q&(*E&> z^*1L~SMu*QhxD@Bucnc?x!4mIGB{sx=W9J^Niq?Vhej^)_^e}uuj+hm{D8Ayg2g#K zDxrU)mSS4Q-|>>iSE5TOL+K#-wA^jqQS2SnRiuM|uHDhcg3CX=qUHN|!BvhrgbRO< zeEf4-3pc2cF{Blq`t5h#GsTgfPv*v1?@lF0lDK1=m%kExl}waKFN2df+)Yf1NRz&5 zlHoICuA*$W#R>#&CDr+jF*y*UfIz;^&l}hT$;QA#C^bgF=v#(t>#F?vm}uBs6#H7UI$vNaUq z$+MQ`3!RbM;0*-Fvs8Tvx}3c;&MsK`tC6K&;?EYdAox+ zeGOJW?Kt!PBYS4gPT$NO=+7=UZF+v2A? zvV3ThbKuBn@U6m)vtvUKQ5UX)P3!=UcQ*Fa<1OBr6`D z@G3fpx!z3HFDW6;*=S42nsuQXd()86#5T%)!@c1*n*~RwrQVr;E`ar?+lI2YI!n8c ze%stSR`reY-6LDienqJL-*M-@n(GUlRbP@^%k^bU@GYGF{rN>$+@Nr_LNqzR+GsT` zD&HNoEmlZEiQ9N~h?5%hN%&l$26P4Lq%e~aa?l_~z(q(67fxY73wRaa=J&aHRGfS?Q${b;E9L2_NV>#7iuoK z`<|C!qW|!$|F<$rLfP{^C6{G>rUbt8GJKjfZ87HN65loQ&zb|6GlDOv5#oWY75qjK z>7SLMyA-sNuk_>n+ZohViDzD$#W^xR)wz^AiFDmNP(>Qn6^qleK&$>S=M z@A2_sapzj1gz8Onm8d>K4{EeKs9s`SFLa=z0>{P;y1K(7K8>j+f_CW-`$X5oK^j^ zbu4@J7rUeXu(tX?$T8Et=5jVlMfyi?@@nGeamjh}gW%j5EULupm{@%tPIQj=BX?lk zL$(bcIJU!J!kzl(m{{Xcy8j?j`autq@i-^WGef^p<1kz@scqtgKc&0nv6-`$ogZo} zUBrP>f!k>moBNv?S%R09B8?qa~i0FhvP3Hxxm#e(vjTR$~{7%4%x zA{5^Dobpl<72=;7(XaAVW%U@H;BuF1b}$$Q8W903$e$4WmI0>de~=T?$1CL5cqz`V z!-6Bq$dK*uOA{HGa}8;Zto(Xr#|rZMeSS4f2}u6FvlV8n+I!6YLtYWTyXL#ej9kg= zA|aG1`Ooo}Xf}n+UyXvRCFa9grGlktQMsyPf2oT0)q#>MY1pnJuZ)HbjF*@VYoXms z{8Wit;N02trBHD>R_k*g{Ngnd>_mgUzYOOB{o)6S9J|r)+n%bPAH)haG7uV5dvsm+ zn*`qK-X0oKow^6Z7`OX!QGf*%TH{isq2z8K$8CB0l%=c)Nlf-&){GJmd&XP?>T-~0qSiw~n>2)$m1w)cFV9`|Yv1EnF(H>~F zL_|BBYk3tnK%!~(fva_N$O!5rfW8nvbZZ!3&q zdhZ)4Qsi^zR*{4lAinVPyxqb5nt}jZtADYj5weQ<1g?U9Wz-g6&~F%D>1BN3y!#PP z!yn_8)J;!je%0USGL2ub|SQf~24-=K6!ro8Ubfyr)V_8f? zKi{4rD70P%@i4LIsIB-qF*+mdAJ!uSN2*zW3REakzq-*(C%*CwJrx)=( zEc#1&a~7wC=!@3G*i6WmwORCMt~TkI6fGU+DJE*I6nZhliqV@pTMj9_5-=nf7*W7n z`iKJp%da%13Vx$MKM>w{es}2(Vq=NlFii_+#~R3xKZh^4F#xaxw3z^-864Uev=1BZ}%4pjt=1Rb=<1`jY5r|HE}i?#yy0ndxZr?>}2i zr-wC4o4Oc|lHBJ%N*&WlAE}vDbsbFXTM23%e;6DRT~I567P?v1`Tc|lGPR;$r&iTE z5IMpW`!*|Q>6@ehuk4g*$Uc|FdI3~&`TlSve;VJ|HPv1*+B^d^zxMCIngUZ=I14=3 zRqz>DXTc|{Xru{1t}hylN=)>dZxrD3P_^I*utf&1@(VmxUCGO81op=y!C>>tJue1A z;c3(&L>3qxhF6IUhD=AI=Z$0Ys8lUH~rHbQSZTM=!&FjW~5q(7afIve3WknA+b_b_%R)}h{x=BN?sc4EnLl#4FiPP zrYQc(mFEOXG}nNM*N=Ph)X1SJ{;LP_)NDLm>d=)7dd^f_hd10pTKX2B)_~^IxJH=k zMq1p%Q9Dt(cgr#m!ra(lqS2j<-|}EqVu~NDFG&GH27Ew+sQ#k|E7&F@v9xe1{3R&A zeV?1g+nPR}C~aDaZ_n-D@#uV=!E#`JA>U$x~M~;**#Ks>@E>}1X*j-Y3D{g8JdODLFZ zmaGnsl`v&Er;Ch^yaB<|gklCShLlQ--N}LgSkRlWk8BFP_KHG*hrf2<$*qz@c zxMNLp&c^+SDG|wuoLd3{QwCTEU|5BZ`B6z{$99M8->Z3KYjMat8Wrw3 zcrQlh6)3ascEV5BWN9_iX)w0i=W+Zy1u)iuA=g7J_oeX6RRueH4+D{`21Bvm9HtNW z#JdpUW!1_v1$&$ls7A_^RoUUa`wB*G`fG7J-aao*#y8*!eT1p zEh+s#n~eD{Dt+3b*8nrq@`C2z7NdIWJI^yoOb|*PX%2ro zBLC`@SiH~(QBVdpA6o$tj)7~{rSPMxvfOYjC0eO%4xFZ@<>$oJ^XY31PDOU}vSFIm z0L2QhDS03+IKk!4o7d^Zp>XVG^0%mrr)( zqmU3?yncCidkn7(2!Rg|*I5~0L-%)^+tpZ$MpA;?d-w497#o{+GhUn8utP;K?|@dW zB^ax&B3pL>0Y1wvavwG0QriD8>_YM`EmN_f~gD84mEep;acdO)D+nb*EqOaDW zTd48tvD|Lo3=@?DOR~O5K3T`8mg{~g2bgdyD(mQ66(r|D>UG~%-pQy!G*q0>7}UtA z(&^V6%}a2))rfKcBW!jLHJpQa(^|C1cjtf{4lY&ud!7gQ5g1Y4H+yH|6qwwyt$zZK z+yk?omZ-2=j{s9s&x33n2}MahZ+xLVM`o0uFl5t9yKRzTIFqQN8mo12dJDda37k~w z(bbRowq^E5LzrEoySINn0^-f;ov7*7Ig@>cYjTuMBaqwkGZGbN4!5xVdChleQ!BIll3 z@k8I4GC)M~xz80|GLT1O@Fg~;5hMbqr1&i#Iidtg#K78MB%2pU_OZ%TJHjjedHhiT zA>1*B*w~OIic8X|u|&uqtsxzr>%92vL!I9BI$; z+!?oa&CeuD#$YBYiiMoPgfZ!iba)oR%*DV6N#v3l*gECa)fVA+XLZLF$2}u3+*aFa zM>tXLcmUV{<}KdQS-L=g6xeP22We{xth%%yPhu|PIaES{LJ7O?LjiyD!16TD%8PSrk4et?MuiTT7xO#D0 z6>FDr6!k)tM47%g6^r@6s9HYl!DUf{cc%;g^<*cnSAre=s(soFW}bRH_KqM%9;Pg5 zHKF$^5h{w3bjdF^X6j|Sj%|g&cN2Sof@E+!%Wl|S@*lnE60GL^>rvaVa*o=6%P>y}8KI|7l`=xNO&OJ? z7n?N46B(*oCb!F|n1jTufEYpq{Ful$eKZA*P;$6+u0Z4&S5>E)cuZbe6-uz-afT=5 zB{r$+%4>oi0S13?@~gfV7K_0+D{<|%=xJ-gf`UBf%2LoA%KRZopI!@e4m zVW9a&js*W%Qz?lPNG(+urUCN%P;By@-b~8V!19-meuh`Rc{pS?=e=ZqJeDHX- z)^`xskMOM`Enb5xX*Q`ES0ufDRHeN>Sw!qS>;Ck5orKKno&9O63g_m|XIpzW%fl(S zKiv;HEio8li;0@UQ?h_LQf3Z}h9#jfr+dzTk4RCi8z{62?R;B)fL_SsV zvT&d;4^Mp~^73m~qVpgw976dIa_Megfi7Q`Pr`^o1I%n-UcBY_wXNiHPFwty$tiku`6E%~u7%R)j@uN9~pfE`@ zav7UrDr9T$HsSZVzQ0eOSbk*V7R|5C+jQN(C;G1F29H;-NYEmaD(!=IGOHDfjwM|!&RFscON#|p%;6gC+_gil@Y*ytI@$n$z$^(%m!PkgC58s*u zNM7lb=uFdPo}-XG8V2smVMK7&hUZQtA$eVo=s(R&-+!H=_~$e}rJ>M>dBFFIP`#60 zcLw&XlKP!iW;k>(?SbdKZh(0AY0n`bqNf5s312x!EDGol&Q~IYB-tno4IgKgM)4C6 zL$^Yuv#?5V{drZTc${7mEc_*81eHaMBNy_$cAG%u9Ve)tw(`O%psB-UthYt8gyC3@ z*DZBZ)jjes7ZcA^t-J-Z`|_;xQisP=Kg5YrV0`olmfn}$C<;?-uo_#q=6ezfJ`>Y; zDDxjgTy9kYTx$oE67QCn%Wou3@SOrX5ljfF*XQ5Ps)kRhKJ@TZU}R1!l=w_62+`Y5 zb@FRunXyi<`<0q^WGDWM+LIMe$>R=}zZ@To!`@oiOZSjYgTfIFRku6Nd#dJUtRfrF zJsQOv0`7JX0wv|elHj07x8=69s5zE5RIy*R*mj2id$)3diqf@|USxFU>hT|n3JIn! zgp+ktJ|?Y*@Nuh$QBya}@kRn!dnc-(3fb*d4zWdg240_f+~@SUjv4&E71e6#MYW%2 z(G(6=As6Eybq8G1tW+d51)-NL{)+8#6@jisb;R5N6v&)P>L8C!EdXJp0F?*-(g|_2s+c%RW>^ z(n2G@cuYggIAQqP>s`1fN4>FIgFP01ws3i_nGz4Z7*`ReH$W-EA(}f+UT_h{KUk%E zRysxSgh7|dV?*k8vQk>Vc zzmqWt>gQT4YfhUhn7aufy%186#eODRHr49GwGhkAVprIFWTk^c4uP@|dqR3Yw!Mr5 z3)Fr7`OJzd(=D#RddafAfQlH-vb(Sqb8rVtQDON>zLmUZfQ0cc>@0r`<4+lV-C_fL zdhAWWWV_G~5t+o|Fq`U7)28_On)>>de;N~->q2*p@@=`mLd}i#^21Hdgblq`C99vY zO?~F_7UQay_CjnViU!-B&-*fC3kRQmU$3(Xd-Or(W3`&7=(z1qf$m-@dm*J)n|7OZ zLP zb5AP0CJ9D0Ug+4MlktmB3ae7A3Bjw!aLasROn`i0buW%Q$f?Tco)lfwF_B3=B22u(f`K`Y2K z(sKlj7W_ui@I7$-TRF+~g(rJCeUafHM_Sp4wkwI&;JfifQ^~5FdD0szTkT-|Q}&L_Kjow7)@5r`od)BCw212sJ-g*4Nes>kRs3_;RxgQo zfh^Asyfg#Pq_V0fr*Y={dFb(E87UqR=J0xL3n!AmNaJK@)@}`L1x~PZ8%~dDl++Dp zmwtW6THmL1Otp{HuQH(;jqG*ZM_Az@R;-Bp>pzNM^W>+40Y=8=!o!wQECs6SpXCkaz#} zsR$M<##dPAeDn5X2&W1hjv(%i&vR_hGk%IMS;3`<7hJt_cUKz8y>0T~Kv+fpYn#BF zn{jbVnO>-LT!}utgoBLITYU%!F7g$-Dx%6pgB;~dT`u^*-W9_d#n!F zZ^XUxY`59?L~x3Url0V+B1xZFMNzK3EHaNjQQn(MvUHoeoS~#(@yRPcwwoaEDN46^ zPP1x8JXS)3O+~)}<)UZk5$V+guTZ0xI463BhoKMaeopNm{TQ66bij}-#;}B;PgUaG zyzg>lF+NunRhuW2E-@NyNRGhIdo}EazzYc4kgkyu5YUaHU{iMwi32D;X6STEoclEx z97aTg3*7w&Athe{1RbqSCZmDyO|2- zX*7YkJHlhjmUG-0C1kZ?JN?~nSp*xq%bI=}C2&dP?eka9l=T7-VV_@!D-isdfAChe8SpS1` zcd$0ox-_6)Nd#?RU_4dtf^J!&{T<2(Lo7GAb?<#9Rwyn$OT$hX7rTwM+J$t@#m6zL z(W|+nZODQ8!sBHV%6lk9c>w*%#iB4DS;qkHiJ&|7HXG;0eC7aQgEb(8kD1#=iw>N{ z%iHXkHC?!3P}1!S_px?ge4v6m{_U#pl>&aU`S=BtY)mCyjF`o&(IApUXsMF<_ialbNy7WNSYByw zvg66I>>0{krJ$Nd!<7Att0MOXLHbYb9zeD|LO6kIffq1fPfiHCG*pZqb@k% z)KmHaYR4?ni%7D}tBQByhSe>kOT7u| z9H+#(x7mI^*&17gF#J_}`DyBeyr@EYqc!ia@s>%6Gh1{Pw$?Qwr!8WWL&8pQ?1mS39bU8c&UhA5 zD@KD4Pu4nEtRTf}P_-_5!uK%anT(Wa;4NB%@l;lvB%mzB+w`OxmD46wS5&WA*KPUd zq3s__y#lBrQ>w2$*{W$1QrmZYKEF|r^u5gq3$T@<_|s80sO?h)K{Ie3Y){DB>nF@Q zpfF=AcHhB%I?S@#ckFWV#=})p(EE)X&S{GTQGnJH`r}j~XUV3RvER#~KzKrrce6Sj z3C+e?hZbpUsW6_}v8enkRZ)f43ie)KyHOE|B6+QSxa|-}Wqtl_!LMbin(pd7<|zOm z4pU4+Ok;e#ppI)^GQkj6%C=_HV^chpx#dEDvH^Bt-D}|dbmfU?=#_|}w^;K~>2T_r zEGBNx79DOTDruTKj4^?{ApmwFEESau_kkyvtIF)qd*BgWKM6^*cJ8{jk)T6E>)wMI z@%({DcF*jkkP)e8K;ulaDSps`U=!4=o-w{qoXyZt9Lqs-8& z6#%CJ)oZhLTLE;ER*#*|u9b2@Zr4fz4!ZVKY7}gE)OREu`-WTUv$<;4X8|d3@mx#q z0Gve>GHZ2si}r?t-WjMvd@DN%IwbUempiPY(p8DOpj zD&9sPpGKHRUX{w%zDO34nDVHn7Nh}K@ol+rYulD;=f`CShY3H8E)n^C1!~?2R07^Z#06l?K2+V&J zd2uhPo^Q&^in?JeZm)kHBg=}WTRpAsNMqoqxp0+z9SVF5sd3PX%t)u#tT2&lg7Lnb_Cr7!+3k`fb>^OD3?aOWnEFS29d1a~;$+p=n<%3yBUp|- z@SGxIt?Z$`(KRgjnK-m;zi$69(L-j=ruKY9}Ai$Iz%Q|W`((|~` zzx!zp6^$tFbW#Ars7E&Y9GWoO#$o@ay2jc&hgmwKSlFzhF=f()C=YcgB`ZZ_IvzptHiKH2db5FwH6$(q^^pMn?0 z{6ItFng~z&XhnN!o{Yo4Dz;riJg91~c+wXi^Eue?tKf<^ff^uYTed>;9Sat!Q;*gJ zV9FM1FV3$@!`-agXg^Zh&nf1#cb2b>)1ftxIXzE@fX;sJnz%g8z>n76H8Jbz?T!Fi zDE^JWy*pXHRDKV|%`NzOQ0E2>1YZcKk_k`$-u$>Dj+kQ8i18ta#KIrkzfkk$vwa@3 zh+{@+6Jpu$$d*IwbKd|L2LO8Onu0H_py5WnxAf)BAES%siNVeH^N%r^K9m00S`gz{E#Ee8r^uT6|(F%0Bs)0Rty`G4#L-6pJ`F9VhZVRQH zVtnC{G>b#Whkn66y>Bdu$@EXDnUyC)*sLpoeHrG0a9pznQpRVH=8`?TXH*kcT? z*kt^pg)Qp8FRqbpbP#s|Sll=ZdkyFc}J@;GF=Ws7YnfXzJ2Tp!nE1Jgr zl})qwhSZ^|m8zOqHDXva+-j!p^{V7Z=J6i<3fWgA73e>^=^ztuYG1yeVE z=^r%fpSL_P=`F0-0&nMJJk$&6-}!BtzCHJxVTb-m(S`d$ zicn*_`=_=%ETo0=&gVMxXf<>yJ=xOsV;D+1*r>ON%_>BH`OtTCRQ6ZuzLb_@U|IVf zC@CQ9=$YXLWvGGM6G zc3&foG++o{1K?sKWHj(?HVD_v32*9s4M53>P5Y(h_TeDhzGf*oaYVSdko02{j|PU9 z4K;JQ{V7PeL9$e7aceTW^*4D7Js}8Hyy4!6z6E_aE`=-8`3QcutP5XM${3GQB3cen zE=P-;?uK{4BHSW)=!_52T*{*9eWZ3hr}QD=&C!m0J=#`L$CK{};uyUcluFT4eU#ByI(I z&b9jib=g)Q&i57ImtENpeW>~e*n<#5NEE{CjKX-!!<1W3wgUCMzXKNFL)^KX3WjX~ z+>m&v_Cp^%-tx{9_pp<4LmK~Zq{>)51c0@#U7wK@RNb>aYJoIrn%+zHZx^m54l$># z&!02}(let=XK5Ji9WEHux_Y~@z$mVbU)YT28#hW{Y>tULLg zAFUS%NVriRPIthhG#uO-87&rwZ9@m0EzIWyg1CRQHb5caLh5Jmb1lmrd%K_Yu8Hbu ze=-TW`KJ~(mbujIKkHH_!4qX)T3K&%%(YMCZ?=6RU+v^qAEophSqeYUhemK> zphS3DI(i(x2!X)NPM)gg+jPS+(Ooe+Fxt|?! zT)o_P00s>p(QM^j!oeMBI7MUeyTw2-^Ddrr!~s_yrK9N>$u|cd>fuh=rl~8uz|;ED zyWJQFh=hlakW76~#LU7a`5lSHOrjW$kK=@MXim(kkAf#v!u*AfD1{2{MWB5$1|sZT z@;Yb&P2tKbUb=cvZ;Mg5cfQ4HsozDL5t%?Kv+#bTLL?_)O@H3J;v_~04E2ZT7;e@BN#ZPA=I@IZKTNz+-wl>w>eW`Nz8qF(=P&=a&@0OfqL;tCsB>2&<|v!3kb_omis zeoqd4(bS(5`evOXxptkI!(U>)oDu(6vf8IzIPVRMU-J|g+ChzLR`a7Y@cqMzWaM8P z7n*M?_*e>nWr40>W+fE7;P^p|$*IaFDJ11?^d)uHN8~3pBFu8Vh!8b=vc4}aPy|bf zb$HQ~Q|s4b%AI%R7kCTTx;Q`Z`Js7sKt;hb0rX;^3I%9v0xI|;0pKgvxmwqyv$Q?S z*X~Q8YbtR5uEN`wt_Du{umnAE2L}H|>pj)^jY3J$%#mNqKfR(=!;?(d%g41jIFu+S#7-%yyih!sVqW%fKtB&HW!d zny6V3wD9N#G19gbnF1mTMJ6J^>uq7M=*eH;M1nu8NC;BDbTwGeX)Qe6XuA8NV_XD|0fRoK@yLy+6u1h27EiAZ z*4Q-?BBh+v_>_o8TysFDLF>Yi%n_`OTz(#7jG7!h1wMeKhv2GX=Pq~iA(K?YV%dxi zE@QiO7hnIFA|jd3NaoqSFT*$*=tS09<;NE2sH8+0+^LjzlM`(;sH=&O&v@0fp5-I9 zY>M#|Q8wf$e`JcyA&8h|@|8tn-m^Y}-=LG=@Qqt!F)B@KJ=brz_Ff(-&;+n?BYO?Z3_yA_x7-vwQ|du5sEW1)Hjg3HmbnZ7 z3_uWWiM188%^emh2}Yl)k3sEv7B3qZ_u*K(_;h6-b*3>PC6Luj>ms&u1RN@fK2C%0 z19jImyQ?K`OVtJ*H~Bf@T^T%0{A$gKmLf9rm9m^(0h8P1AA6Zfgz!8Ak4##l3+eIw zHG#;4PP?Pgd=ABrxR8-_6~%`nrpO4S2B zAn%*C;@_K)Ap&=vG_&nwM?qF}iKPRkr5f8-te^Y;#iB zOlXq~${6{PI|0%uQt7&Z7veP`3lEjmJ9ARfR4*$5w1c7y%2+f34!K6F_uoCKsHN9R z9J_7lT&Wx~ecRFzMzPMZp0=E(&on>9ZMpPVvcXhdDv-Y2{EJ`Zdo4(S;rEvb9O5zB zXmUC8`1I8QEG#QCpvlfHLfe2`Oamo@UvX>z@Pqu4Hl;v`wPdI2ff84dXxO|IYK!Rm z8$slS+(eQ=1Zm)mwulOHx(k+`zqHrln@%I7FkAlQ+pO#Nywc%0=1xsFAWa9cT~aUb zVPjC>v%%?Q44;4yaw87*|AQO}Hap|2`=ZJB8lM+D?heB_H1vYvV+U>k4}yX~UjeUlG23;# znLE1v{}x zk5ERnVy3v%Y}Ufz1aYir>+3Q}WyFid&jUe4tUPrVV8N?%NFu%Wo1hQcX0c7JAT*9f ziFo^UmU_SHlB&Gfx%$l&VsV0S*)r^iT@}Z}A3e$rNduqUxn5^_OErBae=vzO(V`Z` z9pz%}O5$SDEtC4ohg!q`_>r?biSwOJvrG}07t(=(=XqQx&i#2<6OJuTb)JRg zawzMz1kRPOfyj~vrFgL5e#rnv@+m->sBiCmg4=OqaX2TNKDr(3I znyxh!b)wcEFH{dzaSi?lsk8e2@hw$fk*n>`%=2j@q}CJ7^koA{vG zd?qPkG`MLn8**+a7CJ-B4Qxua9>y>vr%8+hnPwF>`^%YdRE$eH?SZn3G~ITm9z8a^ zcxa16t7u{#9AHcgebI4$D5a-J=Mlg+a^yWY!4I}fEX-~oKugE&py(xbf)^m(tz(|_M+R{n-ue~Nj@N2Hl)0PYfirOn- zfzjl)8Os|iFomMujd_5F?c4*bK@6o&8OM>QoswGKIF*OY0R7Y7dT;i~a3fyw%y zjfCAE+I#pS4nmK$VdGSuucDyf;q>C(RukuVS|lYAgKd^BRY6WT(I^f-@P@N$@N`*P zh|Z__y{T@ZX>B1ulQBRO*5a`g4V4Jv3#nTGO)R&sSq%YMX9n?SENCmVgwzFaCVAQ) zGi?Qmg_{Rd?+w3ZEAS3|?99s5GVn7If{(pH8Euu_r}pc%WyO}UFzBf0HDd#rANxJFSorL znBAhzU*L}|7d1!nUxc}dzsJiL#SS8Q4QLR%tiXKoAM-)gOj1g1bIJxdw9#o2GXQIb zAe|JAd1I0<+mzaZh>ZS=J#UOj&tHAUVhAy2sq@!Y#E-fRX_BsgN`^`oG|qgks&~nO zKl%w+k{LFP1L35KD2gD=fq*lN;p`SMu!>RPhv+=!W7l}r3}kzhf9KluZ5kJLT&x=` zz+d2aDNej=@JD z>5e}myJ5$3&o)4KV#xqtzAW%&5Nrm35_sP8?wni3rDjT5;#4^SQBaNwj zg?ui~j8?N!%}u#bGO>(h#$x`PokA}O-&wzb8Ctf(i6b}_7ma4zhQ29e-0#8@V{0nH z{4-tRiccB%CC<~CF z0I%xYlz9nq`$k^i?Q3bFcLCo$7qmX8dCMbbI(`24LT5C~ycLZ9V6ly;YytZo{r+{w*NeN*WZE&@a}HZM|)lY(uV`db8nVX&tUrHvDA8a+<3z zy$)Q_8}gE8nAVs#$P%+&yx51v!KB>qY;GZDa%*6&h=*#gdd#Vu(orUROz3SgZT z+saoh_5c2-M37-cd@^RMO+fO^!K27vP$f9G$Oa3HjnZ>-{CJ zjmzXnrQ1}{lOKtqiwLejM7CiM${H{0f`~!E2C-bR&XJh7G|yOZS&8@AP)AdBt}B(8W|~Vg-bM0s6UG-*M*N0(3kU zRAf9m$1`a-1UV;4e)wtA&}KqFk{UoLjY5f7;8cO*2dz%BO0_upn8*)C0)TkosxL!;eH`AJ^ zLejI*q`8R?Mg*1+kQv$2ei87B$6aYV;kq)v z^@lst&Ym?qp?%#wiTJwVO)se16qtb%Du8~AL*+ZYwms55>dl!-M7WOP<9}ork#XyXA-Ax0sZtuCt#txRbTPdSei(zpAlQpd!J2C! zrCAT%Mnbr+hNA}PYe1e?=bU`c4|8{IAitN6Ftf}AbjM6c^*9F{peUrK7O1a|R>FYt z+T%|#7h|4vpP0Np0T%HmT#3JYkY5pG#&J{YQ{sBe)?*~R;ZOX)SjiY$y%YaQXxgM z0y=%wujZ|C2Ck#as;c7C*HPHzONC~glI;p2;XHJmS(~Hcgzy#~#pd4~m#Mf4y4BDI zHK7q&SqH!eEdm6VR_CErB59hPZYgu{*WgKl^Z^RcWO9U|zXPB`%Wy|d{;iws!a#%o z^k}LrtndajJ@&Q7i`l&0J-lm3E8l5lK(Ai%@WMXstNy$w?0eX4V`v_ap!)=SGJYj2 z@B}{ zrVJVP=PZEZfIO($fJQ7wO!?o=2XnGxWpdp5bhwJ1$iK`SZ^*f>I6q)4E|NuyE6fUp zxOL$4+>wNGgXOecIzk>Fs|4|+ePW+WhJxAdiO!FAP zPtCQ|!c6i-ycRN#Q{hNnF55+R3QCe#X2EiNnx1x6JmO+i+lpW6C;LZan`!G*pruM| zqIVQaLF|C_otmDkBhrJx|UoZg+l%h!x@T zINPg7z~$bK2JR9O`b2}aW!_f>fg4lzRLxe2KuY)=0MhswYqhHdILNio-PdG87=qLC z{OUHk8xE@+ec%}bl{p*$ew3qB^Vl=sDVa`fH7@`p^)b*vg*6UCLF#VhH*$vBqQg#x7juLO`Mb;2^Cw(4&p-23%okOg{dN@jZ2a0)$U;+ID z^(NS+l1VKUj;}sy7+j{1)+*3Kd*HFjK}pdK(YV~#iCCOe&v_%rxgj|3=Qw~7if!J17iiSi9>M}fK6^#}0UhQQ_8QSK0wauOM?ZRCc=(CE- zP=h_c7nMrthBis|-54-Cv#g{wX#a#+y*$c!3e+gq`8@<=ErUDYLs2A&m*-+OO6*QA zH)P0b$EbkMgva~n640+{Q+vxGCkDg??ekeU{C)3BA0_Y)HoEGN_8jxi9YUl1I>;)= zgJ}G#fJz*RkDLdUy8CcO@05lBv1Rg3a`%dw}Pjn^5X3hZt(Y52xZ)qkg2W_;@7lL4GkmQ zF&!7<`((hBgD#+Es;#PP!l@y|DcZjlY?L=)+ryoom$F`)j)BLYr{1=0fd~>EAFT?mvDf`d=Og>#S-qs{KULBv0&S$o^jr z7!(TfH00PCcfoB8L@^4KjD6(kkcQPfp?KqFyJG>0Ai=YGxpNxOFG8b7XUhh%Ekbai zGEP7IbYZ)O5z*6Hgv_Q;o_iDy_q}6*hd`UT*NP|bWzHsaG-M&kScQ7+a z4O1=@ac2EM#b90GyFz5uLniuEY?+B5L*Mg$DJp?I$=W510I~>EL4=tpY&I0#(RPW| z+W@rDWFgMSWAf2Vi9tr9lNZPbf?MRsDXD|JAjJo3<#Gaz{mjy{2pDf|%2!k}2o19G!?@u5Vns{CWV=%iWOH;=U$ zc~I29l+AJ(ZSTI01T--Q!e8r}!eareljZ?2x8*}A5d31r3P0(*(!`wn5a?)(&y}^P zy)}ki5V>>}c=3-{n=Dxe(Lp3W*AZuMA|@1sU0Rvd=b_wckC-y10TKuEHM8Cy3`4Q` zo5qAU>e-*te#Y`TE_w3ID4ybszId?^(42XSC*c&MAaL*>pjRdQP13b^(Li%wR@MB( zV%bIRi%5a~`&ZB4U=)ZG8W@+CZ%91M$0IePQ@^uuN8?VQUVxce&;>*w*BMsT{`uWj z48P?bNcU|8>q`s%&FKUy+lP-=Zxow}vR)Bi=_DtAg6Mi^#(K!^o2iHs)TVgo(iqpU zy)FX9nDH?QFw;lSpNbcFv24)K>(<^Rfv3{%Ralh38b6rs#cU;kCGJfVmxd#m1$JcH z=Yi4bFQ~ZBCYzcoW-`6}IPIddUQ-XXu?En$G6IuRw5_Kl=8|gVQd&i>D<7L8Da}CA zy0`^;&h66pvWaFZS})mEWT(cE2R7bYUha7l{%ag$5A$C~`iz?Nw5U2a%5IO^MCWy% z12~2_`Q@^|uxJq3NU-Oubs{8e&k(w_!^DNma^B24-keS}+AU?$*aH}*INTH#jCwBI&ytgxH=}sOp z;qW3F0N8Nqq(Z^e@W*CA!5kuumD$Kl`FokFudt=>-`fV`C$AKBznN`nhnU(foglxMtHVs`C@ z5^jOdqU0y$*Tn#OCI0X2l{Gfe4OMQ-HYLw@%RmN@MMLi6o8e3!;R*$wZROIf1VV0c zve~F9Qg`L%n`Lvsr%pe}0kUv~6os<3z^rkHt>xcpUww?oBaH^Cm#9#Ba7&6k!N+2f zx;$Y)j<*Q?~2z3rNx`MaU`c%dZnc~=FC7xEXL!m#AFnbtp5%FN}W88X!*H>QyR!VA1g-ahT zARI24yREpW*uEFc_y}u@^A@NszNxsShs0zU35I1_`aa7j7{W+Q0lpF!)^;Eh!vs{v zR5~O?2NjyBYcaJre3KVX5E6JC_3=MARc_PFM8tUsEMl%TLS|NPtni)lt}$pMq?#Y`yt0g-BBT;8s!%e zw=RF$o^da`Q6T?Jg|~(ikT`g!Ufkwp($=Qv*T34VzD3Pt@;zkjSde#P8e{D zYneo;iu_>tFq>!G%~A1Lj`-zhqxWsHWC>`$5Xk2+`I%9kvCoysSv_YZJ2=Xp}hZFwwYKf}qH~&48dNd2S*`u0Y zW`-^B_HW`p#FuZJ|Jr#$n$q5n_R9hz=G6HW%Ql;EqZjvKpPqV99{S`SZr~)36*(X8 z9yDA5QV$fV15LiT7K1M5!#WRRDe-q~W~C6J37*PlIm1vKELEyCIx<%%VB%!y5Eypo zeq@Q7@{8o}?uXeMuxoFaNg0qZa7b94wP+P39CM#i``QZ+XSU%U7@mEkl#@m2%o*6) zqAm?a6HT$|x6_4A)8w#^g<#AspX)&raia^v$1)nih(n6veNApjcD2dcTVYh1!X1f# z3TcQOd>5;CkZ$970aaP_aW;Yp@g!j=#_kn#|H zp7D9WjLTjnl|Lak$Hyg4{T@Q2d*b0*E~8UFORhk|u9+yzYgpOm#L~8V>`XqilRLeH(Klh z(_*ET{o)5O#GJ=ub4?*2sL~E2`xztxNV4wz&bPu~M%I5x4#T1bJf5VMOF+s|gwa}) z5((C{dQ}Jxc1%2bc=x4N{rQECvecs6M4>$bD1SQ@1H$k%7G;_ozg>1aJ` z-)rf-!(vr4{7Sy*Ot~<@@?X0UEluf?wH`g5Ex-#HHiMskAal_8HQhJ*## z?~KF~+cjTN(9CQ)dqv)tpQ1Fmf3)e)H0^56j4}AyX~_ zmfbeFCz-$LsT|hdcz@_EjET6>Pj`b9a5^F=>Xg(SUq8LJN$s;;;l1A^1Ou8j5Zvt8 zo9%w>^P#^;Z%#?CX<$$g%-8R<-+Pk+Rv4mNRqK1GP-8Eo!{JVy=ecQE@;L)~PGL`C zJNYoCkTb;fNOVw>6YKk>6FBF$Rgow}O~V_116GkZ>vNCEF|@pXpY4b}1FOxM5Z7Te z;Vtd6$NF6*j4Vb7euy#rj7C;$EE>XqD8iu_ED+k<7jD5_lsTgETV+l96#a2hdT2-M4h8D{kskcsW?1)iOPzC$yLpOpa z`QSl$BC;d69o>#hMyg4+Hm|sMR9RWs0k)lv5^1fxvI0U>xE`}SAT86Wa`|zmmd*st z=JCm?-NM|fpXQAV&pXmz8uu<=uS(zV?Fg_FqW`IWp@G$J>(YC^M?UGxr7=DHPrWfW znHc&1KxWSANe6x1DAG6Thket05uNh+Vv~rLq2$t0CRjK%OhRpn?92CN1StM%}oj4^@3OLD0eQOkqRUFEo+uy_#6$ z%_Bv)1r&}(R39cuWVrG)u&#*)Nb56;2}4Cib%-(&HL=3W_w}kH=Ir`mH`rV*C6M1!c*fX%B*Lmu18>0*r&~vc*MDSgUgK_JO_84(- zur0Gi@|!$Q(ERzadANQcAT?sK{L-t=Kae{T?O}~kug=?3-5&_s+8Y<3rb{vP?iXOPgW{YJ%sB^vOlzZxwB&_uxIFB$bA(775A7jVVzGe4P7o%#o)2S|yzb8~ zgZvGtKam~+!CKk!YT|lY#Jf+ZAT-Pc@f7&*!m*E;=H1~AVy;2DG-yW4hDaH`Kq>Ui z%bJ>5PM4wjHpaIoaJ||bNiTIEq3m)hD#BMO6CebdP>DIL3Ig3ljH!g3R$<&c_P#d@ zR+0xiZ1%KGW>fL{K5M9lGZUg=f-DxO^0j6_p(lHd3t4g)*r8MmDkuhZn-FySIoMr@ zf-cR08C@$1@PWX1XzmSH+hPm_g&|Zzhn^q$Bf@}@0sXHz398~Lr(~a|0L6)aluYnNs}YP;1A3OL8&@eDSV zCo3R2Y@$TCDmp?f6swP+7hKT6r$~$%M=8C#rkTOs6ZPoc(b+@V#*?3_Gry~d((Oay zau&D=3C=J0uln<CHD_Q(UP1suSFu;nBa166kW3ocwjVg%JPE+ByO<<-;;eP43z%$c5Nh1f}1rK&KLk0%99$<3`=%36X< zfY4pXUZv;}g}{YFnNd`xd@@4|74|evhlZCS=B0Q_lnRMIq(tr0#t9kNIeo%%er)zF2sS``^3c2M zQNib9>GXrXZk}@-(Q;_>It;8ugD%X8J@Uj-CX9GFevvnHPr*K8;;4;yMbSV)W4H4{ z@?1bQ1M+aY4_kcUEx(jO+MS9nS=+h9Mh+-Mm)^bHgtT4sd2D6NL^6RXwcqv)DD^Ww z$+Z46fsu~AZqsegoV^=<=FWgyN+FCQsAI(0#OvX`ktS<1#i*v=i3Ok3GZh-rtjDs? zV;nKz@3TURb9$4~x9twSW!m7vr7b7%+^KD^Tf8x4ZK22 zF(kqy<;(A4savHq=#1~ZZV0)&Fwr(inX6TCm zxQVu+ATUY$S!_o1&8^hxMLHDn>&?Y#27WAu;LzZ;j75FD8(0g3pe+n%q-H4bg+~G# zI*zW-Fum4=%0lwMkaJn7R0Bi`EWY}Yu@(>Fq=_M`u`(YO!x?7N6OEoPx%t$j*s^zq zx`p-QeLksG<6%DE$mtgvgB?BwdPa(%3qAOXC1DIV28V+bj0dZk7}&o=$3PI!_!s>u zmU1caD2hXG5xNTOu*N%^ZrZT0VTLJxs>iI#YOSIv_}tGyueV{o9v#H)H9O@35+df~ z4X{zJjnM=-x`@FSs)aF4Kzp!sg$m7;({vKJ9D4>V+WgHO{r&?}~M6pOQ zkqnp<9t5#JjStTuGG4_RL!O|ywE0P=A^H(Pq>t;4T1CZzFse6GbSx`n+)$Gb!Z}4p zx}}s%EhuBtLi!JF46Q-Kvd-w9NoqKOD9&RURV!P#a)oVdE>$%L`Rz=_NZ)>aA1F&1 zTvpEYx6y|hy=k6Vw``Gp)|Bq=`8g9)em$gpOYp5a~+|-KFfZloZl&>5u0*n84)@p}_;r=1uz;6>Y3Sn01HKs`+d103d{aNc&m*48sIDz3p=)Q7Mq#>!_uEP!%!y6i=H zcp42M4?{%0N)LW~j}|U*CeXcmK@)Mt`Eg*m6&#z9r{i1pxqv(#MODY}WdFQk2 z@LoJc93D1!;b#;flmKs~_(EAgAP~++MKlG8o;h0yi4}+^1byHByg*na5V&3NMM!x$j#^2Q6HQzFWz2$W->K2v{A^`ytjmo*C&J!cR{wPQ$F+w&_WAo@ zduiW#c6JuzH%^C!@PHnlKgoyx`!k7&35WThT=b=Xhz^ex4UbiAUFfmjeVtd6{9w~! zLpai|pyYjjfqr;lZ=4i9`57kG3sWz_93t`Jb4uGS`jx5&hK_ z^;ng=Qjegn#j{tYH&;f^JBD3|Nycc^W8~%OShKA9tXgBU>`q)hmEqTC)uwW9&!PN4 z+}54e;;id6onF3BpFa>Ej|!Rij021-6NNnZSZNOrrYn3F#TL(>C#8n$K2z5D138TR z-%I#^-J7@n;pg)z|Nnpd|LO>UFzMu;QA@0VGfOV7j@QAMO(QdPm)yBCkYV^F!E;(DF^fDg)DZe+GkqAL2b zv3G!?5~>po5TJZyf8VOy)^kg0rB^|m0fP;DY<6mTWb4G z>C3D;MOkW6J$~-lG4!l*Vv1f*d_St-Yz4o+^*6P+OrO^J@7CLHI3sn9QkoW0f>37h zkr7gjzS`eq-?;6r(ZuL+2~u!+^5*zp`E`!a z{cbrT{-*pvy&(?160Y}m*#7RYJP3O7{!MiAvw&y2oZ&05Y4|*6>_hfc3G3tTf%bGN z>cOz@HkzIimu`5!o2OdZ7vGo1tXglouUdaArG94TDtNI*$u%eYIeFw%=Iq9XupT~9 zrPU?!4st`6yCHO2Q>+hT2*9T)3 z8V`kcwswwfg-vpaz60snaRVh(eo}guVJVBTzAk29{F3uN1mq82|MJ~VKy@q9ZK82u zexPw-=D=lP=A!JjTVUm*=8*4qZup3H_B@bPa?P6E+I2p zA-Yden=B8!$I5Qo#9+gLEEo(JUwi=(JWOaF$JALE91)pDnOTB)%BQCC)ycfZss-&gW%E??zj;t0+ zvyKGv{st+M=xYwP32S}X@5>Snx0G|g>@g-z&pn21VV4r|o?h@1L|gR^%O3gQ-W?osqBKqA9R1(rAZmttZz#hxzZA7i-<=y)k)SB8ow&$p zrjj{sMLOmW<#r&P%dP!H#pVG_cU{?ruhp@ul5ECc|A;6u(2`DdR{x(Jkded2WQFZs z|IV@XvA83^HAYf@jLS3iH;JjOakfRV~or+p*K<0oHY<%;}1-jUbzcQm)% zu8_7O^|H1CJyxr@RK8n8W~I_9^L|NZKr~fxsR<<7eWG7?#qc#gF0E$a;@Yt+pyya$ zcNJOcbX4i%l(~OOum_TZ}9E-PWKH-mL%Gaul0*`FXm3 z^G%3X&w+xYo^Y5YSF&Jlc(@lcjKCuOdF!{)9#pC2OQSOS$mjR>{?JPn-(bHT+kxhM zME(GWz(U7M=o(wP|G_)}|7QVJOz$sEMTs8FhyfTp_i!!PCX?El7W>-!1(AS7rAOCd zs|z7gG%j{;O8qR*s!lg5eb;*zF0%&hi7iaAqyfi34>0%b8d+x@=cotC=t6b)b`AC$ zK+ZqsLJ6D;unNpIn;Zf7JWu=M5KqrDX(!h@K0H77oGaNA0HSir{)oU^`@>%Jnu6pv zI~8EF9;?9MKLhL6%j%B|u-LXaa%=}EWATkS&Gys5v{tPv@Hbj^{0drL4eFNKx83ml z-0QA;(D`C3ta|_E)`NFAI*X^f#4w~O+qBh@AZ7mWywTM@ZZ%@v zm$^I0TIZ9e;uB_C=99Q~$^HcS^S{ScvLVpc6Mvt)O!?@B)K335kLCI0nZ`q)_e5ae z5RqR0iyS>}X(8>d^&udYT+?y!=Ja+=imzI$htr4C;)u`K<^@Zy84+A02}RR z|M^Q5<;ibs_qM(lS4K{=*}2j*O4*G~(O*{gOI%Y8{^jQs8IdvWn4MFHXHa1te(zoy z-pV83^5$BtJO@R^PpRkEVCrwrPto9Wyyn;S2#_*uB_l=ze`J926$Wk-1CLKKtEpzY z;MC2M&Q^#4hYYkp9DF_4fQt&AX^8^;wDCXszaJ4<$lmP7vBmNH`{wC-p97@r)qsa< zq%gY+a|j624Vj~d^A;2~6LJ=F6)@e9xzDizw#lY1NaE=aqRxMc{|!#mybva z9nOvpmX;1Vi4y@_Tm%pAiJ1|{Axo}#l$j%2Y2*lH#=O8uODp6Zd0n}93X-G)m!@h4 zAAR5B(cD}Wc=WyIPEOTOzN@o->Zwe@hVPq)_tF_2Rec1f{@2Ci+xC+&1RRrFqI8{VTqDp^bq+q9 z*SCQcaGm2-fa)jYbSy>^Dex=+j*c&OTVf4>{7IQY?1 zC!U=R*PP<_m9-&H-hc0y!Z$T?sm-(;NGeC@WmAGNL2d&PAx}S1rqlNpKNvd)fa1|$ zY5@H^imLRt_Z$cID#J9MyPv6*pb>KQzUw!Zj-IY}f?F84n$_$1s}&d$%T@TRX^ht?G=ucJ_8-uWDIx~(MgQJ-*#iTPJBe@t|Esmv zDiY9BLhx03BVjLofyjK97#mM121qX{Zd`ohCPbf>HD>(|G~~^PX*p-l;WT1peV4$NL5wU%5`^`w z_m62+9w*B3d~FL@JBC7rSl^!~CKPmW4dO>psO%sb8~ho507l;azUaQZ)T%{fgnOog zT=2MRuj_xJq>?0UxE4NB?GL=iA}8K4^&j z>Vamx39{8&?4ZYiV0jmT^@#@q?@4|)CXMqKtDr`O{K30}AQDe?x%y@CDk4$pS_Y?L zfjl;-+(u?i=BH2#2X4JA(^k(NNr58jvQ{-$zK+1-U2eQS`ppDE!>gS_2YcJg%JYf? zWZ5Xb5&UfmKC9=+6;U~(2gKG!ZWrMOzt?`tlj4IG-5Qf4z^k9@S!${iLL!s)sx$0a zp5E^mLgRfKxt#rhw-Fc&KE>wed<#&E76;v9G(pAtO0_bw*G|Ely9!yL^QE&Yg_G-ffYq_?fN;3v!G8>(Jldr;Z1~_yZt_2$+=*#E#j1K@E z>b?{-_{)e5P$dUxc`EDA>n#J2?2@^)`P8awJ?*Z>? zoOlUAU|1EDPSljzF!B32U3p1Dy&Ud1kN+7lBmIdLPx;OFlWql;va-|e%8yDzN(XJH z$P61^tl#ZnU3!~PUD{r!r_S_9T9-FhZR6un7E@b^Nnhc*p7dmqWiZt}>yxX<__~<1 zSNklaH%+oS2Z6XX8D)7(Gj`O)mFl(iak8g`a)c7#w`A%j#7pnT$&yU1?ETtV7x$_4 z$PmKkIrvm|IPg4LL>=wR&d5u*KLMr%bu3!*D%LXZlQ)HD z4SdC!ZpotRak24}5dd&<=<9Y92xC^L(m_t*3aR(Do0=T3ITTr5`#_RT;Q1h$SLeoe zuLmbh{d0={pjA+t%(OdOErxVC_vJMtuEvsT7tH*M@+bE${SyQzRBQ+W)7>q5$Nek;-<6)I9uF{Q~;u2l4*4u zYPX%F5@xiCF>>Wxjv5G3xk851MaN#iD8Q-qC+We#HV}}SD6r!M9NV1T+1`wCP)#9-lAXl8eV&v;GExq^GpaBLK3#kcqdUH^8sVi@)5}Ordzi`)=Mc zBxavnvpN<#Mvtei;}o1@AD%V7F;#pi9Y~$JLpdmm?0-P{st?5!xBd2vOf?S^^*}H z=`YPuqYfW(Rn?PACaVkZ(Hcv`_wh7mo_wZUAJJ}FPZuDrDxZvi32V!KqsF&>tLmhx zkmA&OYghBBeUd(ahjfQ*KMsm=0dfO{mua0UbC@Is9yp3m-@;7D*;%<}L00LKbf-0O zMUh>;Q-*wI>F3r?PMqo{`xBvyjYniV6U5vEL_S+YN>8-{PVG+p-L0tb;Qeq)+=To- zc+azn`OoW4s#?-6RZ(M8qUYs1+$}j(OhmGMk6A(~_(c2i3u7!|k}TQ$-AtC}zfJ@2 zlLeoQyt^3YEpuMX?sX{(6p@i4|IC+#V0QVlOJ$6}I!FcG-Y5B!<1_%+^GO`%{swE% zD@hRZ>%#$0t7XC*-YacZGGZ79chkO$u+-i9)&H;rmp}4r`g1C_Afd#^|6PHU*t@%` zDrT8G$L%MxVR}i-Y46e{9#ySC^lbk?9tOq8T{H8+RZ{Xjkh%A<9ZK(f@uh-80wVf< z<846Z8k7EI9c@&}X2hpu_lY|%u_TcSo6?)!V~oL|N}ErY#4uAT`zS>V*Ia*b7t1QU z8}=;%xqp`ZaS1~->0QouiA)$RmmOroM)G>?(?u4!l=cBxsdIAzg1_Hk6< znM3VDv=miF;`PQLJV!skCYnYzzg4_r=A-ni&UIzmz)HuiAo>R!uVdR;23iumc^nKW+WdRJrQSf6zz8JWfn>#OKo)x&35 z`@QmRLKT^>e@TBUNDCV_O`){D5(>qKoPXx3ojFjW{%R!)t98ZLcLEb_ID2^v3dwD`Um{r}bOUeVF&pPaV1!7HaV}xFIPhtJZ=qwz0+nB$w@g>3Wi_H4t~4fQS&2_+ z*75Ra1!g7Z)T48B4nLl$k^h%gCS!*93I%y!$d<}a?Q@stuog{I=VDm`ed$_y%M=dt zdEj_ZkwmZL{<9)8Q^aCtk2P8b`Ze@NN|3o==GnK8UxUU>?&n@?@;?S?JZRW05Vqc& zo!4TA#N`J*WRz-pntMADU7apcm%iP7PuR zxiw)t8=T9&G&&0H`{O&?Gr6XtRIMQVw5{Mf{K=QaCK z&S~mt#cR}DPR-3fmKgA3(}^3VsFIp0#oO-q*pu`^>k|pGWxt#vbD<~mCx*E+apQpR zgE)DE{uh8(`4uXGN}pDX92%#>nebp1v0>U3S%rH=s?b~V`;F}JEo7m|EV#{0s|k@s zH9)Y)@S0C=tKy~^e1EQig2*GDX8tsGVvL*;Bs~U5NoKwvb1r(&-VxDSszuA!_BE&Y z9)=svzR1^&L?lF35%wxg{!2KWocIeUpPIy%)4$GC9Vz5GY?TmUloyUm`f|C##$S)| z=&;^?A|t|3*x)g@&dgJTm@f?yj;*Xx+~iTQI>=bdR6vF0)orFsKqwr=cPFBG`36c| zC;ArY7~I|ZyT|WBzb<}DZ4)%V)BS0WK^nQ!kN_mti~D8WG$@K2RKDUaqs3@UsNL!M zlG=s=vj?kykA7MG8@e5nnZ%=(OzI@V2R{3dLcsVmuw#a8(-)Uju>*BL4g2R)}KiGx9Shh#!&YcKb z1c-N@M$QjxgfQ}^lC{BrNC1zi+d)0}cm!Dn%ue{k9Q_A+`u5ds$L$gsuI#aQ4xy#w zP%I4JGMic}Z(Jeo?i#@$nAh?3Yb8N7Yyt?^4x;FjnzCzb*z!*4Oma@0C`Qh{cGynP zcg^<^3oUOH^>}Kdw3g`MyG3 za2iIHJ{>vt0XL zs-Rjha%?kQG|N1aW9qB2NeZ6eF9CTrIGyKjngm1~-WWtJ1drqA@z}QGJrA>d!#|7oYWNt{Exe(h5WxXD$zQ`bo z+~$l(?omVL-}e6lF|i?PS-K7HDrqROZkD|>L?Lx20*WeBD&@MJqSOr%YrDIr-Wek8 zZa=(K6fHP8T;3s9Kq~t3scx);sxbS@x}6M?eb-Z^fwj~+tyWfGFl?9#h&?lWU}LYN*?>@wJkO`|1Gz;r51G-!wZ@*aXl9 z2@@^~FGDR~;We5Tou}W1w2IaUSO<=r1ZQ(jzP8PtI<$!!wJV=xG*9fpul-^*^`L)( zr(wvaO>p9~j4{q_TN~1>;~@zydJmb@vk06qe{5&y)aoD?ejdbiF0DQtdDgU&)l8db z^?7H`DK=k!s|t0>7FZ9Ym2`SO>Q>AIVRu<58A&hoRx)Nsggc}?k1Kn@lAK)N8tGQa zEp)ZhXU4*o&(6K>^}EWbODDRGF|dKYH&v6i%o0CSZfP)S>?n|pIRW#_TJr;{ot|mg zOGHMCfj@5fo{LN?iz-qy?e$8SEluIFH*lhyOiSc{Gs4cKS;ecBlIK9klBE1Z zy2&4V1oDP(6&vgHi30tv**9O6qB>wI>T}oGb5$`2ed(uTc!HKs69${YU)y(Oh)s$j zb6lHqy(=b&!7}YqJW*fE9fW=eLr<4Do%>8MifETxVfuH(1UUz427Y)t1(m?K6C&#z zG6X#OjwF|0Eb8D>To_79TpJ(OqdG&(JH{xi)AcObQ})%8mLT z{~A1+li;RK)MW!I5L2B`TdW~G6P9IMwd+NG9{cQMr<3pufg!eXm#}x0#T-}=13*rY z=Z%a2a~NDI*Cj65Tw72r0KrC6g~63)^cUBNgnPZF>rlf;+O8^%j(Ym>@`pv(cE`~d zZ^v@f-{!G(9pd?f%qLTSvU2m7${jqML-{?BLuI0!-_AW0122L`r=Pn%0zh6(jtuVa&~M0z(top^%Iu7r z)EkJOCkE2`H;m0|ESI@cKBOrcV+?OTAB}}OB%Tu}c*!SryYCR!A(pK=nAa4Rq@)A5 zZ8Th3?hoVzhF*2d{@YU&1uRe}Woxh(#s>fLX~#+7q4PNn3_sQJ-M2Xy4(n_8hb9Pw zi%k`uA+X)-;hjRs5MKS;wyHX3ft&^1^L2BCxE^eL5gWirUs)uPs1>a? zr@0E^H{3R-*^LV;8yj!iF!OlJJGy2)(&ISuWG1Ma{YUH`jkfpq#PtG71x2lUZMbLu z3Drux6jOW;sUc4{q!kO}ft>fsO9d`l7OKV>Jr-*fEu8tvA=acGqN?F8dZjeH#I@D2 z9i(uS>HZ3xopGT>3H+AT0FASG6P-uyUp;-cKc8J;$$%MQIx zQ{AX6b#V8u_ZcJE+((OC@TWV zxoba1HD2Wro`-I=Eo7j2%L89&@KjFEJrv7~ve?jIRc`Dj;ldOX4z_@NGvNO$8Lod$ zV2mtq!?4lhp8)Hjg>v@3{UlhtV{y|k3_%d+`ubUm5l+M5^LxfToII-q=Bz++Wt$sy z*>pu;bMwu~6Aw^K?-ec3_x&Hxm=urA69BXHU4H6H|%`T|UC>e|<(apctL6M_WYF3HJ{yPt`jm|?HV*AOpW z`>P5-xJ4?wOrlCEg6@z5x zB)N)>>%b;v)&s{nDui0*{rp|CgotnUeWz8R^nuqqHC(d@SE)5Fg~OI;TI_p&Yk5t4 zJ&aweN5v%lh+RsCp~xQI4Lc~#W(rK2Gw9W6GMT%aPu=0f*9{4B$C3>mm-*7D`WXg; zyrWPZyA&Q&xeO?K3BAJKtPDBqr3sxwaiHBlGJiqSFBy6z-aIZ5fZ4tE00A0W>r!Kh zKbL%FeU>*l#O_uVBWpqdZAg0g!#-P>3JvO}4F5>Yea7=a&mY+O_TR-qE2n%v$XqQ^ z2Cm)Y>E^Bul2XRe>_Hv^g}(NepIbmriqxfw;)3$K_rigvhY>HPtA_!e7i{k8kbO015Xc?vOIg?^d(gcd72y4$Vde~3n1B^^lc%SoURM-LGwz~wm98wP7>unmCA=Q z2%63Vug)1J_8~V`5OXMdNfjG2(NuXL3V9D-+G7<|&5=ucz*>UWkljHcdHB;_Q>ST$ z@eO88%bYF}qQn~ahV-8XWlG_!AD(Mr=!ISPzuFU>UH?GN<5~C}X11egHvFU!EIM4G z$6S56rCtFvZ8mXtIfpD+%sJpcrtKb#^`%>K#icFEC9c9*s~3PL7*D?~w=DG136JP{ zH}zc0&X9&XaZ)aEz1vbQZ^+tAK#44VCUxpPv2j#Pq>x*^1-~bFmxPL(yu!jT7iaq+ z=P{_TNl>L(yse?N!=b7&{oXOUfwSdIh`^L(8T%tlLs^8}khPW+`}ePWBNZx`c`pF{ zOqirafGkNGk|fPKv}pF@1y8{2(RAKGWr)!lu|_iB5E8^(6%am9qL&RVmk>I0Lt{Dp z3#5p1H07PW(ogRoS`HSLdBf8xXA-2RTh`a^C~)PLj&a-FRruNPPQ@an1c_X%dSH=g zRQcdFeJe2x>U3j7m{Ka+Fr3>qC9U&{Y-}_hL$pw$7q~DKst>(wzLzRU3VNoz+w{Yd z-{cz533&X6_rM8YLCi)Dx>5E5??N6@MkL;lQa=4a8=qbzM6O@kuQz1FqHQkySOW4b!>ow*Xovg^sD4Y z<@rH5lx6j|%yiUbDj+R{5Uz^>D70a3YDu()_rS<8CK^T?$$5MDI}bs}({7cBI1%9& z6!f;rVW^uXuF8S^C3ertzxpLMSKe%5PYZ*%+&$mIGSPC^L1WdeGN1NE0^~C9oinu} z(16cl9VbcgbIYp6_1tHbIfX;Fqs6oHLxDK0c=(N7&KHX(;0} zl0MDX@I%JIKeu5)%jUy&AXcoWXn0wT+)R(1h1m@QLx;vLcn_6!K^f1jhmO-!8{huR z3pj@0fNUPguPY_8iuX@$ywq>JYk zYq0e4gQ>NI!Fxl$s!u$5F4@E9QP;Kijn!&eIjX1i1WHA$_U(tONie3XBE3%G7CfZt z?HQS`_7N)z0VtS0-Fz1UL2LfV>ntwAnIPKz8iy#S`ml&5NU!~NvL~QAefm%cI(f0` zj}T0r-(icfJB7*gTei$s35H`0O`whvA|*}n#ZyEA5~tv+Wp_t&wYRf0LQ`Pn;51() z$)1{8L%ay3e@n^F)AX6Kc$%i?N6RvMhJb;uclkyQLpwW$X76G1jND>p@2M-cxrz-K zd6e)2c)(2cb^?CE-vR1uJW-hzNjgAJguRtI@(i1X37zv!Zm-HjhjXu%L0lceu6nUL zBOUehvaoNbv?yTl(kDO+2ce)b?Cj76!X>jqa(EvT|2zb+j%aM$d3r$jgWsNC*AUN5 zD$o}-NXQ+_4W@=CO$l9W!}dpRWyU|Sk9uPY>u^c+`mnCXU3PHfKZg*me{eK!ee=V_ zXLzw$`h3ocxYzhaM_-g-p$gj9-g8jO9sz|dH+2~aRZ{53lV+61)*<=Ai4`Lfj*8vV z%+#t~mG69m3B{?oK56fvgQghYetT$7PXX9Kw4zFe)d-2#^A$fRz@y4`wHf$TeSo(7 zANJldDylweA0CDrN~8n?9B}Av1%YAcZt3n03F!erTIrMy>6UH<=?-a>&Os1q?*HMw zpZ}Nl^ZTszet2Ch1O|?B_Wtd-_I2$8WQbmG`~BCp$x>1u88bg5XPCZEDe9=zJE0&h zO;5VWVuu%Uth(PQJf<@aOJ8Mqbs6NV$fuL3B)K?!)e8?%98YN~L8CXwQ?S_k;gTQE(5-NAtz5^dQlCwMFf*2Xu6iY) zktg>2NO%eE?jUV=x*DF*tA3m{P#?TG@AtBGxD-i}Lsg4_87Zzrxg30dtg})u1U4S~ z?z^c3=GJC_G|coeNG8lde>~=%44K6AuG`_#6#X#Jjm6QKS!cozFopJultxQoMGFwo zlQ*jxKe{1in=kxm6hScdz1;%O9vrzCMgCON^jOea2aeXHU>W|U!X_i4^--X?>}9ke z1+szsLsD6Bf3pk}m!WEU?+Tj`P?|B((4tlaDNODo<)UR6^@3Waq6a_VmaQ0#_1u|? zo`>J708fK5e*KjNz^}GHE{lP>0bT09GD0dsz2`Ro&(gs@e8%7SKclH2!`Jel7tFo^L{1XXq@R%;pI-qIgFd02~ z44E9pX@EJ9Sip6XCO||fiXdYg`KVWnLxp=!s5ccFHEn)~D!jw%^r#$G{*4C^X%PNx zx1_{|3t5f9$Cpb7%f#->SKqhiAcM1oqVVG1zCP5tpt2`oZ$$Jli3`(P?;$4FR0rUlO(z_h;Y%173}b-bIlh`~czS^wTV2P6^9 zueif@&V`(2wa%gsl|>+4I;#Nhz6wU6^_~;QB>PU{F5`-vTvcBnq)7w9W-akhyilNk z3;eO528t6pir%cEK`?2g5cLB#BrTN=gb)1`tR&|Vpt%IEJHG_VPbsVCu15?8k>I$c z;l~FSnzER{NG*4*A2YKIj&T)OWuJhvvbM{cu`_1k-IC$l$tQM470onk;!}a6bv*Wa zO*G)_B{FpItlng*9AlsCA^%KK5L@fxpKtR zOl7BH7vg7eqi`AE7T|DUT+~Fg)pd|fT@PAz1yDxdmI_{%1Mm<(iSJXpq~@kQw4M6T)20G@;xYSC?~X1q7OR3RgnOfNKosATEGc zkx_^KT7bh46Z#%;%$rSLF$`krDL$hqGKi~F{`x|@1>H{QA@QI=6J2RwEzppDGa!CI zi}1hlCu}0~p8A-II%=Dpv_1Wo0xhsj6YSm7nwznGHGF&#Vr;PSeEm*qMNI#^Vvd-x zvjT-dK0LoBoGVnDF;f8w+Z-CoDb_{iQ_9AVLg^W*>p44c$ch_<2EBI?Pu>my8AQdZ zoLJPRj!1umsr@fJ3qL!&;;$~!3@9V`l@kM$xn(Rht(DHRcSFkf%E=x8iP1qIGyt{e z%yJtLGtkmB1`i$@5_vVof4@KgUmAXXB!GaA=XrTg8pQxD(^nfgJC{P@l;plFo`fGOdWAzhu!^oH&*x~$KjZeIQGoq2Da0!3)K{t-FVp{kKjwvhe95SogqdsMjOZuiA z@GVb?cfvr-0PFPv$%IZVkzxMz z{;*Toe~Uti#(^U#gN=6T$aFm_Zb|UHy)#ThztNSyViVR4ZXC^7=?h6kQx#6<_6nUQgllU24eREUZ``Dj!@0Z?&M5v4$ zQMCRVOFPU}A3STDo00{wu>z^ z1&7UU^Y^hZ;|`~$jy7;(@l}sCpGf4n-&%`0F)P**a3&l}fg3`^JRIASNuNHKnlwK> z=*Hxw=T{bNoG#{*wkuJTnkW)pmzD~p2h}JL=W%g1OlV<{>B0Aj8*1qHFi(>n=`$1O z8|kWLpe;!!+JAn9P8a-D8KD7)+i4|i!7V9yEGk6_RWV9{&&aeI?v?;v;>PlM{o!w; zoF27IPbke_+9gj;T<~O0!YOHE)+yj*XbR~Jfd3%h^8nSaPcrY27Z4xh6yI$$Bs)uh zN?q8onvF;cM<^%H+`B{N`Dg(T;g?E9fAWBKQN8dD1iD;iB|rw4(mpV;f@i2EF9DvT5XZ$<3b<0# z1cz>p&lEtvH5VbR7uQsS1^`U8XG*~8<*Q(gM8~(tqK8f9rHjcrT}TbSHE&xeypR~bFe#{>(p&I0tCi@{t0DxEET4LF)3OBUXu{{4X8-7(t+HRr%0;-WGKRq zU#~dkbJ1--195|j!E749F%(Hbj3PNdTR~wTkBSbK)&Gta9$L~)4(4(g*qn6wBH0(xAn~IPmA5bRSX(s4d;r?6_5s* z^_>@yV`qE@Wj$zLI5T(L?Jb*9s$1t=)whkZ)(PKq8Hc4{?A+XGWYNuXDo{Vt`wYUw z_n@s`KnvgYV^<_-pGF`;fidMMacHcekEL#jREVgE(1u845v2arYhcO|8liVGH$kou zpz0WFCzacxT6z@!aw-y`p)qn)v4_B5)H@A8l`$aX&{7^%SD>^CD!8`EG&Q$ML}1v` ze{7s`UFZAJ2OeVM)|qJ}T4sJjh$m7GS^B(q-j$s)cfe-Ta2Z!=2nSs_HSWCe9ZaUE zw3tO6?x1WG+Yrw&JiNUK!S=E9zk0v5b+-L9)4vuK++sa3|0#s+Y*}blLNF zJr^<*EnYlMMVeUKv4<2xlCGaD0YD0i7WA(e-$PSO2g1|6XG7$v7C=(dl-e(sFXYrK zhgFYHYI52{y2+J|Wew+faMA%T4I&f~7timGYc)D|vJnXl1|?d~UPmJ2(xlmk$+Dot z$vtQB7tK=PGXR~8lGa#%C4uVcL*GkG3bZj2$?gjetp9lM${tX{Qh#OG`Z$W8->bCn zN+#{HwCQ)fl3#G%s`1-CW@7qZmD5jcjka1XoE~#34)2V=^zr}jr@a%wH#oharAmwM^S8+gEdFrWvf!!`1wl#jvPIyIP;OBcRd=OsR&c%(uUqlck=}+vN!! z3lhV5unyFBw@>p93sQo1S zQ{n9<-S^@S?bEq(OhRk>NxK-42I+s(pqw@)dWW?bX4Rr8dH+GAn1zR9ltl=MSI@W( z)gFrht*clJpf(h*RclDj2FjB>Xkk8|H-NLVun1b61Jw!|)8P3zKa8Ei5}?dTPPE;! z(3%D>8x#vB@vM}dIg!lG&^AuQh3o@eONv~2Qx0_ROWurej^L!J`|qatT7GwZ3nedZ zGTi+$+R})@k@kCyV5n_-O4|7%hH$jUcRPlG`e%5}Uqt=+pGJ@P{)E;K0N*nB=%uv? z4D7z#o|_Lckr9)@Ez2}L#)?4<;B=-FsLX|+u_<9!yJ}#iNC+nLOPE0d1&deY^w<)Z zq$UfT^A$EDqVnx(n~b3Gd{SuowqF`EruZ~-ar14zD7^iZFo9%^%%5BI=#wIWKV_zY z)H&zN7Tb1^jtZyZ(n-2f0Zl0}FGe99ojJ}EOCK*WOM6oY4bD{;R)qSYmE8>#@&#vWWgh&1gr zp5yydh(C;RAG7!40ldyawGqCk(nWPjDJkd)1_j>>uh2@1FQM`ZaI!i zddVf;w%@RQWYYF+$L)8U@p%R!ZzktOK&3*rY`jlakZ0}i$j!AS#&Syh1%RF4a4bqY zWWUB~Nz@?&z;7Zb;f}UrvYsiDl2|W(s=g?KNMiTz172!Lx9Q27_MDfcvHA_ljgCMT zap$K6l@vQ^M&Y%DdF2svaPC;qk3|iBW5r>LMGZPmlrqnv zOqA8Os8`hB_8Dy>qB5=)gYcU0(97>&g4X*x2)Z919dYX>8G5 zgex&x2vm|Obd2(oK#I^{!i<~cAXm^VhrKZPx7;Wau0wFVmNab8VqlrAEsP|>?6s{^ zQ!EPs!HOh2nHUgG`GpB+JbMbmmdk~hjN?Y{ruMYR;Cz6syRrImqDE|=k*F}srC6St4{ZPPeOtyTB7)SO!*r98@|}6v}ZI=7IMD6peF?8 z7R>L)WAI+eJ@fJMo(WI)$?-d2W-Z)a${H#Jf%O<#Mjc*Ip8*=MY@=11wT1U*8{Vxm zWfD@DdU+QH70Uk+Ux;|qfF4yq3O9piem!aka0ADW`D#*CVGGMpNtGHQKqm>U=z#ackka)!aI^st4%On#eofRb#vy+7>-OzLIIUX+HKWV&4}PeZPp(v?6XP8`Kz zHBYgK1dLFzwxNh|&sqc#?)ACMoFv=vyDb%Mpy2fpMzQ@FZL=Ik)03Pr070+w{{s9N z>8PTnl2_7Q-!^}L58djMv}w{hg#ApDk|yy>a2&?oi8RkP4xY~`p)nCikE`Gr-AfV6 zrgw;3jJc(z*thZazS}eCp1`aWa!UXM$~}0Lx`=Hq&_>YJxB)##L%E@*1x*srJP=Xx zOT1q!a4w2sLf64#Tv5PeK~{HvEApv=sbN62>gW0krMb}?v4K%-25iAD186pJiC^2D zJ$#^%@YC~Q>|P?Dw)2z>sbNT13E)|LunHP4o0Bn+oW>%j+u*c$ky0xKAQ27xmwO7x zPT59qqya6W%{O2v0U!Vb#JzH7cvnc~tqt&)2F5m zG<t*eLa6VnGRQVM$aI73R>EdQ9KdBm$#LWr}zW?0}@IT8T9zF*MmVda@eZpWUbfTDs?^O(hza9*bp7azra0(cagsQO_ z7NNSFH~*eLiGhD}IEhdyV1sWE`L=P2VkpVh*3qtp-{pX4Zk@EVagZQ{5CI(8Lm1N8 z*g{ET5cE9W=c85~T$u{EMlbxaqWeSKmn&-V`Dm02%i7vG#R9wQ#Wo~l?v5=X7=#2Z zl4JI`3aDei89M!I22}50hvE#oB#IuzD~ez;+~>a%mP+OHFz`T@9_89oa5ZmgFn}Pj zSBOK1WV+e3kqJL=7GuH8{Bb>{vw#%ER3aOoLFp0|gb(hy6$1;W_~e~itsV}KyrXpy zU6a>xx}tfJ8j1Oxsy+p?;S+zdtY$z8==m>k8&nN&gykM0nex8^Yg4OLfGd*la3e3C zmg^E{mJb|c+feSd_&oD$?T0JB;>*@HWwmI#lA?JEBo*<$YqZG|PWL8KJ>xOaN;exN_KS@4YD*Ku`wW0Xl2f)d#J7;D;$L zuIVd>79<_F(HYt%uxr5-nmBxJOKi%w0lnmgZ5s!%z~d7ui$yhwU{yyC(NaZWx&3#P z8q8|n`%+_bCg8nQ!iZPga8As-1ykUuQfWtE8tJqnG{_e&AofDE5rDN^0^}mGJh`|sCD2Cp_WvMj0> z?jS>iZ()RBJPA9CRL#{WL+b_@UeA!B=m8tl6@>o=FdPRPsju)TLLuBl5R42^R$B6( zBxDuU=1H@XpLRb5hTa-d`Xedat%ZeQl@@KBMWM-7-+Z@=)!s>NJju%&(M#|p3wize zLGmSb)wiX!0$2&e=#88Qh}>8YW&*_iz}*5Sjs<`QH&E|B3@}^UT~`_<_w03cONONO zvCzR?-Y1B*56v6HZ*WETDdFueY?zOP;^zfgzcJdm1BKHUHmY$io6Iq#!@&*&JVo)r zNThQkX}2>lj``t+CvVUmyuxT$yl*@W(MuB>kN1^I zFDeVR?|t>azgK(uP3p?~7os4stJk~9(2bdbR(1ZV2JKEz)UnN_vE#MA_VM`1%`gDZ zp&fAW>|?wdR^1^Y#yXt_4x`WTh;K1ej`80E1J!c&-#JZ6fSa+s`P`pY43j3})VG)? zf@W)Sys~J(O7~m*qh|L)C;7Q4yK;X?KnQ8K%C8U@@YKaO2E^tvW+DPx8}@l2xPyDs z+x_bVM6L9!`+WIUy380ma8EneeJ>4&0>&Ti)*ywk=K^0X|FD6G_>X`55#nKdZNsW) z0fxsA9%U8jQ_y>Rf5WW(89gzvUJnq_z(lTtqPX2e>AF|lBFg`UHxs}%xH;T<#-^ob z=nr=cQ|06n&ByQ?NiI#XaxkE4(SDc=8{H=ZHtH@DLV`hC*KHA^sRGW#>%wKQ`mDJ)0x7`BAQuVky~Dv`YZnCU)a1;f%8i-I7ApL*Fo$E3$MK;;;uBg&u>ZK zT4SI5hXV)Ys2cgo826*xJ=2C#x=C+XB1a40h4DGJ~2$2=6D0&bm9Xm zpAT3ZhqvMwrgof&2~Xj(U^my2kN2blg3PA`$61!Sj8Gihrt{bakl3rv*l$L|wO|&* zC6>xXI}nDwI-DyA?5qw!B1O6a1VaLV_s{WaQ z1c=ag_l6Jt{;z}E0KYlcHgWZXcx&W%n*@EhYm#j1`U@+Fi)*&x7$9BH?}-zfo3YmU zcD%;GJ-rhzgNQQ*nkKZ@1NtOlHt#^|*Aec78}Yr#8DNZpYdv?7T?=62!*gH_$-_T@ z%pcYX%HDZ+OL!3Rh>l$wERW|S0CQ1saZN7X8~v%<8NmnvL=SS&IkIf#7@#bwh97+h zbX-iQ%b)D=+@(#iB6{@dyv9APT=G5aS{lr+*$F@56r#bBSmpNVhiBUh)#!<=-ZsyB z8^4ZvtRZt>{I|W53>RlkxO2IZ3=>2tkDgL_w_AcA%B<>fTOue;LrY|K3RBaqB4GcLhLAUm>7AgO>Uo23 zNbklVY6{<>){R3KTh=Wf(WE0wY2pyURtK_01lm*qabtu%Bt7y;+Jo=@dmA3MABY1{ zAE12O3x(~a26gWI_ZDb#?0qAo*|lcTwRGiu?FqsL z9lK(gT`v*3?O32fT!K_O=c^Abqx0r20g^+=4)8z2h$BsS=LZdwbagIuC=+x5q+lxF zrxB0niE&8E|A_L?oqAu&&y458r%PLdh-tU?Zol}a|B>Tr$&phiNDbh4CG_X~mL5x| z-Wnh)M5g^YvW!|drYMn%2gN@14voxZJfJco9wdDa8u`IX(X0>;VR1cPxo%*MGlIgT z-xFM*UZU|}Lg4Dwxw`Gjwo*NqihZ$F2htRe`O@kim8G+gfb_%P?KiN2@j*C7ltN2( zWBF!uxmwd$_IOz?ytQ;>AHub#F%tU7v~u%|(3%<7ZJnhfxIK_6me9Pn&_juKrdEM$ zvmovZ#J$;ZFms_b2ACi+R}o`EHFK;!6yl8P4lY^6r)-n*?#wC_nw*R!sVu{6ID)G7n+pW|ICXb2b^!n&C5vXL+002-zY==e6 zAvr+JU=H{B{be^A#30e~3MPl(x1xG=E97(A_=Gs~r z#q(pzkHA^#ZE1c`I2nye-mV$gqWljx-RtU!i;2%!MO}oprsJ=C3fHmzuAQdHaV9MF zrxoQkwgZ%Eti-{m>Oe2y@yE$6in^OVip|4T4N`Z9hlx{I*CjdeEqVm)LH`CE7GgTj zuU2vF8LT9Q%MDT`NMt#U!bO@OLjtZ50Dtrz1zvFNPGXyi(SOZH3T zq7bo+$HlfKBw%<53_js|EYBF}4wZ}6v)eq*?Usbok=IqJm1MA{V@kh&QZwws+zsAV ze$OT?Aw}eZzcMtbMl7TJA=C4|1a=|m(TI`o#{fY_%m%C``YU0D%;25zg-7sY!0-oH zmo~m6VBu2PUwY%<*wE%)PoIs^gY5+Ah#+l79s6d+B*hbWd@Ya55)K=7tkD!Vn*k z6CyMXcU1Q~40O(;2wn2~@hx1r;XiK>Tugxp63*k_qUN^w?_mtyfU}}epB`C;EdS|a zk0Z6Xt%FlunGb@zcjh5ziR}RzgCs9+GzQUVn*b2X$G6K~598H5&}@P}W$VA2cqklj zOj$(YSfk@arYwszh?S*!vZPazmCEAG;mGulXs-EOWN1V+k;zFKe)bWd5N%S}1R0hn zf&~QSv45VI8wB=x2?o7xQnPK2*H_#k&WW z|DO{0|Gh6@0u|c-^ZFPrkYrgVacqe~in0LZWMSwoe@Je~TydUeKE@AQdP{GDWMR1< zw$R9Umdjw0QBUV$45ilcW8burFPh_jebeYQa4$lC;mypjdcZRYFu(oMaZ9 za9CyaH}z{;l)y)Fo+-ZYwGrulrJ z+Te>iCX)(xv1sYKm%&u+jPRLk%ejOG^`OHEKym@b#1kE*vmm=B<-bpkmor3jptioyvtxI==F43m z`u$7<TKZtvw@jk z_HSs`=KAD4hr5Ex;sswet<1XS(mzJ`knzNp?iB#lNU-=k%gVR2QY5sb6+lg7GT;+S zkKhKeNyXI6v=4p#Onq*uyRKFDs&@Iy_e)CLI5Uns`+ZOGLC|m~%9vT945mte`hI~Z zd$}bcWxE)3B1df<-L*+Dgcj8OB&Zt;63iO}ojhR=#saIjF9ojFlptmRTJg$)8U}s@ zX`S%->7jmUHjHKA3}yGWP?Mu$IZ*S=%+P`!$NF|>vp<8?$*8^f>Xi;6K9Q4AXl#us zYX8+P?^ergpG5pK!g>^^yf#@w=VHE(8c?HOsh^@t+-Us+VvRMikX@6QVI{ZAW%cr` zl;kW~t6qgu1P2wbjE@;%p?7wk#YeZ@-J~imq558Y9G(ks)O>%OlhZN5dyrajPR3Tf zcDC#-GV1Av`c_uh^;?e8@y~6}W?r1-?X&EiD}FS>K*Fk^L}?oz;j06Umt#98clU#t ziAb(>lQxvHB7y9Kp;GnU)%d(z1}v4TY=ZQf`5^R^bh z@_4|#^f$}Q#{NJdh<98 zI;^P??Rrx<$ap02Q#--$8Rj8Sybv`ijrFEKicnpmRI*H|^Cjy>m9aM8UM;ju)q7If zBdnwSw&Z93`j=FD$;aepPQc@Q(?P**&K|Cj;xnF0b2Bie?8K%DR_frziZzi;IcWt$ z{p9o=F&B#cd`fqlxZ5-xG;!9ZEpb79iG)Xj{Wt!r0yA0RiT<%?Z|8=q<8`)u7{f35 zA-OjtH_QzA@l|vkkf0%T-v)7ev3;&B*(KRE*xG`!O-_c_{E0^g~&}%P32))h3H(1t5sy?)VhAoOLN4zR-_Zh+_j`eY3*_cxD0|wx#)Ta#ZCu@hs%ZaU6;c_s8ZUUS~8o=Fm$ zzWcJV1stw)cYC9;awLH{mN)7SmxfsolQ&B#EN6C#&0P4Svsi%9fMF=;@}Qg}{S zh&()U2q)gAOJ;xVekc+zu~JpJ0Ne zVyqHe*)0)S6YRSD@?5={R3cRV zyeEwE8>a8u9uzti_aCK33g=%R8t-i%e|03QF6&!8^BYCmbQzZov_Ez++D_MpcxJ_l z8nP07g_onSkf!5 zaniuGTf`xZWEdi{tx904;bapYatEtT{x;o%aI2>=21s*_CAF8;CrhBzcsh}O4Ue*^ z0=8g|8B|(AXR%bd#>HhaSYXxy`v^0$_D9&(eaXatgNbJC_k2<)CSip||E($Gv5&GL8@on-~ zo}RY?-o{-6D+lujpw^W;C&kb6!0XK0ItR2hxv5-jf6m=L2AKqfi1?w<#_XS2hrim7 z(_Cmj63;{_B6+=>y#lXNq$!04Z^wYcg-}nDcNnRBHBP^!g~efg{-X^wR)J5Q(%GgA zq&3}+g_oi`fwm1Kotk%z%_`v@a4*W_Mjh8LWW*Bjwu)iwc{YZoN@2uAudrTJL`6Vh zuIyiYwG+tJGyC!Ph!nXK;K@9-Bf$)gd9KQw=*Ri1TG%7AeFSJQcc?`N97fv67LnVuI- zzqwW};wi?E%R_x@(3pwxv`Y!Qnt1M_OOGQq=h zsJiZBU5vqGM+TP9&9eFiS+fb@X$mA6jqqunNwe zCF0f~xT{^_0+m>ri{aL5X}3wZLI&@B9%YtF`S@0>zCK-YGFgzaD$zW~4M+-D>9kw5 zSj*lP)5bqToh`>OcHBE0Qt4{WURAe7A9u)>taSytuRW<29ekEEUo|*3z1B4wlD)F` zWNU4wr7g$#ACTj%pXdDu8cM&&tg-*oUq#4!2)oZkA+gHuE3x0Mxf|&Rz|*2g$qQ4f zX*-EdG2;}wv1Qz zCzMvUDF_KswnsZXI+MGay_m7sTI=flV03dkb~fKN2&gcQ@gH%n(R9}WWosM&X9wPp zn=So5u*Iv3>bIt(<^5gV0Uqr1y8WS!142(rx!}2~ElzKo{1vWglXA5?{TRs!9h!Um zRvJ#38vnVCu~_*4w?KKmbDJ@u!L0gC=Z=u$qkyv{f5MxdVWhst#SSdBI$%U;kL)Ax z3#nX_wMK{d@6Yu1Q^3)J}rMk4r@ z+G{I|x+sl~uLY<`Ux;p16 z0FoZlhG*9c9fcYU%l=-kJ%6?d$4{SrT5!bVSqb2K%=%cyz@$?<3u!1TtYgpaOYL#8|sTgj9*(M?9XWE$TL4=D6Z}RLslO6%;{C{ z&FwQ^>g=Gv8!WB*r7m3hyNeYb?;potwVFeYh4`ObRK2y}r;7eZr*G%G>~gJYetyjC zZ~F?~Rw!KRH)hL2fw6iyPIRAu@oM;$%=o>a`;jz?umr}qbCI+AP1y)P)Gib8Npqgm~YT>qDdEKJkQT%Tk zbQ(l2#+)Z7FYX4A#c(2DkF`}Ju#EAy2*(=WQD)$}dqZ0}-tGoI+>bw=&`;Yl{?d5w zk)n}^qZ>Qw0@VWJhpH=X&R3>uK_`4S7M&U!Em>V<+5TD&#>r3j z^m;D(E_3^)e>E0C-C&t8VV?`5ZuI3RUT)MIJB~!_{0WMGeO9)1sgPWK&wy9vzBD=E zu(oL&nwWCecKJo{g5hGV=|Uosm?^={TSbPV&7Iroq^mX<9oDQnG|cwXh?O0}^X0Fe z3GSZENI!Y&uvJWP9u8J`Z@(X9?^talLF`X1N>{x(B;yl>)R^Xqy%#6u#82f_q6KGI z^(7;$M5i7f`zmBFOWAOKR^=bGo+O|G|Oi`bE zwM*}d4a28K-tXX&Ie!ArED~a^xe~sgdA!zvNhiemye6Zh2UB12#%XTF)7 zbcg(&=}Z#-m`R>%qj~OPM&7l}_pWJ2B3q~P=E;mgna|W;6woJr43pnGyeN!pt(~aY!Paihh)@r;Y3O&6uXSC|ONLEfRvX z~hH9;;*x3Zly8du0M**&OSC^KjbRtZI8C_;aZW2n_^%j*|B z+U5c@F*TvO=&pdQg_0-rG-1m4k zM6XkQRWK|ndf7vKb%+}1n?$W`n%^J)1DcE$5#IeaxbJ*3&`m)wWc_G|ARl&KpeSk+gx@|U+8$^XV*T3zzR-1F9kLWs>Q#; z<)8h$`It%FI}+d>>l@%TOWWD*CKYM7u!hxvesEi0hjY_%9@8sgaiaIUg=$DXHf4Wl z6npGa5&}tz{^2IL*eQ*}4Q|yvN-d3I%wj$G&i3PngnH>ZlHvV^i_A&}j#?0VL6O%ay@Fz@(idv8oWs{AtH_2w@gZqR6);zg0yMAe_IXxt8KhXrDj zeL9~)b5*!ij2f#8ey5Z?$Ixe^o43GD!Q*zQ7KQmT!QlSxx`<9pXMFFDBF@+Qo>^e$ zeB(w|G$1Iyy<_D<7AWa%WOS4Q3x1tn1O&BDMoSgaqMuy0V{WHbotZeOdVBj%)Hna> z*uA-pj;R*?2jm2_PkIUH<2M8Vr~nD&=caUY{DQ~IRWv|n6)JdMN-0?K3-t5^{q0)5 zEKz9%zT@-1yYYjXk6R)V{K#im!BO_gX)Zo*g+nrN=d7Q`d}}v>vm%vB_}m?7l=EgD z!$BY<1&Qgnf-UoD359mgq2JX2)bH*QP!yTM1{xh%kDNN9wFRl=NMMImk|~@$r7#S+ z59{|4SEG3Ohv!S`>Lywyr%Bo}%Gx)!rcU#}7pxKWAKxB+vA_)*aB3-Rdm>|FWy-C` zbmjrJRb)0vUpd~D%I39wawd4;7nM(xP{Z&&YpmMU-V3+;@JeU>@ergqJ-1&|Zhg zsy@;G2p5Q%| z3I9uy8=)k|YSf-*#UNh@!{7&UFMEEWDMmsTL|%XUaS|>KBHEOa8Z&OhQdzUVc>VQy z-EN(=gr}QrUl>x`%RR8vD`)un0)3O|;4iRO zNT*_uZIyri31kWcA&Ur^iMG6iX#Grn*Gg-%M!dZ1ynr3y-KGX69SZ3g(agmb! zYf9F~){+z%7Xn%pQ1J!o`TBk(KAXgG$yp}kjyl+rxjlpf-4cRwe9 zbz_j<`Q^FC5K4*#91vSn2gMu0cYW^3W83eu?oav9A1AMOef1+RIdjLa9`xr619zHz zgz}_ZdC?OP+DorI!Mw_yRBb8MS1iIJ9+!&W#D0ebFe zuq1e;<_W=O`{=MTvHZy@sPQ%n5`xJCUkK^_+j~h$(LA#0|8Dcr)5KA69An(fpEWE- zozs!F@pgGA`zm>7A#fy?fh@Ky-DRuxip<7*L>a zGHklIE8{AyC!~6BW?gg)mxZ81TN2Oi26K{$eFg(AF4Wy1fd($9Ja5*j9d-6+^?&YT zh&aBmeLeuN%bhw(R7=V9Y+p~0hv-1@k1=wM*T2k2Fq$j-Y>b~jixL&bFH`!a3gtM_ zdokD_jaSq(?L@{hG9ehn&Hb9L9}%$&)#NipfANQrULqkf;N^uQp7QtkfMEZRfD>y; z``rbp>dG;{C7S=Cn)ln%1(lWiGdi})cgU0O}-(>lliZx8Kj6K}_#2*nag!`_3RpP17nKqPeg(FeVUnt#SR-{_Wx9~L~CLpn7jRS9T!T@x-k}L-y9P< zBXpvQRok#S_sRq{>qndrhaMM#s30dM%L1s^qZgzvl4U1nPdE>pfcdEb%i zAX2TVClcr7A=ZKytcVGNa)E^VXG%aZDNc=EB*vJ0|G{#IeE}J!kK^L2hSPVBybWa@|z{GQiLf3f@eh`Lp%78M;6V+!*k zH5@rS0hmS|E)n`1K8Acd6!E0_lbdSWJ*Bw#HPi&LAN&spYBE$rj-yn{5dW5-H;f!7 zgXW&1H#fr3Zc0R4c?NMt`rGiAqFP<@KWXG~4=?unVs-QXKZ* z8QV`x@F(TyLVFx;PR2-8=x`70fuyyZP@;vW{WQsWBIg8F{|^XBEbuq;lg;jlqm^YI zl0CQotbC?$y%?1E_UxeJ&`9Q89XIeGk+xQ%oVPyCm~5M7WGWH~GpR>@+_|-0w}ix^ zv2w?0R7ovQe=N+kiD|fVjrQeHzS?}Xv%N7B6Yr&0z?BNaoXE*Y?Pfw-knDB|A(XNj%Vxbqe&zLp%D?Y6(RQCO5505?M>}fdlao| z%-Xd#4W+eewnnK-X2aamZs=`^E)~tM*#xANqJ)kis^zx%#r7#f+P?bh<=; zQ%sT53n7?Lx-}*!2g_-1-<-ox6lwuijfw1kSziSq2trw6Qu?mbWG4L%n$|&bVY+z! zTuiCyM)1VGHDhW?`@0Wd5nVB+BQ7u5IeQfW=?xPKMl`56QVUCW&O0aY63Hau=KU)F zNUOzl{#1I#0=vg_Y@R(UN%UU8CqS4aL$6<&+evx2hjS1GjGuEBgzCB(2i7*!Rgkw4D z?HH~kh}%$f+vkBv1rai35P%iAYlytNLYeC&F>7l)F`M^_emvY7S4nU}7ZQ&KbG_bD znM3B0?>;VNJXPw*MAUknHpG_m=!<2qyd57es}oll!a#P;3knS5AEzw=DEf5tlGcqg zXpDTjSqtN%@M2>k-;h2~k|-;)Ghrzi98=!Zabecx62;pdw&30V`t4}N@V&+MNlAl= zYPZBMrN2r4s<1T_ArWaaPZFaId7;M@LF7_)Ln@JOaHNsk4jr$dzX3f* zY4DXzdkS97x1!W{aHHT&Lp**zLpgeiBFsEB*dplg30& z)M-fwsHRK+gHyHXX&pAH`x?t5h9jjYfpId7l7y`xS0xLGUUYWo7>+TfnoD?xC4TpV z#fB8|@9bPtEkv<sz`TLK5$e(`~^1^*dlxB+T9~V=+ppOp~Y*@`=N?4 zHg$r0d46%>ODcv{L`L|x%(VpK$PaDb#m#ktA=v_s!u+$z>-LmFNfXM)W-lIdpALuK zcvtw!HZfaidfapGlPY>h&^f!KWn0tHFkjp&C%pQ(PpF_8h@J&CqPyhnJt!kndpwSQ z^d^0kr-HUMIlGDf|jqJZ&;N+lJPgf30^ZC8PtZcWiSBtz!? zM#&?7&Zgf}W(#GHDrIFv`}Lti64}ecXWAPdeVI{`t7c=u8f9s3OSxsjlV)El;l82L zQjhdrmPE$LjAm+x%3M#>A%C*>ff{;*-8(3CTo&c)`E9YbW(;P=u$az{_dF<3;^NY_ zy)m<~VnV92n*S=ZwrP^r?XA1*a*|`rNSRu8Pe21eVTCI_pLfBrGhR_PrdCk?NyfJ+ z)&8ai?=Bup5;T!MBf}_MXT3rhs);qn4$Jba<13I;@ww{UzpTd=kA|CN3uj`-5UzS0%ZN+_g@GiIe zB7wPBLs3-ym3MT!rzF;%6^z4sthhj1K2#gP7kfU zyk!G7{AMAFLSJoFOKk(6`TDb!g2_nS+%mrB1+%Jhx|2|j?OIv5w`zeDlw$mSPTu>AK=uaxBP2s4hMP>ymkSG6?_S@lrp+)VC7SP$uk^?cK}Zc- z`1@7`S0)@S9Xc2GraxWZgUdY~ptx+X4W` zK-Kb!fvlFwc8TgZofqvR~1=9-pD3MJN<@0C6_+$X+N1<>iJPSzf@0SO7pWqY?U}zv7qQ| zM+D9*2Z~+EK4rDB?M=7ntC-{fYCZ(L8Yi-(mh4tt6>e;Ln!h%;Yvc)<>)`4;il?NO z%FlMPeuBrHo2IAkqjAvaTDEy1Tj_;#TkTE8wQ4R&2SNcj;J);B1Qvyx5~^*UzZVo4 z-M}d^1|(Tja_JbCu=Zm=4+bX7#xqXZulSdtzBWiyID7fH$^L`2fYv)j*1H{ysi{~m=es}yW3-2;+G z-k*cZ-e>GlP9CD)KrKsmZ<|q0!Gz>4T#DukynIaJoBLBD--@jbu`Tb63Q3z%&r86huI`pY9$yJ=B!vy4UEc;{JbV8`#cNhFnv=fAJ0Ko ztocY}Z^za9t!JEw&at@J7GA^>e+_zT@Z|>V{G&MZxyht<+Kfm8W(E0o8Z`rAd zKoj9d8;K{C5(gO>2Kj5OSyM*C9Of5eSA?mM>5cV$g&>>WH-?Hhb4mSUYR^_QX2>n_ z$z17z@dTe_nlvM<@D(`@$^l<9gq7Cvj&%=rYOjj0Yz{vzaA7VMKdg;W!n8|eHGhzC zAw4;J*-<}kpndjor}K|XO@K(~cwxf?1AVT*$b{Y;iI&2GI@cylLeb}^SI5CP#*ely zYfQM4nN)}t)BFJ}v|Kv&bW#Wywz*}&vV4+{o+pxAeaymGwtp=>g>hF2%>eCD?62X0 z8hKpzm3k5@9nz4|80wERi{3`h2eN~ufd0Z~E~4U|$4_};7|ZO}mL$T8C9eg5g_lxK z6+E`(pn(c&b0QD)*#vhN&fn^l#71*_eisj@OON5281~EP6x#d4fONuVP~X%tpKTuE zC)99zulh2st?RQ=Qj&5g9K7DLDpoL)r}J5c(iDBfa;S+Z%`SRveJs;4|0Z-KvsNt% zWk<9v1YdtUK+pKrjmNvCpuHl_xfZdzTg+GzL2^}d2ouk&H&HuU@e+hJ0gg8>;1%WJ zD4I}m|97g~J8Q|t5}YcLmh#;nH6djTK#G z$--D;op}wSP*PXHE`?5niZX(}<*;i2JPsoeks%ie%Z@E$b;}TNueSG~r`-75dG)?fdW_bC zD6z%EJ9neE#BmL=_XL|Q^fl1r5yC(wSAqDZ^eyer0>&iiK#$a`?hRBHJ{KY6!*Vtb zYYh}RTU*u?oL4QGhE$}=W1Z#-8dxUW!ge-OJa#PhTAI&R@+p6-s+H|#+Cys6T`@Vr*_Dhn{oVxg z(bNBdM2t*I%6?ey{pjLX8o+h`nmd{lA7X$K>jft+=CnrNQyF@C;+-1@SG0RT)XBBY za}G7E`dzFxUX26jI=biPBjj`6YNQsgU(@@*FOFik1JYmuC4DBLTi>V}bwlxUohv>N z!OBu(biQ&1_b9Vy(nq>(GC@q|sKBZfDQ-y9$uF3#L7jsOqek==GaEpspj;A}y<8JI zXWdYMK`HWe`+}}(5T?G~)1>q*2L)K+;v@kQY8i+~8nF0&xMXiEn#PiaG0YoKh6%fE zVIsgI#yvfz{^Oj0jS4=bU(FV;GKCdO+VtFE*2hl`egGI0Z5n^2=JHB)NNknRBen)r zISt4i>OboVym0PiT|7Xk29y*2A^X4Vu8fzZ{3V>er?}^K#(P$gt5b-AtN2o|q^KZ~ z$}xDN)A4t^N{?Y#pSc&+(OV4zjL?+HX=fGLM3uC8z+b`A`t)*W0LztxjArt>_Od}W zeD?a}1ke^6t>q6!iRO_gV^E6eX^PaLAT;HV}`Fy1Q!=Xo%2kegljJdFOG!_}4)U+mnmtmuz()191n(1ERxO126Epjk1c8^wJpGQMgZM<)d5bNt#Fnkh9( z{%vltizfy-SmtETchl(QGz>(`r8N>J9$>w$2&~#&9&eMGAx)VXc@#16_B5=ql9QuV z=lJWE)hA`a{cOML(9eG>xE9)lBL;Wp$HCrX+g&*}`#B~EdcpXBuG*8)3R`Qx0N5R=cC1`wg30USxFq-Nf6P2Ou)2?OvaYw?+>Ip)2sIG`n`Em*X6D1W=^ zY*NR?n>{9Q_~J#c4d1N+o}iAgyeq}Ly2j@kBS6`z{+%+uqi7AAN5mXNLl%lqzQ}l~ zE_pfgyU4==1|yR!od*Z+&D}v82V4WLpp~vY>c5?0K2m|AlrQ)&-@Mq@N&T2wo70Vwc;NZ-o)ys5AMz(6|AA18I(jnqK*szz}&4o7+01zqh= z#s{*_ZlEcs&&qe#0ebu&$Qj_eXTbhVzAf3zrCiYtQR9UGN}=+>YwFp|y$MNJhrvYP zBtEkYIq|~m4op&IEQxw#zIMzd-aSn1Z4Qw8(Knv=%dHghS0+hD1gq@}+u#){o)ocr zkrneo#|nZEWf=L19v*6_P{$+Q22GV-ABA@tb;&5rIcTG{{Mhgo6ONnw*zWnNLHYaV z8fj3)CZ9UBjw0jkIqjma!N3-s71Dg3`!;}`L0M}L3LSslJE&lw1RBv#)()#?HRUj; zb>mZvY!gE&g#&&GhG71Im;(z=U-k9t$rO#MoM09XFBF`}p)6Yn#vNe2E*8sK`eHVV zzCK+4)Ixo;ZoEA-u=q?y{`A-4X^^s_W20T?*^+Rx=nA{qyTx7eG-0u^M~Tt8jP}A9 zc?|IX4OtPE7H^(&Mc7`1%6nIjE%U6V)hnZkrFt;tsrwB-)~v!_E}ydGvxGKg`lO{CpqcBmcb z5W0kz5{e0%By@@9xN#7#2A3-aV{UTq<2(L@9RRaN9a`XA>^;wr*B*Wz>vIpZ_V5}y zpKk+SmXPXbhn&GZIfvTn)v0*kjdW9PQv-?-Yr6UEKaHs+`bPjjbg5uB4Fx1DXi$gr zLabtW;xb2sVsyNKoEfc%K!w=!2^xqbOmUEI#l|?R->0lnE@GUN1i?Wl4G=jqHY{zZ zl_`S>q^UFTXo@8+6X~oHzoI>03%O6(O`=X>jAA)zNLLXxkNK^!Umu#vEv?>T#6RQC@x3T2qmkiCaL)Yx-H}%W7cswUYrWH#sh#Nn;d74`oaoAeV(> zZByEqp&9nEB_QHg?hT}w+o-)UH`kaFkJ?#>ORUq+f+LP`N2!1azNkwp6gTbrY~u3h zT)yeG8S7i62EoDu$1crx9k__-vgkcW($U@pe7jpo0paLvN4kV6_{L)apHAk|@Alk$ zyZ@p>vv8pl=NzDB_~QUVtS+tY0fi~f62y0g?i&gBAdyWR<)ohHy*If~RCu>mtt6_(z;R!2~fry`k!BX4l85M@F2A;A~CzEYu>PJ_zs2q)Ulq@!-y*&>%TxmeHc! zhqG_Whl@YYJlK9lvk?^j4~VCg^j{MHO7CPqTJBaMB3w-6V}a=;<#~8OvRMFQrMR_j zNJCchD6@%Xo|v>m^V}+bBsLC!D!{cx!Ly}~cXyjZDwCo&Ugr3XtC}YR-Taj|p2QgT zWU)|5GYvuNwX*FL(Y^}L@aRB|*ilD;OVGl<01j)CAt+J)l5oG($~}Ui0Pk#H@6~*n zNQ)v1qLS-?5xka~SaCJF(A>h_q+dA(m7FS853w>WGf4S?`=BRoNu1RPS@J6OGhjwq zaKY+UvZdZ+TK=^H#(Z&6&6rx?9UqfxU&tH+58sFLx7=fvEoDH&+cgBE3!Rna@CV|{ zbqSQ+Q#!EM=O%}$Qkr$qT?u-;&+PNG=5ES4+SSeddI{vpyiz!5cietrULrGmx~#e9 z8t%|!gALw+|5g?Lh)hBCTlJg_^EVL&OM<>EKZI4_lPSG|0T{zta-%Fj-#!=3=Nwa@ z#7`SU6(O2J<@-UY~4Gm6ah1j&RR?3k5?{n%zdmIZwvD! zVw8!7@o5>#RE)#$`I~JKN0Gmz zL>}r?rzf#ud&1onqcqgX*8+~_hE+hoQmgXGM+@&chs2Mbrq`}uCv1(5OkNaAJq79@ zp5!&5u176v)yVc|^tbssZ)Y0E`ynM`{qRKtNgt6=sOkcJ+vij77f`G-&I(_oy96mk ztP)$s_S;LakuKOM86D;W{8VbcaNJzL^au~Z6KAY8vL5uQ3|&Ep#%YdH3`fYhN5&#_ zyj+j(cJU|$1lUV(M1H9Lq$DxtRwg!e3U_HmT&+u(o>BwyHO5p{nCF0grC6fY z44PX=<7eBe&xaDHAd}bre5$YWKzrJ^fUY2UBpQnnp#hM@pv<)Tnc2$o&{X&E)qkqt z>`{Jr>vc@0Wr> z*GeyMcFwk;V6<>4G@ixIU)Jat0;8Uk0Fsn98}vBjt8?Q3k|zS;`DRq|Tb!^FkVRd7 zA?Y#GcUw7RKk^#lc5(ly1btSzxPjkRf(B44?gG%CwN;188+|}mzF7bXf)!0gCT)8N zI)OCk3~*`T%=A=W(2TRBbmBq!jt;|h&5A)_0+Put=)c1k1&A&1(?1O)p!Cg{^iz4S zFng=^5L}cY(YXztUR3;Y@tj0BVgo|WMng!CDTpb7Jw92DtR~af9-`6n9JF1V>Sn5F z1Mv>6UjHg`1we9LipLKL`qZ~AOKcw-IXeJor+9eMKlSqw3^0;INuAD3vV9t^W-J1< z0}$_hZa(Uh)JF#>12`W?TSO!Jq`%&ClvMd1$5B96_*|k=fAPyNTvBe*wAR&l`w*|+ ztTdE~AfS7fk(#V3+y_?Btrb?L|P#S7@4`w9cued5;4DcGr!PF01VvB zdREp}aOA8gKANfUVy)VfUqBA19nTqAb0jY8cV!H{hel|CQL2rj9s>&=1W_EA8q$;G zE|e5Qp@#|{oSJ*ksKp0S<0u_(*6q|IM#Tq%+Sa9m0y!cjG4;ZC49}AD%QaX83~`2$ zQ`>lZsS;%D+=E>5y<+9lo@YALsF(=MX!PVaaCrHF z9KT_yscbZiWa5aV-ntp`Onvb@7l5{-#%ryYIq3X(IOdR_DzaNF!tMpH znz7T0qLR|KJ-P3=nvi1~{_qmaZ)SxPgaAio%4a$66$E5W!Ccg={|VX5wD{To5WFr* zh=axYVkQ}|&k)U?IShsPB51m1OnLLD?BZ78f5h(aTr9;C5ZR*)V$}imcL6D0+2`bh=gfp2Cd${Jkp}gw_pe6I>QyPgnX-xt&3OzlpX%*-S{c@zdl{Je zV+zOyZK>k8sNukb1E%+Px4{5WljngGl$}Lj7TMoqXEx@2DSetP-uas{Z z4n$>_{-(#6jce<@Gt?~Z4YR@MGwS%LH)?^`xj3TDSmQO95Z@*5%JFHtoUP^;x5pkg zJUkrN?7cX9AlxZeiTwJYzy~<0%Jt6xS*qEtz-1_)v3v_iTwUVC!4Xzvq3y1|q<#@m zDWra|i-cl;SVXheW=bIc>m9nHT_FETn9Um0PG%0P&##&?JG%9-&N0Ju^7hjBYpAHE zsq&-s!aa{=xLO+N;zp6Sx2N=|ceS&2&FSgFHOFI0p|b%z%)&i+DU=;_)mFO8rP%d`TRIeZYUah zKHj_yeZ}=UK79S6k2ez*t42nDEFX`Zq9iKH4t=NJ8;tWGZMD=^sIN^aLEmU|6!0n* zuSSEw763noR2N#adYH|59-6h*Mhacx&QF-$-d@1-IOzv86^VsjL1qzg1EO}Bc8cF# zGag;T6Erly9F0I*yTkL>!4V0YSc?NiSG&8BiR+`>}C+ z2IO|*fbHMxcvruakm@Wrv=KwK31A%sN>?%E+Icl`ZSNUP<{Xd*7=bXa=q?A2O7bzU z=F2Ze`hiz-drC+pPT-a01+zolf(dY&@g1?1%Yr(t=j#C=W5i39RESP~Ld~PBG4PUD zE3rptSC%Zow=2C%19#BogBiuRF#kbgeLJgM%=zX+FWKgnmzksV&iN&D_@A%bG39I0-bDMyoefXk~( z&BpuH-`yM6{&TJC(aFvIna=Su8p>cu^MgwOzc|Ue#P5jHNteKIV|qfQeezT8^Fped zcjdYQ#+#l~m-g7a>=ZuYb!+F>D?j+v7LR+rp;u2l$?xHR^Ed9!&>^% zse}0c)J91dv00GW%DK?M8!05T$n2<8N>qgty${-wg&#{Ha}zI>$jgs>T;|`o0ASl! zf#TxoxWzuEHd4hHk?a`0tRg;|%-coOBW+_sjn$8kp&ZWs0J{d^j#-2+H8SvQiFW{_ zXak!{y!^6MA{waEae!lNFa(u)NnfHfb-6T{dDasTM6{Z&?EQE86ihzj|0)8eF;4&GWxfznnws_?XIVSN+)N8ajMY|6`cwUl zsDD*@o*DR*HZvW~RbWg|weuGt<^V@&C!FWomyFT9Wy^1Bk5{2!9lQP8ci4lNGz8q8 z-P#<}{JiOtTBVjZK02ygql8=LM6vkx0c-s6JWI2Yr-}F`0<-06>ORD*m60uv@N&=( zB=-p5)j9}O0Td8_5EF`cEn2G^TI67;P(~GHnBjEN2;ed!U{B^he5x)A);XVqjBAt2 zj{_Bhjq=)-f;oVNHK1%KiSwguA6KDGYn(t_2ES(p#J1xMAi^svgxY+&^A|1V>?=h+ zJOE%V2!ZqgtaZRt(n!MoZqPz9&9dK4#CabuOEfR#^1P%p{yJj-JUfkm;$*(QIzay>GRG zV6%_yKQ(0tDUuRlUN35V9J=J4d_M6%Q0i1L81f_4yJyx)mP8`J+wz|7M&n@` z>fA=ayblTStQZQ;8h?S_9%dSTP+TUPl3Ub@IEzy63y^JrI5n9sUf`-SoS^v%YETbq za4L&##=*FeMxq}ef*M9L{VL^}vMveQ{MhJ_?4*~C?a3n*Qcf0rveZuBo^MTI`3Fsz z%m$kjK?$tM{~?m&iSuQN)i@H?!S&xsc8oJ1JzNt~+2}q0dx6OIq7u~%fY+B4`{6&p zb2z#K8JvPK3BHTziVdkOIJd;VQ!p7)ndyK6p)Ft8Fi$&Bco;O+Nuy3&c?1g+D7SPQ zS{@nYTG6k-c{T&))gj^b0q;`)yt7Wdm-&kdd1rc|^h1XF+!CpeUmtZONe2Ht{2z!b zlrU?tw8oYg5zgD!Yb)#(h{!Z#6_`$zV65=s>^;(=RAzU2LKo8ZT7H&56Ddm0ik#(8 z2Z59+6-9?xyga$dpBp-|duHBIDf@|t3XiABEO0@CAQ9Byw*VA1NFobBvGwCDB}#OW zGN4b=i20Sp;wYetbw~Gv04zVR2VECdkz2`cODe4skaNt((r{M6pWJ<=z&pkPsh>9e zAIK(8zZb+we>-r{Chub_M&0E{ne&=SXL{qtC3?4_ZwUbLuWEZYY;D9}V;q8OMBEUv z-F^OiWr+RiVb4%bvfzjN!qgPDuwT!=>wml;0J&O~g@g~!y0=&1E98gS)>GF1fg;SQ zhb4Uc&kN){1d{0CWb!&WGSXin#m4+Q^~Ue9z$nTrI@Ol=A$X_8Iq}W45l_$LbN2&F$T`$q3EB+c)9a(=rf-<*)X0zhrhU+YqAed*-<^GA*Y-R46gCFy@#(3gY2u5{H-&hG*u}Z+VRQxH4VOj zgiN(wB?ofm_u~X;A2SehO)?1K8^2sea9SEt2LIvHxgbRtfLK|5B)KE?ogP;Paj=3{ zjvv6`S|>3dW+z#{nnk$--cZ4KtTHNZ;9O$Bx@_*^GT(KM7I}H;`baL=^i@0gn!K1m zNRH+DPx15gtoJSX`w>|Obup2TU+?^f;mE1n^tUZQHfK=80~Z1+zWN#isXDEm7ctH- z?yTWS$8a^C58hqI;y#j;c)fp**ZS-YN`jd}w0p*DDOJ_T+=b$kr0oAdJAAlE=L)_D zIf=|3GVrVs(}4mb=S<$MC<*k*dGD-VY^vxO>YMfe0VOU6eH_<;rb!fhd8tlQrWwh` zF3HyRTfeS21yu;$sdt@lqdrdQathY6aZF0D)ggeGD+Gzv62u?bv=;_{tk4n{w!%&Q?~Q|NDvz47nMpZ<9*km_ zg4nlr3oK>_>%;xVN=5AcNTH$7EBdXtmk;MYE&^0=w*KFmf+)b-HBMS3J{vn}_MfI2 zkzwArk=#vk0^N{#*?uf?-FK6Tu88=a8Z*#Ob@PXWG&RtPvc+%(`=V&4L?UTX7YH;) zA|m>qSsdSTQ7fnxt6dY_ccx53$hWlJ+lDBY47H3c74Tof8_B#b?(b2gr&#nEd9=(I zF{oHD`)3v7dIB@q3OVC?MFED_FkQ^YYM=}_!+~`d znzKeVr3Llj2ut0vm3Ho-0n^+#L@Q_Zvh7#2B=a@O*V0{m_nF|T?OJS^NwW>t*^-dK zqQDL@6QFSRvNPbvcNav_zu=#wNHKm`n~{hbFwyz1OkKVi%pz<#ww2tHNO z4r&@4P`z5)%)JbR7^Cy~JAh&^{&I(B@G{gG!8`;#MI5Rq-r0h-Iww`+4comBB&(bX zAEd#KA3tC(k+FGy6zDpOwiO0>SSj-zy&xtd=V z>w!dfR8-Hcrx<#@wQiC7%D)ZfjU4bNzxDt} zJA&>37p%X;iQFT`*ixi(rDqr@L}>aZZ542kbcnX7Rof)q9Kv<#Zdr4#rV7Eknu$&AwF) zF+6l3J2Td^Z}eiI7&&?A^Eg2&URKL=8L_Uu>j`jUt<)rm8K0OpLoGqFF)ZTy~fcv74=dLkb-`IX>c6kKsW8AK*`+u-!cFkwHk z5%>(n-%4HXr~Fz@+JX_j7SeO0&MLSUjj;3aPOF5jo%mv-W0Q+B&arThCfifGjayO{ zA90`7J57(JfR+)%}Ll_!8&GNguzqPtavb!kO`Qzq_9Fagj{8{n!7w&vH_=6YT^~9bNn)Gasje zMxFlE*d@SR9tOJEF2cPf}iLuK!R1&j=I?8?X7kH3;mBzPF% z`$RPsozP9$iiY?O+F`&hzHpC2O&7t2L+LK`#oIMoIfSNF;hVfrwZ? z4C{4Gwd7wq$y+nv#jxa)b*dlzKuhyl^~cBwVD<%f;3i7are(N&YffK@7RgLMyadsE zMi{CemxQktf zr=HBI00hkcSv+3;a&%Z8DDwt-{%f^NgE51v;hx_!;W>fQw{0@k#4A98wB=*_VcQ?K zXt79B%CVO+62IxdN9ICCp?ao59=2`@Um`Ld)D(Wg=fBsuQ!U{jogAjm^>S2WtUPH7 z0p=xYz4@KBE=XPlRjJmpxi6Wm4HXJpo_;TXN3{h;Z&%FdH(~-M#Q_QMg@9~n>>;f$ zP&N}-wImIG#sNYioA*HL2JBK3kMJbM{a4)kk)+Bke629o3I?aL+iJcnNw*PSi^MDh z3|JGruR+2j29S9due5>Au4*-#JeS8g-Q|I#_sV7F6HEBS=q+pLL;?7UN;*=hQa)w@?X!QHK#);97u)Lf&PcM0ASXLDvlU*dfFRP53ZM# z{;+7lh2^3Nl$>i>&?K>x#w6r?WPIElD|C8goZxRa|0?!4Txac>Rt8Zhd2orJdCMYn zbaK6QBqG7u>6ChZBx!)&<-&ER1R=g}G}6UShti;6>&oiF)9%^-2k-dW7L=#YtsH($ z!OvHl-dtE$sJMK6nt7_<7#zw07(~OstBi%?wcAaU{iFP&6geEr`ipm34ttuk7e7TYItESut zQdImc>6ajIQdTr@r_z-_SEjC2;PM4T5fg-{lgf)8Q5z-|LX!9r#6!j!^M|X;N@icV z0-Y2L{h;rc>q;bW2j1{H$M~5F8wg8xrG!+mF_Rs%099;NXS=|88-Rgr)>1*r^<*m< zNfn}^bAp$@Y@uZT9r|Z8p&?b`Q5;~#vP`|{yKe&^jv#U=@&teRABc%yTtNw$Eu?3= zDU9T7e{sBEYkuRv^9Xj$5>;K24^!M8s1 z!K?zn#OV`1k_DkDbTz0@?*3`7Q^JPVJfL2#M@Iv@0T_Z)P3P^( z+?haD1#%M1rSOP>dm9rvgT6r=IQ*3{K+5K01$TgJ@-A^)am38n)Q#Oj-dtmdFFD5J zRJ8vS5ft&9d?Lj{vMWo~<(CF=xI&dkjRMc4HC#lxZISWA{r>su#^XD&6s0>u%gaxv zBM8sjp4t^fY`m`w5KL;u&}Tf12+T*7Ak=z}Y4r+DAN4_nPCkca0Tc{9T71#AGeQhf zTHn3pVhmD;_=AT_mP~_%qtHeIYtD?1Ml%IsUr_H{879!7J;hi3ma@p1P`XC}{{yLH zGL~=$<}NL9p9oH0KmDry_TheZ)raw6K#rVxOA@_>!l;XbJB@W|Bqu_bgpJn`O+Hy? zymtiC#XY@mMrjZFHTvY8w;Ag91V|_V>KUP)sdMx+zs4WVK>rq+>@<#5dk%pi6v)1; zyat)5$R;0dbV&zAVRb4sZFW1FfeA2+ra$5-9&C5KQE3Y;uM`QJM5Ind$Z$!jlbaf5 zQ>e!ZgC}(F%4uKKGsus)>-*V18*J1t@!Yb@aKdoF2n0^IFALym;!p6^zl{V6A_BHj zXj9E;5w=5BoQ}0c>cA7O=v1^+@3nzmK=YcbRiJ!i+hapYGw-kr3a=FNCWO)@wz?*8 zMklMMkGdvPMHjIN&3k1eRi&d?h?l{H0c}RM-R*=4-ZCV|W*^1hY7(&3&!1kOrjId- zl&wQY#Bdnvnup9ffpzFMbo0)7FB8%OMtuA_CRN!E^lu{QY`T z^Q@5)($rJgj?|4oa!d8k8+aPXnrVkThS>5$G@i9812>hI*7!!4ih%14xduUWO6p!= zA^2-;Xb+%ShXe_-x9XQ`=j*8=VPSm8CsV~X`4Ptb^h9R*i{3tZWpgqDIR(glr^hLM zIKOj*y!;dV$<3mRxrt}Wd>uhwH-c2JzCAI!Dz^9N$x49K+>cI=i$I+i&~U%c?dxYt zk^)BqXG>d>$r4%_VLy%P-zU5z@moJG z6IwJdUcO}0$DdWS%uQX{X;l%?KK5_$WYpy9;i+$x(xG?MFV%vC}I97efo7vc_lFT#%hZ z-?Fcz4KI}3<=}`t{iX1cMIkV+;GHhh6*-{p?W&=RO)cTudGOl$4MW<3FhHZB`D~&a zL*hv5HZn z#-@SX%9+p;Aiqt%f0UI)!FXkmdCs$e0B3sG)*bS0i%yYXM<^BsVHeH>xv+ekVL6{* zMg5h+PL;p2u!cL8-o;DCDxwa$hssFk!n>6}>}bCX5u1OQ>rdI={f@7BM0ZX*pZh=1 zGKJrvap%jIAwhDiyj~RX7hp{_C8`x#`~_I6KaNaDfF;OV8cRiMLavd0N(Vv1Ey zI^7M(2r+}JUHptxh+UqAt~K%J1x$DPZtiDqMaKXo{gRSS%aSZAm=m|c;=ccuzApr^ zGWZ;LuMA*a!8>{KMWIHXG=FkfpM2f3s2Yo>O%quU-_J4Br({#QFxxwIDPy6pmKo7K z>9o-zfiiM=vRpPZNnBY&IeWM8WCOcMpiEW=YH?h@Qy}ZX%YE-(+Ns0~Ul8vX#NNAm zzogAe5V>&?*E`i*cg?9I-5A9i!X~NgHGq)ro+N;xKwLk!Sax(>vs-y&ajUYSWkGF4!oSizgS1QuWvUhY6GsC=iY2+1sgQyHt%p-WCqT9sR%DL7d?Tr#6Nhg=SF|bNSj6(;4Pee*0>)FYvyu}r z{d>AWea#RJ;e~-oQWT4o{!(OX9(l!XU0HA>wjWbY{A=#Un?WU=F3)a7&7oM!(IJu? zCaeD`4%SWZj{K77W_%+vVmSx(#}m!;&ZG>b;PaS@iY>a9(oZC%J4+PV3rSGE(l1SA z*xz2vLT$-U4o{bb>Bu}Pfkl|d*KY<;@9pNelz?b3W}=ZZn)f_Nt&< zWcd66sUk8N$draS?mqhTaipd2{-phrw@Up5D6`_75GlHMKg{P9BjFJ*x*osPzG+{I zkZmQ|75^uLy#pmVv}*La+ET zP1SnZus=kJim1b54I2MuF$0R0QXVSvM*6DDuw;p8sE4LrB@F$r=Kve1DQNOx%^5kz zVtV4@)VQEG4lqlp$>5P|{zCH6bSt8UiUoA?5>2pP@fh7Pd@ba9`_j<5Dxwy zNM^Lw1nN7v9t^aoFuy8Dml)fMBysV(+ua%23wBm@6TddRqxYrOdt5WRo4GJ{BP{t# zl|fYMJ9jo=--K$1p6=h2Knqd~hkMJJ)g%Z6rhBae}K;G{zzSn^{6x*{* z5=At=uVVs9spWyGJkuP!yxeK=B>B(KXc#<=D_8R#Suw>?UTF?uZ?$ygx`5vwo4)1R zth_X`Ztx%Pn7}%sO8xe<6%~Vw@!yKSTUS4iBmzZoDq!6)0@zA1UYqkg>KWy<#!uR` zA5yboH2BT6uzht<+LgmwL!`GZvHmRl z$~KNZVGSUvo;Rvz?BW~Q?{u3>1|a5Mt>JFa1r3PRFXt#fScDp9%)5+N6K9EyCA(rO zHF_V2J*|;zWx&%D|J(}`?kO+GPp8T-pzEff#%Z7|Xk89D9=n=2Xng*rJGh-O7z#ou z2gJ)juMBRj9dRg{$7_^v*&VV!iP@7qto zJ)YZs*Y6bYD5tmcXm-atI^20Y*rT>^hYkJrq8CnD*qf01Riw`)I}~4MgOU|2b6zCLS(SzqazCQr*sJ#fgF$nQJTxKu z`;uw8#fOsmqEz8+4kJr3m#-PMHBeVH%OhVb8INXjMqohiy{!|%taa&>CO|2StKdb+N zibu}B%O!tn9D7~t`5g_FxzB00TlB%%mdc}2pNpa{c983nLSS5UCdiH&fm6i8^;6`E z6jPy|TFW$Xb+u1wBZ?)}d!tHz>4$e6Jkc*fh*-OM7iWA?bD<>D>=8lQmd+q0lmkE; zs&$3w6a6;p7UvKcUXV$8N~%Me>DP_l?CnEtO(B0jqkFjULlDDm4v1$o^fO+9MZY^2 zbDX~BFsjckQ&ypU;nY}uo>1Hy$kwP8bA(qu0lI3Xy{HP^Nu_ST^ zSme=d;N)NXH|#iL&i_gpPA1eeKi#qO&^6XKv?IlOje^s{Vg84K3#{SDDZD? zd`a`OcldNltD00Ib$4QrA$H|?bTZjsDkZ5^!67!$FcAy4Y2p0Y%mC+u7|#02UByJA z1wJo>XydqKK$PX`5AXX(FL7cA(!m@ zB9usyoT4R#RR|DdQgI;2S~|u5+dKbvrq@4?zc(Ahu+7YJ$Ts6FjeIASeX-W^<(y59 zPSRnFgeZMGLS{xon8_kmGb74X=oEF7&7q^Dgic5(U;5&xs6(Rqysyt+@cH5MzYg4}xsADM7ssIv|c)A4wbDxxzF5VUBje~VnZ?dACR zJ>LF?uf6HheWQvWic+Whj~QKS-}7a<@93evk(Hjh?I)}+gO0?d%Q_wsFZ{B{cupc+ zK_wCz?GJ4*J(IB3Z&iWFls)sw=o#g052ZfM8V~u07ZD(s`379Mq$K_cJ9*yj_m(rf zuvX5QhC?PH9dq7f9MAaZlY0%lC!uCIx~3NFwyuY;IlFS5y|Vw9iVhO$=-Vy2bM`NL zH=Wzzy5(4D&10`(h)<%A|3eTlZm8|PWq6Jp9aCr9H@tZ$C;#nK}ec zQ2B%iD!B}a5i#OCpCtoGIEOIF4UEzk;c44GGQeBY=FK-iobE>UP}<{%^d+`b*jC9l zl6Vn@Cm7-@A8g-rE*rw|(=1sZKTGmMZqBh8D{S(WyI)vo!Og3-{77f8`UzPHB6r=v zXdD*DDRT_yaS@c7)PmF*CA52{psmk9-S%oRLuU*kJ0VGuEn=!eM;*%_ z5h>toi|b2+4Rfc1cH9}b{GzDOyB0w1-7nV@?{>-zY;R-w}R7UL7 zW)4P(dks$?+!*sWDEwhslCTutRzBd-3U4!^ERbuY7T8zzZWX5Iay#RNTe2`+&3s=`#dV<}> zYi!(?9gJIg+%0vX#;YgTZRKi5x-YE+?5<*#i>O2FFP77Jxm(#mo0`MV1w%xzyR?@2 z<(?}0Pun#c4kl-vv0+_81WJ%IGmFY=f=j{uCAUfhWqn-BXqVt;5C85f*Ac)V$(?Wf z;`T*Dx7aZNjAxXdJW#nRvkj%c345E89{3uKDv-A{RhFW05YO|9w-vuQWM1I{}JDd^dh>&%O@vyfQB5U*{l=F(Nt@6 z|2xjbUe_ouIk6Ql96+sZwC$Xa3OHp-;u+AD&G+fE``@FcU|IU1&N1r?pT7);PoeM} z9+_U}dVSKQ+$`!sHjiW4N=*N`|4#4EIS@E9{ED^iJsB0GbcZ;(E`){?Kh2-i1a0K| z=)F#`FAPCU;xq&AF~Q;?1Saxs^(x;$3fJvSr{(i`$>i)Ns&3Xt^&O&M2tDxedY&-~ z*BEgY_g0PrwUm+M9hQl>5LTg(Y(zx?I%r;O2LSgjJ|&DMZ%;#TF|xz(jm-3XQB^7I zXF7nCad=-nMcuyUR_6dSQW#2XHL~FB6d8;_`8-dlY&Ji!cUNL!;Xk7f_74vt=xY*B zVFu}niLru!3n5v}umbsA&ol01q=pcPC^>&3us60gY>c27P(0jFpNt(f53=jOv4)F> zyIx)yT=`Jz`wAO|zx+QaFzrk%$OZKCckyJ_O+oS`bwFxARXdod62P5yPG-tOtMe6F~0 zAaU$Ljl@o9k!*AHK7L{}OltIHbTrJrYpNiK$LXq&BkNbLkm`gvxwcXeq<^IIwEbIi zM{%La_j{8Q6*q88J(xHZPb(i!oql}7Cj9rMGu+Ce_J?D8 z))X(Ltn{cA0D>hxJ`r>0@U%Mg1?bO8li3xw8nZTGT-L!0VX;M%tOnrABQxT90 zT$i&wBqX!T)lLRl8_uIhCS^OdPew>?-n2fL32IBL+!F}0-@Jmk&;lWfpGRm?DOGqJ z=Dx1>VEzcS3Qb)5V*Ey}13i-}Q0QGR`zhkIt1vws|C2)(j@4eHV*6T@0t7!D<{ho7 zieb-}9Btr37zt3Ln!;3XsJ$#Uq8Z|1PDaiyyS=t08QQTCmY2RG)gy!U=MqP~0g`=I z_9JG(P<*wMo$?}_j_)^P)*)jdMXSN~Cs*sNKS?CkA7@Nf5oW$1Mjw6H{*SMnbR|@n zF$F;NR)vNjMhykfrs)5jX$C}n17IFRm@Bp&cgTy3amv-3T%Rs^oJrwbI-uKKmwB1# zYhad$pu;3G3?2$kL}ZT_LjfZI5(`!r2*^-_-9CDnOArdStWfG!CCPM=nd*mv#Rc870=;u0N8a!x^Nk1Se)<;4xEtW_Kq)aI+1CT~;el9Rn9w4zI>|-Z`-(_G% z^`eFuaa{8Wn@}Wav|U@a4=fq5AhWP9Ogbse;47X1SnGUZX6ZX=&e2Y42EM8+1Mq}Q zn7BZ*IWy!(I9+7G&k)-`eP73bJGFOUQHV~)1OhTH%vi9$_`i)NVjjA5Zn26Z?LypJ zT;ZxYk>cpo^tvFjGt=eP?ZI^zeASv?#^bQLNbadCN!JWmITZHJmXU0dFV<%L(>Z4G TzXtx@ga3mcfFV3;{%!a_x-~?v literal 0 HcmV?d00001 diff --git a/providers/base/data/images/image_quality_good.jpg b/providers/base/data/images/image_quality_good.jpg new file mode 100644 index 0000000000000000000000000000000000000000..443f37e73a4d8fba5fc1eaf5f945640d4808761c GIT binary patch literal 69950 zcmbTdXH-*9*gYBu5IWM75^ADUl}-Yo3k0NhX(FHq0un&F(xiwXbfkm;QbSV|1VogY z03skDB26HH(2-unKfm`~>)tQ-!@YOTnpx+pGjrCnXU>{u_MT_{P5he!Tr$)%&;w9W z0RU7N7vSF%KnFlg^Xq5x`kDj+-6zixogg`Kqj zW8Q_a|C^|&fi$#qpbImYE-Ex$x-cIIyfB*f!s3hCPcPmBXxM2vL}az-IL+^YL{VIF z(P_o>5bgR7Zj0}Kpz^N%F$|2Cuki5lUA-nIE+MI)sH6;otLWU))ze2B7+P9c+t}LO zv3GO7|G?v+r&mDWlc3;`(6HF&aq$U>FOt$TGPAN@<>cnQE-5W5uc*XVy?fu#_@Sw} zd*o z*e`HV|2GDp|8P-J2VZ0$I}NRfEFFiIIp`jWQ&cXRo=ZEexW0n{B5(1B+tvR&<7KGA z{MGIMp#2ZB|98M*{(m9+zkvPUxF!M2K&p$u1F{1&0J|&Y7W0nEvpj0=C$s38t*}^f zieXhf!czQnC`-P$M7;fg4iJh-%f(0=NY{(DAk}&X!9zj4_PIPOf zMt_V|C3|f1KCLI-X_u>jAoH(-t6hG)sm_d4TE|H8yH~iTN^3if^MRKFEf)evDfDBWlb%BaGFe z=fmGk`RsoH*gwF&#+PeG* z)+$b#N7EW@VH*Ai2nj4UG*QyUJ7`68OSJ~ifX(QID;+t)Ba^9K3bpMj^OpI^HwF-$e!qH5 zNdBIW&2N^1cRcWBrB_=)c4egj+R1Epz38=nLt_Q#iI&>wJTU;G_k)bgbR@W?VVTjY z3h$OuMyp*9a0hnuAap)0$pAoToToN7Z7w}eA3e%!^Z6oF0aHXrgR2U&%#?eR6$9d$ zi91FIZ-!gN{(W#(n8PaP=h^RH@8$D^&wxe_X#h+cd6mn0B_=G@^W4stRgYDUMbMeR z=opKUpBPy}<61MT)VeWx*1O0)(4woncFe}ETU2;}7UbSs+91zKm_-&@uO3r?+%Pt- z2)q%h=q`&Hr+TNUHe_ga^=j0riD?=&dAM~1(qsWCAlHRglg&U@1Y|$}Ao~Cg zw8^YppxQEh+1oCZ;NM58N*@>u8Y@RiHl^m@qbX&=ozGTnzIqfbd+7*|P zLZxsL>q!vW%*D4%R3rINkAe1S057G9WE+l=8}Ghfkb2pCG)f%q0*;tiMh*P~)Rq2< zDN6vtdCDKiC)Y*~Z=a(KRJkY*6zS&tS}6D}6DwQi1R=+BuJ4=%$!}6sS-tEae!l=a zaA7xrs+NL;f#U>lMyv22da%I=!N}{waN-ESYK#{|~By;!DAo z@lH=bSFPsKa5<$1GilKsWml=%;lj^c;~d@H$@|yJ!&);2_F8xt-z_ML=<@(;6_~3z z;8W96f%oM&`2~2~}9CwVxk9Tr?OQ3Ff9@i7C{^;Ku z{vkGDa5{-G>*DFNoc;%pRLb^#EPVPPkMJ<{Qs}zc!+SZOh(;VT$RVz5ba1*2ok@PF zIogeBJmC&c#Jbi#z+*NGTWMB$2}TUVJTRl9LhNSaeb(dNTz~G#*wf?(67#!0W=T)$ z4{HbU4oVopwX&`zJl;Jrk2mnsL$+T`lqaKY`>U5fA!qbn=)%8Er@!KOG|te9D8=MvML2Sk``Rm;D1gH;ZdKJ#U$%_(Mvl;Rp& z@Fn;$AZ&~y`CG?g=t{KX$ji20YRG%Rw`ix(+pz>mGk{Bn7SH}t+9e4X0;4keGe}F% zG1hD^$ex>Pyz~zPw}~o_YRlLhQa=H5R!SMEKz`p)2B#CzII0VPR>Cqg$ImlH(UcXN z!dBOGqp?mwEC>V>!n?L#p&iZn5Zq)GX&(Zh=Aj7Kf`QhT-?%)xmmC|R z5g17OQSi*F64~YB0$2sz-7bF(cYPV9k%+PoeGZhC38hY~tniHTpqS9L{j!}28EEAp(cTGX?}FOf^kiHSmIMu@8mt&vz5Tne**7$jI5@|MrW)q1 z2xz6ru&7&nV3PWutOWH+`;Tmh~U;bcP_|DP+j!rT0 z?B~JJ!zsLF)~?StpkbEr@=f=6mcte@KIIxnc`H=ky#C$PKG3U0dKOCpkD}d#naTUq zShEc=9uiOSSG^j>8z;$THH>o@R?s}s?Dfv){->)}%q4&rB)omY)Up+Bq3NurLi$q@ z?0)s>cSaddzZA~ja{#GY0DuEQ$D>&caEoqI`nTJQ)v}XXkS|<~M*N#H>7~?qvpG;c zzthq!ns{QpkYQ+oCk-jCPvLL#v7O7og@fh`wi(7d+)DhxV00Yf%@IIgk*x7j*8^gj z*EaGpu9g7w7#^sxAUbb>$A*QQ=IoC}qBJ&?^j(=#SFKu}ZHf zr$t=2J70La0<4yyZDwNV(-(PK;P14p+lxi6U3DrH;MqSw9IRVwwsv?o)d}<~pqH#L2an+Eyj6PUexg|P z%86AHTaH!APu{}{?gs*FV+U2qEl;>I49Pq@W74Hm!^{EuW!5ft+!X!n}SP{l){2l?+D0Pd-$Q3(v-70lG-Bvi` z(GA9ZjljYYw7fX9&J@HgA>G>CXNl3jTgJ~NP{K1Pi^)Pwc%F8LDN9e36XH z{f%DmLIryZ0t0{@Ds<3?UWxp(PkPfR-bVkOnOgIdY5yPKQJdme1{w{V-p7|eN6RqF z51B~Bt5u-HpukZDecj@+3{0#b>_Fb2gUG8e%I@Oua8-tibTLfHMqP_T*NFk<$Nn)_ zAYQoN{dmV$OZ4xA`|g@&{R1GZUS=dX-e7a|e~6hrzHe{xDGeuybWJmBczIzg8#jyU z>TMl91*vvk_(mZiZ;C+W)Xv$f=+YxN&L9MzOEXI6AAVpLB z%>oA0ub&W{<>X8>DV68e_uA)OU3lYdnT$gcGVjQy%7hL+H0;c(yEXi-GBvvw)}!|| zEgNwlm?imP_?cP2Ec!CFTC+u1{j#Lf`nC0asi=xqYNw2PeXt?(QAJq)S(yP4#*gPy z5~ek4MucCWw6b^2@O~cHK~&$%`RcQl6h^R$>5dAU^WgHa648hJRJ65yJ9;}%p>qE$ zS(&DefigCh&l)rzH3;WI)Axaj3C60$fuhiAyl{F5(Mzc^GLxl{hFJt2O3;8matk@dO~up-S(P>RLABjVea!RlCl3YJ$O&+8ade5~w5r{W zC~h$yZPeSjWrg?W@;8wXQPYzmirjyZc<;<^RU)ax*KK-c>`?LAgmwWwnHVp;yH^DH zY#SX#Pe7&Yp5d2Gi#Z6#y^i2H@?Ir|=Zr`r*i~!ykd=YiR*VNY{8Umb`7NUN58Kth z`fZ9;%_HLj(ed)UAY4pw0iOvKjE98ad%K-V#(gDcuXNit;=!KNd^pfB-#d zz(U(qH3m@X5Xg${ouuT#?>zR$WX5~c3@DfXM9rWqHeP^ZWA2?xs6eg0Of*at7Yj*&JT`h3X?RN{PqMNcC;(GuPp0Ks4QOHH&PFbV{JP+s?ZFUXDBeUZp>tSebgw-CCw zS8)rUlE;4N2VeC<#-zI;+;=DP3T)cT>SC=pg6V`wh_EF8>dFqGn@*+vA!~*mNj`Ij zL$&J4Y2f(Iy_J!2<@cPQa8Z|hS$O9Y`WX--pXg+FHhGCAnfrPStsqb_s12D|9MK3D zEd8PWa1}Z!dim&>mrfq-1~0qRY|(l}7)(oD?$iumk8U4|u#mqou)%D~OIK?kI+9t? z+ijGb#WUo*x0F~vX&VKH6nb05D9%+bQwh`~i+pS#mB(Lh>}41%TaV$Y&DcR^ynY}f z)=bH{%lE%>qWQu&;J&ewnU#p`v|*g5a~ z)gF$;-dLboLyn(DTZHbZRgDk=cIQy-3YeBYCiE`$pz0$^q~dCz?aoV7g{0eh6~v+ zE>CB5_-X;X)Z0N3VECr^nz>bTuE}w~nhp^&LG)!&BprX)=p}kxcV|)Pf5X|}V9Bf2 z@mjVuPIw#BD6bbxf%*z>4_jtK^`zTQUGbuOk1TlRyZ(04{{yJ0T7A3x%$o$B6Kq)2 z)cZk`6h=I9tMfEObSn<@7O=`_5mfoy2vrFhvTA@m{4Xvt@F?0mC)Tf5@*|C{MLqfk zz)WQaezq#hBNS?~8RdSl=x+E~F07RfIpSU2@`dj639WX}Dd?tw*~qxcI!) zJ9g^RI8ay^BrW-v^s}hAeVV!StORZ|ch1eySghJcA5-%p!KYhUl8q~$=f*}+KnF`Z zUb*H?qTV!fx(eT8=A-)nKe_PJ!>S$4tTtrsmC&w5{ffx`v|^|W_+V`Wt1LVyXGNwI zZ5aLoh}c+!QUD_czs-Hm2tF>SV3J_Pu_cY2nQfFx+KMUrCN!ggb0@}AuK(B82>wGO zcfKtIfbo;Zz_n7 z16mAV8@L8idGVMKUhvE^gVDbNwuQ^$@@dnN&)ym-W!v?EVD|ed_gx;(3R3gR#YU+t zlqK5^2-qn>$6c=SRJ9SSBt%dPD8rsIwx)y-yAZHnshzw)o!dfF^yA>mrt^8!xB75?=? zUOILQ!0Bm$GtRb6*rn26rlZ;e3KxwP*~=&2zV6CuEPmu{j=Zg!t2RK3L(sbx`jW49 zowNXc6?rMWuBa?1CTed9*USIh1=a^sxWjlNI~DOZSk*&~e$CX%Zt#0dw|hEl>v-FU zL0pU~MZj3KKV2uz!eG6E8t;R;Ze6Dihf00a4&8|EF&z54+$&f*hOB$Gn>J)Yh36me z)G`aea_9>UX4vR77DT(cOr?u5tfk8yTdmfB)WUH&3pusIot1E+CE;0?Fte$of7pp@ z{OI+b`k-Q`msp{&TiQiFJad-MLo|d*D|(%6Do^GteS2;Fn0?3xo5nZf0qm==y^S|>rZCg+_!!dRpLgK>Fho*}Bdf@1& zc2+y^g9aKAI(_x$W4GOb)TY3Cpa?fv$`cUt&f|RS!Hhx7hQj+uE|SO^l@>f8>&DIyPDnhA%HAT z#&(^xB!iK!zq6qG&>m687d5Q%*L#vWDhi$&EgiARSsMlXaHY?T5$j;PQY!sFdAGOW|vW4Hxu zNqkq@blN|_T4`C)ap)c0VG2#)9NEg7K{yr{DVeszAbb)NF#b9qPD~6ZzhWIUj{a7@ z2a%kX1qdQ3W!lR~=2gS(?_UPJzTVJ>ApXdk`!ENq++fo*-6_pqdOK=y%XQXxJ~RD_ zK=`>;sZ@!4mRc`@FU>5r<-V9euo+`-DUAGwaU|cERdSH*$uviWmW2V5(B&q-MBv~Z z*jd%s%jd@_0z*1IdgfzKcc%A%YLzD6hr!+rQlac`XDM5p=|wJmo#~yPpEVBG>tH_eF9z~{Z*MjpkQv#t^Vg% zTzFf_f5g*A+Uszo9)N79$5C^6i%>)*nF3!kb>!|#Hgz_wg`~m+0-`M+G~8F3?NUlr z-}Db9<#|89B4UdSrgXom)%&rNUZ^n6 z7QX2PM{26z{0(=)_V77UE+pZ=gx+(YOH@v3mSW5btsh$Wi{0dEBsTL2Un`o z5-$7*s}L}2Y_V6C4vI~~u^{H}-e6GgsyObky#sihNtKd=NBoua@5v4NFdGVLLn#Lj zT-Ps#Eb*S5SPs8?tJ*Bqc&h@{*#tho`z29l4}!$FjZ*^EfF3kyxW54wRYlrG^NED@ zXPG^IwXIiK<=8GX*i3^TUs*%0H;mY~vdVsr?YdNzME(b`wA4O#$aa_1*9Ghv1CU)y zjQ;BP)=clSPIX362`T>r*e3+7E0#cwza>v;ff^;hT$6it4^1jlQh$c(lMWebyTP2i z8@xt@Ok&*z;uj2fx?MbY*G)XX9(K5DNP2O$9^VhMj3ThA9+bCUPPcIzqjM>u6dIyv z-dekAs^P09d@5qcuvRY`Y`XQr$kY0xqf8*XgJMZha-XKaBp1_DZ&{17%of>{3e6^1rT@9)90Ei*858- z>e$NTGgh$9yJl7vfV)xzu#8D=4_Nk-sE?}Nq4sCh3wsuL)G@6iJ46)=9{%w5uf8sU zJu}5WY%Hk=EPjZv1ad*M$h)ZlrjBVi&C=srJVHV9Y06x%(|)^%Zj8Qt zd5xGW9Ha=j*(8!kSI+}GtAcOOXmepJBAF|;7}X5Nk7Ai7P@5u zWV6K;F#x3;UI787WTv)EWoVCTFZw#r!I&XH=*Y47KY)bT6e2IsTjzoEY^=h4?xc6o zLm&b1i82=^{-`n;eH!*W|IU8H(mRw?(|-WxC{2-b7xgwTr|)mzL;kWOFCSG7Cq_}_ zBnYIKJ*_fVcbmNeQ5bknOlM`&1R46LQsWr*2PLMA8SUxrWX@5=_TEcFes=e@SP%(|}J zO`16$bG>aWl_nrva}BB4D@+o2y3)J~?nq@-atk&$qLG+(W5VPLQMg6Ss9aTcP_ucz zBcxHkp}u8!(%ZoVqz%Qj&Ga7rrqZZfUd{EPVINp!`Ul zE$l}4j>L04D*oncajeCIz3x%b&0z9A*LYOrtf^%T?VbBt$<2ds7J>vi7XSf-pYXMz z?@PU_)@0*_6J0$KaYJ?Rl@se1-0W{d)sSKe7aJNBVPIjHTgG9as5oyZ2~w+2>H&N_ zL*a(z(j=4MrT5`tz{%IL1~V}kx9?R%X(v5&TG>U1TXwAKlhTY`sHThPHg2b_bNG0o z&}pywHb0$MvG@Yd*T6VGQ^EavQPz~Yuu(_u_6~sHkJm}J9@R4v1%r5oKrtbd?Q%(o ztcV;#?{Q>jnN->*syJ}Q*a(-d_0<%Cj`ERv*9Fq<_C4(ybgnq^y!<^6fd`_ajPIm= zn0~jT%DV4V$jAh)gdv8nJaX6Ge!ny4R;SCFuib#ACo-y95nU3WoP8mbr10mkX9I-= zJEPTl-E~~c$p1ihUw0-Okr>jQHJJPycBLM4|Z7i6C z_)&^OXDbq+?6Nu-Lh%G_6CKBVb=-mnQ~(T=-O@dI zJRQE0n(gA!+NT*-_V;3P7e8LedsypO37cQ7YRx3B5!*3SJ$pS1P(S^q?rpBsR{xfc zs;YM7%_#_C4mF8|9!Eg~NwWp{VO$yYUh-X3Q4SwepWta;w4(jPqKB=K$pt&xTQnCG&S-e4Fl_>ZKnJJadA63;o#VQU?ELy%<4vb;VvBOA zeDSO)h%z264DtGFY;z|n0gc^hKlp}xw_&E_BS5@XE>VUr&AT5hY(4D&9*w;zOx3$) z#;Y9I0jaF0<|fRdR>dFb!1^ZM*7PGmOfN zFp-2pL5S1TZeiqj6;VVJ>XtDT5QwMk@?fNs1F7jBD-;~ZI)q;SnQmY{wCedCLkHih z!mDOZ(<9KQR@HLRtw9WA_w6K~@|r82oYbg3fslo)Bs6wZ8GXOKPwWDZKP`*c+w1Nc zK{Cx-qm2eFdUUgD{AXU!r|rrnXCu|`a4nQ_iPetP7x6%G*MO#U_?g7q`+CbE9>iWH zFnXfUw_yn)9Ppb*;f?F-{Cc_cmO=W1y@OJIt5hTe!TDDrdWX)`k*>F*p5G67&{ur@ z_Qw`UC5=fTdu!%jcVuAaBIg>(vI3|EB#?WK#B-rtNa)C2G9W(z`~wv3cx_y3xtsQt`#A{o7U zlZgQK*(`SgFH&l@YP#}`xrr8I$rr>(L6NT*cz?r~KUz$J0sNMAt5!+7iY|YKYJT(#TubfGq-dDp{2)mGQeiBpl z9QJRem3^f;_PBD@xIENkktTGr&E=Pw2!NBlA_resx{2nhv9Q!3F--fH9~YXnLZS0c zA&rZhaO^n#maR{c0|ihmWa#}oPW4J~WqEF45L1-qrb=+>E;Z@!6GiN;g4A8}+UFcf zqs`O-1dS}k=_)`wAe^CCTP6!g8-^=5zSwvDjuwcK zxgvlMmP;)&q3U?R^~*`=Y=j*X0{-K5>{AVT4RM8J0-mE$MEiKx{`pd)LW>amSx*Kl z=>w{8yvoSjL0pevjuLD69vbRS&%KNO`+f3t{$i#}Oqko7MH9I*EG2d@%!;F#u)fEo zb~)A--raJ3H6R8+0f&#pJXr)e`qR3YZ& z=`ir==!ky_+T-WQd)Kj_As#dF0`w~uEP9I27ByHqi7US`$@qg8Qw{s~c=+Bo!w1ru zH`JHg?-l+7IJxWNZ&^i5NQclo!DpCjD+B03{2%sYUH|Hk-Zc!nmH(sf~I|PB8qc}+$ z%(72uGEI*DC6RX;v#V-e9@tcR7zl_EBCg!|;`1U=jvD~Z80A);e69O{C0##Y1mB}1 zwXbk_UWisD4ZV-&&>aM95NkdDw%Pfxw08^{raiWhv$hk8h)jMk_C#0F{jP00&6BNZ zzK~bGTtQVDp2340b#4x((`(!$?4@0Z?S=H-*bvry6P*_oJx(mUS;4!lbHz` ze*!LpJO>-XD~yZ`+$hvub(CLx0Rp0f6-B>607t-y|5mv+VQQ0{*%k0%G zpMHL|r{Px7J6bfm-)!_;I)XVIQdtmJSOEec(K2FX`shG`V_GbhB;eWGCAK!Bt;&?TkbTFl`v(&)7w`(^gC&SoD zl(YW+HK$VF$#5YKx#nWvKKvBvL|7#4L`8{MQIk*x1k+;zh~8MmTd;U-}g=O zQ*OJe9t<}3!#i~RtYpv^?_Qebs3j>Ci3R?Zhn1rGY>%#=9uVgHG z3FjCEfP&|+yPDo6@BWwsjN-qk4!Hh;00o{(ezJ(yXf+8B_&JM9kN*me30*3P&y|;T zl*6z&GBRTYLzcC;>9GJf2nOFUpd?Sd-x^79X_1%Fa4vYd?Aot&i+9M>3~%yL(fhen?^bYAf!7Lt8l<5LiWvTz9}@RMrP@@X%X5@{QW%NNSHSm z^sb>#O9o5T5>o%fh?k67H{0h&>Sx~fiN9B#H{QmsF&un40a*5Z6*?*=TjT)Z3 zm^~2l48rpgR8AN2elk`Gs6JV!Zg?roTo86vF`Ij}*B2($w5S?-Vrk2yTy-rJ#*bvV zQ1}(eQX&teF9JrU+3aICSfVPY1?kKC#0GAs72Y!z&U=5&vz;3Dl?qq1UygX$94B;B zEB5?Z7RNMKL}5;t(4w)YTv-Biza%ru$G|8_-8E!LIPXz^e-vv$2shK`-}!i8xhJ1? zZF2hwv$euj5FdxCJ8=4R6kJL5z6myMB6$;W9G;*l2lAJM`}S$NY0HGwSG;?hVQ~3& z{qakxp$hwZ`32PlGeM_TkNlD^j|;nfh%D1uR$KVpX8yxsZ3Ir4Ve zWD(BAEcv%HDydeL3Npw@^6S`2iY^QCmihzWox2DgI<=Gppjyifw#<#gUWiDbaVooo z_OITK*UVd*88@d*!O4Q>4U1#XN$^U(AJ zKR7pqz$%_qyqda-*>o6iD&eIG!oRYV*4vR?hbfYO|M}bixP7T3#XAVEPy9<0rIqRu z2te)E3S8SmI`$u^IVtjN53{Q5<42Cb(1e0d)G9yIbx*a99-`%7U4am^b>Y$7XS`D_ zn~oPWJo;#?Gyg+nYgzqjtQmXyJb__rY;3Jc@{6@kSH^GdMe}FFf}E}bb!GD(H`Xjt zQk=Phg;pFi*Sl(Mr5;pC?`U!U>hzn)DJa!Q zjsEs%C)*_rUyEtKfNx9%jyK&#$M<SJXT_s67@C46wck*vn|$jFZfzLgMi^HfdHFV z#B;$k9sTMq95H0CLX5pyZScoqk#k--FRKa_@RFVUk&2PBq?^X;x6xs z5m3Mc5%x-mq`S9!T>;bW%xd@qMp5(Jo{^V5P8496IXV3)0ZQ5%@V-)y1@A1>>Mn#| zae=hjh*dI6v^uhnF_i(o_RUetgy7TX4evXw8V3NoZAw8`7}}TbX4trn&jFeIi&#qq zzfcs!?pJ#I{;fqyoA3nDRV2;58RSoM+*vbwx3&9|5yrc6t|)Ea&6tn)0rSQ@OkWbn zw^8mM^dC6G?%oCumb?I&#MIv#7lokmQM{8a8>T6D96i1PNU^xrm0ku?{4awggtz)S zR#mLhWdQL;d z9=_sPz$rp6h}G2Sm93CD@suTxs0n0_EBg=NT_ccQ<}v1iw~kM)UaPP3|8&f-4C zR`e(EuAE-lmk) zDUvF-fq6$hEh#Xp$VMb;j>F_(V?x=ULeCN#MC^m-vx!xMWRRMll#Evrsv)4zS>oAj zn=;j!$$;{Mw2%DnY~cue>8S;V8->ZK`3Kmb`3K1MF5P$WEI*gK*pHhb=6$k=uxKg*cX_fY9=_r)#X==358c(JCI9YHc|cS z8NW^EZmm_dGqKToQDAis1N)}9`5JWfJtnL0>U4MuFJO07SLt@n6nzcVkT5pd zR7>Le%cV`u?|(q2R=;ixQ~RkND&h_&L@Z+q?J>812#YpbfP70w4Y#z*N}t@!Z-g++ z_-m2Rx#E{NQ{kjyM6?wPQAiosCNm?7;ok~l9(|bDJA6KzlHMK@4jf6Hx#chC2ZFMV zSMn!zZU(d?(mmssWKQ+rdjgUcMtsJOtyc$FVlG9|&yBjb7|0^oNBoTem& zU(6$POIM%1Q=bkSdyE34#*lHpmZjizfQT3^vHBI`>=j2UEPFd(^tO55?*Ls7bd-GD z3VN^f)R8%Ob1F4dF~>JphC^d*%#v?awqRr~c1RT4H0)#y7mGKb_hhA7LtFA~sILm@ zBd{sE=Zbl+WM5|oiK&^$9$E5j{-)NP-u{V^C<~u9Sbq58^{&ZEup5wTyd^O??xRqh zl-iqxjeM-a*p^OoW2vdfY719t{*^M(S& z9@Cs!I+H)fNrM7r^9&3JoLEHsYl3PD^g>Fr%|D&*BFN^pD-C{tZbyE`nl-G@_6ZQOXQ&8 zyVg3{4sQE}g*&f6z^3bCKX@M}Rb{4vaS3lL$zK52w_gSME4i=#a?~ZB!EM?ND`B=Q|Os4bGF~b0SQ;YP0NG05-2@)$jZwvC6vrQS7{|69s&**hXSzIxEMti2kvB^HA z%+ondtzjQr`mw~F{GFih9&c0xsPxsj*1UnYFi2B*zpDTI&9pXtw#47)3| ziIf*tn*IT*N?y%Txf+|9_NCT4vJ*&BL?a_)!(&kI`w*7UKf&l9V@(NLm)N5a*()Pu9Rc3f zvxJ8+i+Xo{Gs;{jeYaXV=vFnU2te@Co2K|ry3EkeabXMsh?syAbDxqmZGrR^Tc)9z zhYrzq`mwjlPhK;5-h9{kL_&w!_>RF79)gesDqRJ)S6wk9Y<<}Rh(qdF)S}<;^Io6G z)R;M|dYbfD`;8yw&<>sPxVryyv8nTHqqO~pPZi`J*J!p=yHUp%J$U!JX{Ns>___hJ z4_7HdGb)?}uaJ~r!gar_3&|GdeqxYNJd3PmSa@^ghN0JJG#U&4rhkdGV^Ds&a>KM; zuLJ#I^Eqqg49y{5p}h3e(GbD!lBIQ8D==fSrZCZ2VOjCc$9=KNDk;9G8Z#h}2k5(;5y6aeUOPgsz)hA(IE|!p#EXmQeotB7d{obU#S8~M zXduA^zztP$=NQOoUydxZS|&&bKN!&9Ig1qP|JlCy(Y4ex`LmiWhho1#4NRi9hG#uk z;+kCR$Cxm4G93+7e@YHrkGN%0c5zT(-!_TJGsEi);!ll~#A!@|2$Egj;^l|#*O|b| zJG56-QaEF~^^Ak(+gfI|_jzHIB%ILX&2GjX`ySR! z)31)OMAZ$9Y?Nl-MHtRWRYwz57q^(NU-JbOwhpJ4;2b2?PxqYaKQcGS4J`5x!z+qD z8<|X`DF8d66s!t6;bdAdAlwxEj*FEzB|dcwDBVKjFe+6dp$S0J%C z!Sa-YJWWRR^j`wc0*EWl-qIqSxKF{nJ*w;VHE2eRzL?+`LT>5Zy@5$J>1U%#M4FY9 zpV4`l=cD%F1;2ldh*feg{`PpGr_D^lvPyK0&=EJ?pg8}MTF?C_K7{fSHS0*vr#w|l z{U$jO^it`|gRDQN%m$Ceg%5#rpWd&(O?kDBLZ$VJW~++d`h0g{K@3qRr}EVEsnazL zPiWZNzoik%Xaq;{G^>Vvmd3*&X7ZK+Xbk0S=q(HuP*K-N1fDBiIe6N{!Nk=8C#p%* zsLjrAxTm<9PD*vUTp}2q(5_hMp6Y~X-+Xc~Nhj=9q)f7Pu-2^kAAx|2YtG=wK;K0^>5M@+ zPmOmjHq#=c$Kbq2Ed2JQCl2~8O&e5mIcD#?mDUO$T<^!057%>vqAM!&BQgjhr&G$#P zbV__@T>4VzZ{wI3~vBwT*g=knu*=9WFR{m<|t@oPgHioP&aW47%t9S>PI9>~lb zDb9J^ZkTpTO|Gb4l}IkPhfgq31dt0U_++bxhlHcWxz{ax-EPw!8Agwjok6D*J5Bm_ zn3&?6yywApvbPJ!WrjujB!amt&2B@mx%6%FqhavW^a+EyLWro|^poe#9q}m5qprDk zWrM9Cfy2oCYD&sm`|Mx!ZR!USHUxoUD?b=u)XpZWV<>C+Df2VABL#xeqqH~#fPtWf zGS;~AiN^tCpD@MN_XfwB>#fDo?1lyEA4I^0a>ywMRXEP9hg}7Q+J!H1%&w@~uBd>n zB%N)y&a3`Uny-kVzZf2GG%RaDfqir7o`t{6NMC>7kR4J}TOraP3rw^O6;CbvjC~>b zWGW(XD0e*XAAlfF-G#oT%f~=T=Kr=#Dbxbvw?dV{x-CCFhrg;@?g+Cd#gkP~{!hDlFUG+bS3O zbEDyUrkq&LO?MdS!Ri-$t1n}fdd39>h@J2BpKSXq8&$5!!a~|&-RxgQxjdoMx~oXM z$Md4(b^@_3l8*%&ZlgGMf2e+0;w!CUZHIx7!Iu<-`foX}KdCTSDxc|*aiE^B;zKxs zO~#FT*Yo`?+MkyBzr~Us#{E3>!GDbhZsHm~m#I4mbT6fpIrN0t8_HH`1`vPqoOu@h z$zFN>K+O;m{i`Qp`e3AbNzMK~E$a7~ms0$W7z1moxKG>riz71o66&ulolHxA_V5K3 z%6v9y%Xwz?>(gydLCBS=U_sV7s*|vv-z?Ru-m~QG~5#NI(_}= zTA*!34J&K`Zhr8M`%{?+oyUBIdp#Xs@R)~v)cUJI3zc+!{F|J?rUkba*KsHy=nmVw z!QU?=@y^Ph?!e)Ge<_Cfs-6h}Ywm!RT*c*FgBxxC058*4%#7>wtfY)S1#LcB`h~bh zLPjU4IcqbyU31oNREiWh8dQ>=Y8TqM zYdQVFdldX9>6*D%qK~F73RPSL}5s_39 z`fS^PZ>bKy}AE)sA)wj9Cm$Fr2?=;QRIPaYP+HxZEnp~l1ns4aBM zPycIl%3uycdez`KkqA(d-LU2PwrNzsd&lm8{*2*In4U<)T`#-+U--0($fl=b+eiHK zoaNoy&vmfOYiu!*TT4;|P(1Q+j%@F$#J71HhE^K98VDLbX86)%BeS&Rom$;Zs)(EZ z@5GWx7OX+ZUM7WyyGivzU4;p8$d|;SR920Jr(*vASDd*J3hkSZ<(q-El1Hu!7N0FY zs8N%4%PWmna~;Q@>9_U#IqY-+H6CU7zf5)TZMzZh^YqO6`4OrF+3ItCZ51d?PPufO zc&>3*qi4P~M&`k*Y%+(Q1hFgFw-vn+6=LCOf<0~mL38(@8m#yH->~(tSl16H`wTty z_v#j6*{2nmJF2LmmhJoT{;Vg0azWl^I-^f7BpDgcm6E&NI@iad1i!#}Ut5X!@EoVB zr`=6>CT{)fN{^ZghfL(C^?RbTwv(xBt+M@y9rPc0NXXL{*i z$GzW>A5_ln23t1+_E1t!D%L9mO9GOI%3fU@r{n18KePPYdpcFri10XX2{;<757A#J zzE_y&ugt5uw`Mu?_w>AR*Y&~&Sa5M|)6Nl@JA>vtDppJ|r-Zd@i`)0l;bf;?lSmbA z_&3$8!0&s-e};N=Q_~jKY@KE98btjANQaM(b_sC;*^Y9T-(Vw#ir?&|+73$9p6Q}P z4M;3T_ns|($w(P5jqUl(Me2A-v@eFlo)?Hfp9Sh+#|JXM@7+Fnv>=a^_ngnA3;q3C zR>S-SL3QNY{7pXC->vvhN?r3jwgdG2!;yjqYr6GS=AYh>$wgD!rH zcv2~({Xk5kjJ3e3K}f+nd>VIYn@QsCkv2jV_iW=+B^#Ndka~36hH!B7=yiI9s?CD+ zAeGRJ2H7@VXZsNe%}C>{+=}?aBNeHLze2i8Onlcxum%5Na_Ekfu2nRtNi(PxoIAht zF*5scoV_naNY=^u-o=de%vjD8G<{hxva=Nto&2@#Yf3x6*Y?D@+F5vV@XeRlOaZBwb8#N7rBV#RaL1)696UzTM(_UyAvUW?7>ztMR9fB5?9u%^Gb?U6&IL+PQQASlu> zYJ{Z1=$7s-X&8;-*k}AV*<*gyGv49V$65H_j>+(uIG=l>sozxcCK^oPu=(D z`}k23EXI`Wt4I;o1ibfI;+5nZySqPqx0~$8){|4=m`SG7{<{J!IG0%6c&U~`$eK+R z11J~3POdObZf0_AL_0r9zP2h=s-5&xE`mg!%XYONKW!8mayZI$-|qd&cK>*y3K-cg zM>PsWJ1JukRrrwkt_{&{@|d)48bKFx;Hjnl?NzA0?*KMm~s zlKksZUnU}a6?C5^dg_9||3X5l_?qC4=}qYDvVhzz8qe|PZp6ilu0v!Mw~puW_`ua3 z7e~`=QA(k~y2Z76*Oe@W&lGR{{*UlsnAIY#s-3bcg|~K1>*SyIwv0k`tP0f$nVOcz z&iU~G+@pOnW3~BiV4D&tp>z6W(OXwqcm!dJ$2daUN~`Lm+V6tAk-oL%xX1Vq+HdG5 zh|eCBdnq4}&!D_D7#%n0-;8-%tRsr8LF*sDUQf-VyCk-0~8`8!!G8_)!?^{UeEf=Y;-ouvi`90q^<}O9c3(KOODW zon!uG|FM)8o>*UIV!bu5M=YqgQap4PM8UzFxpr}>EXxQPL^xIFiVwK-!(wX)nS)L8 z;w!{xOHo+ie}F5457go(4-f(0dCU3(SYdHlT@8PFi!@h`Blpx)!9>>Vu#G8USOdEE zf#$fsm_GE@lKLNDKGk%}Tvq=vELJSI&e_;rYj_X$YP>K;Y-;SZsWkxbW#Hw;&O)V$ z`F!7MRds{?;*^OL-#&v&hh*8Apu(T=n4GQjxAokbv`mO|;j4W0I6p)iWuDe{Ay-@wn zf@K@)oP!Ir8RplPt&YGfO9ci=I`?Jj-W_618MFl^okg^hfj?b{JM!nW;=;XVnhdmai(cSZdO z!0>=OA6$*4ryd_{T1S-k(3gb@hyLK&ytRpgvcqh_{{VB(ex7{1w0hZap+6+GqZVvG zbNANuCuh~baCJ-63Mt0Dz4ppC*tg%lP(iE@#H=LC#@syU`Ip>B{lxpyT+@c>6ru7D zkYJiKE}?hTbu0LOM0q_of6C`t7G;+C>{fN)e%g)zS6?+FpXx6+4+`MX&7}MB{-6U1 z8(ZuC%*cA{#EIXfn{^wO)^2m>g*~MBHf8#%@>Z;l8iWXA+~9vh4Eqx&T`(}5`D=sg z%5#01$fU2y29eXYi={Wkh@2QcqE%=GuOfLDD*e1+TEAfVZD4d1T!-F$ zdy9E}MWq2-b80;J2S87C?<|L(JY2O~mU$t*d2+eijrHNFJ>VjG>Os&g!v&!II_mik z@CFgud0x5dPK$4J?l^;ZXgLT&pH<75zh5D;G0lMkI~n%8BOoVhD#5U08$j1_iwyuT zOyon&Kfu?CcTW#`{Pe>go?C^EnK&G9Mc`VSlXPZ zM}02`KW(IrwumZYU)^yh5B>w(162?HW!ZroCqgH%Sgk{@5zEs`G(VK&Dm9{Jj8AS< zXtT)}?r$(4puRbjZwgS7J5>)1I6?M`KFYh=4B*5ahsbeHnfC7^ zq|&4&wf)WewO_HGJGWDx)xTtLJKU}+SoRP#rsnCyO-x=O9{dR-=spZ9q>Vsq9ILsERmc@TvG)%w-O$*3# zr8EEzGx>BUM;Je?wj*B)&$(*TEFqADHPW5zM@(+qz0U_7H{_CfJY6`{dl?( zPk0397NVQ#hrkC?6*{zi#vcnoG{-j7(6Tzdpz-~y^`o90 zk5R{@h5L;oN`5p7EIuf;zthLr<^A>pH7crL{fQSrY_soSiJC*JKP_4a`X3bd>J%-U z{R1Ghe#}pJ-h$1&yY;(k)B3E%L41nJciF!c=s4}a0-ttl!w8+e>p|*$=J++}cE_;I z1G??UcBR{dI(dyf7-KtCOqQ-%zVB1vt)RL-cNfFrn~vPmN<=DIOnT)>RzkrpP}>$L=bQzQ3=o8)Vw4_cDOtuu%E2 zU}dM0htik^QW>rUkS7phU?p;`{QSI7AbIvLi_UmYWc`~c>r%Ru^T{f+_x*2aq=FMl zcHlUw1T_@fjn|_nb^4lRdVLl+IF>4P9H^7jodx{P97J(`mtUjCGf3+|eNU`*hhY`2 z8!7jmyFYj*Z0c8^<$Zh>?(PjPNUA#dM;`q0X4-Cou1X4DCS$`LV9d09X+2*M-u!zE z7(aM`U*Pm)RKh_0Qob8(1{FS^7~2^AMGRo$?P5WlUrEI0^5!l8`dy@$rU3 z(*h!0WCmuhN($Gz9KQLm^MCdaFz^H6CUh<-nj znJ-V+WD7~UcUW{Lpm^V`2PI(f+9mT11H%Ximf8?V!xapFS71)EP=|+z<$QI>^P8$r=wh@+(aSH{hlJTMVP<>-NkWbnQC)c7Cb@1z+v7|+)h*3 z1(C`O#52o4?c%5jORf06+x8i^R^{{`k&GyD zR>wZoA!1?i-^7sKPYsIVb+K#|*D^NUpmhAGO+8M_*;xI1NXS7IBVPZKY(?W{|?-XXM=lw=wr$% zFp^pP-b#`#%Xkiv3SFu!u!zWSKd++2>I+V9sg>tNA$cn8p!1PJKj1Is5oh(EM~vO9 zK)Q+5yxdw7WWR5=Q%o0U?gQbI6=U&5Menm1JdnsQh!A9HYRhu^>mwFdqI^=3!6aFlfI43-m ze%E}~h+#9qV{u$HH`>&NgLQz<*3$6onG{uvWCgB^0eDwcEP{^Py{43fEgijMmhMA* zy9YF-5Q?+El&_-Ktl=UM@k(LQYhqH*wpa!(=7xNf3eLsT${|#akC@>+4Jn`89HS;) z56tdNrFD4UqHBpP-gbz}%X=_+ioTNnAUooYhV-w&nm{5r7;gMjYj)>+R}0n)D0(AZeuRFJanT~o zEsLkaQ6+zNt?T}ko8dHeX~c7sXL5Dp8}ey#w?&vuG*XpT|Q&mM~*k>cjh)2NEKXh#y-mTMi3JzzKpOj{Q@tRvcM(4%bH@Rlt)NLB}rW} zm<}1kXecdTFU559PdJ?FA1n5r<23DF62G#^y=Fg?NUg#>%_@B8$QTwPv+;P*yYuPG ztZ$Om(rULGpLaTmNuilSfPUO-dQ7;{S5sATsf zVlfH_4Z&Z2pL9l0(MNiE^Qt5k%0HJAuG~ECzx@1taBP8o@8w#_!!3syPi?spo8zVC zVJQpi1b&{yuiTAXYz}*9zLw*kBg)af1f`6l&<)M5m_MRKb{tY<&v56U5VxT&K6{0Z zQn~@TmNQ?*RLlk>cH^PIrrS}w^9Q4+ac;M4I-=1fgJeoZ_!jUQ@e*3K6T0Uz=n{>u zfv#TSnEffcpwu#bbf{9}AmvEnzFyZFE#e7JOky!1Ioq79#Ps*~4Znn>A<#qkZZd=C6WIJ@@EAitK-`rw%hF0%GMEx~JDlMa( zypAJagMpP-S?62)`jcjW$ImI{LN8T?^fEWK=YJk4CfEaX^B(p9Vt}da?=DO8-qXKL zh(s?-<5-*-ui&VLp z=Q2ee-)(nD`Wdg_xP$%dxI$_a{*rhxiRxofxyY0sC!!cs}ZK}JB!3_#(8#Me;e1dd%^}e`@rXss- z&^c=<2YDB>oVn>msV)aU;8cRoX+b67R-$GWz{w`#0(iFT%C;WY+=I(Ph3uL0(gYN2 zaQcDIOX=_jNZnY!c_YX3T|YLqCVmtd-HQKU1_h00J<`*9#OcGZu&`VqUq-wtk&U5o z+zV?w_8{4$)zI#&pqZ>l>q!oi#+vVHqg<%s3zAeB=>-Rvyvpzf?_1N=l-}aM7EHCfmMRfiiV5@D||hy z32A`lIC`(ND<$Jc&a<9!o;a14VRAjVCQ+q7RKFdrBCg9W;gzIz3tODZSycCMRX3fa z$RG*tz76|d6xF#^GW z2Nzv#@O)&!uOuy7yusolwT*C9i+yo4yl)q`;h^0-gys_7uxGC72OZr`6~rqLax}@{ ze7I*4?4ueQL0X>D2igxx%HzWtL(Tl@HXC?U$tSIu6-{r2h!zd*?`9Y#l)G`UQ>;gG zS&IG8eNfs43%15DFkz=7B+NQ@s{eMxoU)U>q{t&*OLp{I!v3Q8Cucpio-4hfq>_@d z)=$X;3omO14#LEJeK@{6E3UH)j7P7*kIl#|zm$cvpg^aiLi?7T%RNnCf?;D2&xeJgdG z9v-(}Ho%!{+7Y&WTA(yQS4yY!A~pnJb=Eyk`2`_r&W`=!9>j|XK&5%DV6JO1 zB63oPyhdC}`XSOSKsZPj<^6m&oH@)h3mIrRk;g8^?n`J9HzB~yj<15|Bz5k_Bgm>j z5oct#B^OrMv5LT>V?=RXC$n@wujQ95O=){L&nsEw~TSd?yGy-*2S*cV-bCjzBi(Z zF~_-gyml(2qHCi^SBIKI_XS+Sh?N!**!pKr54c$0cw26(iB<*l9v0k^a_haJ)FS}j zOy|pfhzQ$pAnUeEbzR?K4&#EeVH><$J`q}rX0mN7X(3wv0~@;uZCQQsZ_16lhO)-W zA3TR}LMk4yrfxh<{Nk3scTNFE(Av1k{!i*X?7U)~%RB|GPBG+<*PwED&V{EBwAHc_ z_jfg+){GE|7((y3(L8mk-Ilhx$P>2gZ%ZcpZz9EsIv|6|Mq}Hp6TK$6RvQE&qD+9CCK$uOI`@y?l&rHay_J&S%Sw==|(StvSQP=JvHE zU1jqbSj*=9b^5!bLzp&zMOISdNK)r3%~qdo+NtC?4X9;mpSa}5)og*TaQ#Ou-$_^R zLjD0N$=5pE_`eI!F-v>JV&aT^q|HPYZ+t$pkd>m;T-yM-eH^w01YD3Ey1z7{OBJFu z-`RCNe$Uq%aX`HSEnXU@k&Ee);=+Fa(J5R(zUYS1a%?o8hxw|7p%jm62M~b*X6YEb z?u?HNNz;TbOFkR14fSjtTYxOV$D1EJ*aaU7vF5jEp|95qqi4hk@lBeHtI`ZAyBpmk zB8sxon#LmZ#}#n00@RMejMZd@{)>P(T}$8OL6YCzGxT7f+mv=lcUkmPzvW9bnvq+B zNM&rXTE@gXiyzk`ZH$$P{-DC>Lt_4KRkSvQG>wzc{dUm72`=OtEJTbQw``vhl9pEVnG*W{$gyj7QP=pWjsJRAXm z8PH(ii+H-t8Yvs57!g~to*1DSdj39^Qg-X&%7<(tlS#rvofamYK;hs0p>~4G(jjH+ zMxTKk~@V?r36tKZ7 zf23X^p2S}!)O45Ssqs31!j}&WKFsiO<_QC^&|Yug_+6SZzKjRH=Vh((&4i?a2FbHz zp>$gx7&Zusd3V*ypDrdyN6UyWAvJk z9&9WW3X4}+Q2Xrf{(J-vncDOjP|K`*~4Edn8XyaifkKeSewi?%$HR8yB}?k$?^W;pjV)_N$*5*a&mYFGH5vuvl2gb5bly5nlQ zsgutSh}JX5m2mnJp2*cc@5v-+*#Vc^3Q__Q_0cLiS@6jD4`MdaL|!FL3<4Dag96#8 z{WnQZEcgM}f$J5_zJzHh*&B$Icv>NRbMZZLr%bOp+E>Kv1vKf}6hyDs6|EE^7d`dg z3b0$^_>5QDB6SwoDwfwlC$F~G`(>xsbcKrvSofY$g{-!qSVDLv6uu=RF!sN6*o4~t zYBi4Y^E>4oT+kZRvogv)`Yzr>&zuWii-CIY>i6=g0Pt}wgW4-{zjJUUL%mWezvAZt zvheQ4iIn!YML8L8K98Drwz7v~vaD%DWh6#{k!wEn@GB9duC?Sz_lvoXJ#Zd3{73AI z9+}QmKR|YPta+ibpe?aSe-=xYRgTC~q@BIX^Eq)h@uA(Z~bLSuU>&L zN>l1L)JnCk;yV#|cLC+EUnBOWd8EWO`;jSGn>vIF%qnOX5t9@bcGOFm4y04nnjyd> z%X7fk)s*Hy$ZEqWi(q#?KlKsdoBHepJ(yXrLcwz(@r^B!ZZ-+as$NT5-1K5aO<3@^ zxH&MPRbCoCoN7yfLPH`*uT(3A@;R*X`{^ydHHTv zD^(|jRe9fF&dxd!V^&<;AV1wLctn5~nxgoXo=Jd_EP$>2jh^_R(9IMI&g>n{8pM`L z+ruI&V5YJcq@Van*w{i=lb8n=EGQl79a%m9N-s#@ooql_M4ELAGIly#!zaTVuU?zg zSW-jcM-)aJGLA}EkLUW!a=Nphh0nybJ-6^21eWezPq6UmKVs96_^%;kvZ`cxjq+z{ z4N26m)N%MMhvQO0P^8YBiK@5N)73BeAC&@9IZ~O( zxUCd-6J6#?r25Bow+3eX>2G9|3Nu}SljAZ^oWykU(2mrEtHE7&f$Q{)J*$?=rWchf zc#bx9yq(Nh~So7P=3s^+SnWy;uz)?LD1=jvo}I zZD^924vExzi%XIs7{3F5ksjl!gb|q-bxkPd5fjI|McEV!*b3~-uR*V*q=|$_(Zt-f2Ce;VMWMmAcpSm zIu9SHI}i+@QAtz8;AECE4bnLnx?7aCYZ5fp*i5z0wI#vx3eg@Sy}u>w*@Ww`9T*DP z=~~nHunve}#p(gOAUhq77sgJPv}NNh7g3O7o$3cQ{W z2;HmyD`faVG{hA*S?oDn^%yZ0v)atmDARTN{R|Ctssmx@hN!*Y9XnAmextlhxNc$D z9GFQ)HFbg5IcpRic~sz6bA3g3<=#n`y=$w#R%ko^%*ZIy*-jyo3NeTj@kiE%M7sY2 z5WW0WL{x>P8DJ{i{GzA|gujF9MdOwn=`Ygr(3~^@Kzv}P6mY&Ru)o|X3WWN}kE`HU z1rWq+grlM31t01c2dkftM2#dete$l56nCjXDJiU`+^i4kaF=Ge@?(MRf=HiQQ7*-) zn81U=)gY?{FjA8jFMG?6{sBB6f%hk#3ruuMTvW$frwxc=FJ;v*eIsj71{@^siT^Di z{u!53UyJZdWbD4&!^!M&rmQ`A#*IM^inz-&U2%28qUSTRveTw_q}XyGO)%puSkEgN z0O0~xU%Z8v?1Cd6+6*#{@ZUA3tJjZpa2~)r>-Y?1^~~;?IsQts6m}*;D8EDFrhlz0 zjt0(r{eD^M?{gtrwzTr~FAyUIy!3LvSSFs*rQz=#gzUaFcWV$fZ<;yioK-r`t`h9` zF0MZRlvBKXSsh!&HvhIJbM~aoIUp`nD{=+_+*O-CP9eW5WJjGr}GSLLx6``f9uT~-46l; z0DBJ|awEKpO}!@;R<5VsLtH3lNBwXK3B;NJ+9MWqT}J))WdoR&K{RTtacI8ClitIRmZ=<2#L_m z&EUSooId&h9Dj6n+c})YoQh6}+hNiKdPeEK%AkBW;GGT*5D*5yRt%C~Am>y@c z_WCQY*&|rILzo;s3o~cuN7JQ0ivd&*hH~oJ$3swpa)Si_wBkK z99k#Is^zQ5iSGqK1Fx8RwWl-X1_P(x9xSw5+of~4w#Q0#_#*e^`>s<*TRF~MWgdr) z=&U`us=}V z9tX&pY$W&G3gFz>%W`mIIDi~i#T&6cz0kZ(%E2(7TT&1v87DgSu(IF_JBJaG7Td+=9QG zb`htJv@fwEy4!cj7*AZeqy0m6+aafEsIz%1qf9*<<;Z@{qK)mZ9(O)^5ya?%>~)0L zff#uo2<5F}T9k39jPfr#4IS-#3b$=we!>HZlZOY4Zls6LLt6~+GSp5$yd5MV^E{P^DFP}Ym0-_F0`f?OTG9;)#h ze|==Nm3NyH^Tdr(Efx+^@hvR`h_zwR7 z<+|D!>Z@>OOP{oP*lrn2sd^E0mxIM0$q`!p6a}@;A)m(;Z4-7QFMY27B)rFvUiR>C zB!w~ZE-A$;%W5f)v&7stlyT(P8daWr7qz*0(g7RH{j~ZQ8S@ZJeXR<@0d9QgPSe5M zt#r#sFx7GKTCT}IzzIDw_6MjgE8iJIeT>2YmEXgjeBCmfJa1Z7|L=kfs>hiqIaL_t zsK6u<2$z!Xt!52_t!FoPZ`J1Ph}`D=1JwE*%pMqG=#Q_4&?8p)*Sa)V)Jh#^ckGow z9{ghN{>xM0t~!B{re%=}o9POSK<3(~cwHNRuYH6HRR#hYvn&j-mu+P~huFIxS1-0e ztXAfHwO?acCjz7k(_vg?r`W!n+JZjH<4`mfFT|^BSWD+F2N^eqi#?C;b=-HuZX7Rl zvibj{VD4**3jF8`8P84b#&YTJ$h9%7+AX!*@&0}E4`6|uI%{`qMwYHzkjV1EY3hjP}vd(Axca(|O|>k^2u|`Su)gdW6BI z(xalEvJ?)*6YeZUm<68 z<|(#d>iN@WN71*LZlO<_Vx(kQAeYkp)>C;-&R6dGjJgxsJBg<>yqBHkS5FKMGM~yj zww@Bqy-R{+WPIpaP06Y40qdVUM#_~HU&MW|6!7Z^=Yjf$a>+!NLi%4+`sdN?3*SLV@da()TyvkHrDhGZj-S4Vn%EPrCeIoiDxxsde=l9qv3~|Tg|!fW zFYR%5%BdpfSQ#|8R=0J9qs{d#71u*<-J!EqNmnZM4?aO2hXJF`g0u!Nn8cNe$Krvrojsc zyl?&uSN-gv3?}iugvGmk21~Z{GNQM{%j#e~WEif;WyL6!Fjl!^s|47oQ>jk>lM3@y zZ8#+J3i7RObU;MQO%s+UH_?eWK&GCb?$ygNXByPH|IOS!BsD+u3T0%TL=^PkIXU?Q0{zxgMaXIY`ap@N1qhi%a^OC>%1#bs^TmlHVMk zJ>&318gOoOkpa(2aX1h`hS7#U%#@Ex9{et1;)z+#pP!7nKEQ6%>c8|cVNQ4ZphCz)c5gwKajO${E6htvs@C-pwS>g)9m`%9swsL-)& zW?T@fXz^Ffi$+Owz@0bwhH|*m%PRxNwVam0yK9$H>wJD!8OrWlq`=;OVtYQ^#{m9< zbg!P7orzbmaq~<}?Ae((yTPVT1v^aT7+!s>bP}VnEuP%Ab2-(xL`$PV=7F1Ddmgnr zRYJHEmt!9I_xLiNJ4?iEPgEt09<0JfXa%$zx` z#o&ExNXTy6m}%Z7{L~Y7VG)y}&V!HCuL-M|^aYSduIS?8^8s}~DZWni`Y`1w zd_FPHA@r3V5x3lPC|AunwmrnrI#HE#1mQthx^Z#m)MQNjsqKlLe(%?%tgM~l3DCqz zDSj><9tub%9e_)q=~)Rq{(`ZuF5RfU{wZymc8kh3f$tPwA2^zn6gtm-5iOZ#&bMFa zg4}r~YsYE^co7GJ&TcL)%dP{GLrJ*GL1$RHzr9MjqR_veiec#U664zB#{Sjv&Tj1I zzyAP`O`Qmy_^-IYV+%cTdZP;r9kf{O3Y6kmgk6;lp-kiO87J?J$iWVhaAS~2~H zWk3oU#Y*fO*c+XG&j2UC?9d~L%U$FyGO)nye(-08r3onzwhLsOXrGw=h@CHhs|z}V ztQ1h3b23($O8!7uvU6>{KVK;M%BiQDD;I=D?&^)d?NK0$v7ltcdCgL1P$Dt>0F?Pe zHO?m|E)4q7?6v$oC0g5SZa*AZU3~siL`I3*W(dq4NC88`a=-df8P&`byPsW$3ZHDL z2-R(0;5f*T;q0`>F9wYd!2E)YCn(E>oU_Fs-NdTJ9pooqmM0ce+`t{Ntb#f^Rgu2O zGL>F=0GX0fH0prvNt3^L?(Qh8XYu_$4W1&3E1_%cMlYUrtHqHu5_=Giz>(LoaXrFtZQPT%!D%;*Qibwnvd3wa%9{?C3u+LKoHJU328dyv&0<6iY%H zn$X~TxK;QS9l&rgL@?IF+Zcl94t__tO4SaZj!xa)r2e+MB7#T`{o}y`r-0InG>knD zk(`M;n%k}Xx$XT8>~cF(6gn_+Sv}v@!_UvGIE8b(RzwX5L-X1{9~rIgcw7g7t4;1A z?zP-i20w>qwwF|=Hx=K|t%9bj@6(-VLR&FIC5Ngvp!{Oil0pvRq%M6a{sQ+_&)wH5 zD?WETc`;3ligbF+(R5m}ME?yiKOVSfyxclcHlr0JTcFKgqm3+7(B~%wYAF?p} zcf26TcF6s~ofikt#FLspN%KeqZm{SJ>RY^^)6&LMq|^LAhL+9$ys2Fa$cy9t{|{Rq ze*;gizCO0q^H_+L@}Q8MDGmKmSCm2BU-n*)c zk&(}UC&ku7yGbG5`@gnpK3{r}?8Kl!vHQQU^!B}W3+bHn5Vqy!T)5Sl@_F+7hS(_|4hPu zNpSq%21YQ-xIc*r{R7&WS^jv*)TZ#GHjOeer}!GvW&Fj=;ft(=@+Jg*{Zmhy{$sRD zas+H>qdIu9HVqJ8jA-AO!JG|fJCc0kyXU@KC3{5KywP?2N1HRDE=kv?d&GhQmn#ra zPa#O?$IF6yubkoz-?Ie#0{if!kgmS-k|wL<#=_%a>)9yKA1WA*^z&BswB-6#@D4f7 zo50mvjH4M-QptzUWfo!C;)Nd~Qb|0s(=iYx%X}lAb1h7BA+B>=tZ&);;LZ z=&~mkb~AO))-7xYZ03o`&Y2M5`ux}e#r~ZImUt)h%D|&8h=NA#DLa{UwHpMz_6Mr^ zS;jy+$ohl@n{yYqaQrZ00`(9_14ph)OAH!haIY~%e~*$>Wrwz}JdP%BuHy#~Wa(A2 z`m>>W1J&a<#k@!VYOA)|hTZqoV$qOl8r}A=vDnij>fP|&sBhP;aA~QSSC(mF&_g^S zz)4?sv9L-(=F&(iX?_T_dei$NZ<_X<#MkGqSpW}lNyhA{-A=l@?61>4pE^2bo9HW}cI}r8bxBTaA_^)E8c^a>H#|$}Y8KaH2ZXv{S%N~rrJuA? zBdKP0$na27f#(?KUk@*XlJ;L`8htw<9ikHp)sz%$ak@=YGxe)xIuKq`?VGypkalkZw=@Cv+uc8@)f)<2)BgiDGPP| zVeLh6KiCZU(l|V*sHfz{3q+Yy9>}no4dgHE3!2p@5N8e9{0h*%$I8Ty@FR1MqWsU*sN(#N=R9pF&BZQ1@URAz~tMaX0iV=ti`Dr8>M}!3K&X+ilp{tjE2$I+U z-Q_(qI9M6xeUg&sX1<6f)_#$d=puGzK5HDuI@q|{iy=7 zpEm3nj&`VrriK1EI=S-JO??PD5mvdDP8(ggNj6im8CPX1BHlZ=TrjCHCf{M)|MN#9 z##a%yO&bh>S$r7@q@6YFug+0?ZyW2@GMnfBQk^q6!R3QRHh2e7Lqj!>qm8W-OKuXl#wJS^L1ZFl8{+~~wLlR1VBY=&&tt+Zp5 z`Jv{g49t(ca&7nTchsJ^+MsldqDTy2yGy;;SV%eU3CCUEd0}4D8S+rLMoEBj-mA#Em5goBI3A9sM*0RS}OT0+P@SQao9>oP%XlKS+Xam zTAoYFo%d}PKaM;1e;EZ^bO$&{wX1uljr)ka?7kd3TZ7E>YmWzUvg(W*BAF$Bn(xc4 zC-4_Yv0&fvc)peO4anyjPssMhl!~!6=g)Ir;LR0?|54{;*&ILGj~kj%4afBHxF`Qy z4HFmN&)5xq7m8)O3lHVrb7s^D_9=8ON3frT{lvUD;Amue-P zoznSXo2+*g@6Je&dZ_X;r#{o=g2I;EQL7NpwLa$Qp<&bJkM;^n=I%Vz7z-p$R= za@xQ{U}(nDBd?=T%uca1E*Lg05l?n-GYSec7*`C6O%w|d9T8X*CZU%DRR2)6L_^Q6 z^peGS2;CEwV%^cjY9&=9L!$zxIC^~Sd9HvV_HAb$82uk?E1rMLP+y{z`4RCpG5j}5 zxNcbf5J*Ttset?FMOj_j_d<`{cdI+nXQ=a{;U5%6O%%=OP#BtJ-1s+FQUA9g(C0JS zg!~+hF9LVsdGZ7ioE!-0u9v%7{k4(-nRu+>(*FPyxSx4`rRj%?FtqN3p?CC( zd%L)}!Y|ITsS@x(4=mKP|hurWZob9MEVAnWA0SX7!IH!u&%z|PT2~HGkLF8 zG8iy~0+~axEtdsEJ=eOHP)?k0jO}U=wfNH<%>lqY3GJNh-qMZMA3De{*}+^EG`1Kx zds#5HBJKhACvcdh=51?8J}cAN0YSSLDsKz)Xsbw5$aLY1Np^|#lc1e0Tz+-`c3dgZ z@tx$$h5Qnr3JCA}?-w@jQ1J1t-!qVwt+q?9#u3H>GE`z3F$^<8$x zi=hxOXXe4*N_Kljc$%`EgN>w^guCUZ@4cytKdzupQwvOn)`LENXy4$Rma}dZuz2nA znqS#!doDCJRQ_n(C~`xv7cKgi;cKh5|u~W-)m1 zwLq`IJFR-*Lhr=mdeJ&3Jh!JL_W{M7Ufzh6!VuooCUu#cWpyR+3)eMg$)L=(rCJ6n zmGk4^TSl>FNCegma?<}Xt4kHGwaz}8rP91-Nh|kukyiNCr7#Fw*0P%JO^RJ`jlGd zB3IF|S7J@_k1Ye(Ei*q*-aKb$whCS}5hI7MSL}(Am+XQZQ{4|{9ley_-F*=-ay{I% zm33oN`1~UMO&I$<=NLWmbuLBUMX>x6nWG#Fm>~^-_Pm zFtQo6AoS%>aSqeyyp29}|4FyXM6qD6`4G~Z`1zdG!si$z zhHvxfv#r0T?esP)eJ$Z6qP&-Apm@bU!2RZ1*MqRE>s5ktEv$&s`kQXL)r~63CNrK- z(VO?5OwfkSJP(jM$L}E5bwMa|ZX*7!rGW+;d7C&!weh3_s>jiDzp2;W%8kiVR;p-- zkIv>n@6x(NLn#72ElW+j_)>>WXd?!CK_u>;UI8AwBvJLa{xM&;aeE?JjUBnRYG)a$ z@!hVTAQA5r$bQX!*w`jzn19B8pG#2A6w27J=S4rM!wP@(BilL8`z@*veh|2x0+1l(hurDvwDKo!`;l@N z>J1H*Iw%YZBr4MBCj7nP*;{EQOL}7X#QM5R{1!x`TaD z`0_LCwKonUb4ClZ+REMB?FdhhXZw2J-*!iaXW7Kv7-oa{fZ7c3Qz5K3W_O&M$Vfw( z5&a*iPMF_6BOX-*H?brr6R>2Y9UV#cYco2K%Dhn) zns9be2pnBsi3%U z)Af+BfW_{(t) zj&j2LWrZBr@1k1rpWid5-}@61ys0X3kbI9b(|=`Kr8~*Sbs^J}%Tp5J{TA5M!Q=|A z-~GIvG-8~@ebHRl()3_(;m~;tC3Ic#qVF|;>xaYWQstKd+Tmc8&(M!miY;IUN1^+g}!g!r$|sdP-g0 z-rbXux%{imxlS%&lj)k@lENNU4gzbv;R;4XQ7NGS$%B{|NWwck zb9tVHKXTNsYxr5Z_c4$x5FJVPds=5v^-0ITh?!G{TXynr%#&sr-RbdR0Aa3$4Yf)* zOLQpEm>52GphTZ2+m%M3JnrJ^LGPhl0Fow`Of+vA7+aOI~*zZpaV4t@-^3llG9@rrWsGi8`oVvX6k}Lu537JiVkl#2_ zJKeVztbo!5nQQ8Jc#GU_Kd@wPymlR(-8`EWOf#bOD!X#;SKUlTNmOUq+cBlwVkcFT zeJ@8(jXub<*ny7%r)O>d)bg~I3rQFe$V)X00>LFBU}>3sbcYj z+Rg$vUUubpVpY*jYzHwPs{kjJNJT}5|JJt{`efV^|Gu@?(C2TQ|O+(h< z9sL0@UbLmm?3f>nxN@%038PZ@iMRZJOPrbKtq`QE978|rh8K~azF60(-13Uy?|D-oJa{c{k zGvgO`Udl6$$Bpq0-+!nj)BXB#uUNm#^t<{j&W_j+(P@X{h?uH?t=)kabh_Y6TyVt0 z(iWzrNKfJUp6Ky6Te4zyc*HZ#Bynp;TaU8bG&^y?|D)(C!eBHbkn>25^2 zK{}O^?rxB7kd7(c4WqkLy1Sc^qxOHF_siJz0Nceje&?LK4$j^7e+c!(=S-G600H^5 z*_)&JRelk|XGD~k^=jUEZxMLd8qyN5yvC0P3VEOLy{7TIa(;bo#6k{9qbZY=p^TPK z3UR^S^pJ+We7=nawfBtW=54|79YeD4?&HGyvea%Ny4#mhfst1$OfpmMj0$tj4sms_ zDLsw}dV(pYI};|l7>i_}9FqIk{=YtHRJsCRw7E(Gfj=o+lkWf5M3?_Ru+^tnv5RFA z1h(K0?tuXFQ1)Fl15lJEjN}}4#KQbPS`g2Qk}abXl9Mm5-QCjyLxj;77BuT7 zDa#mcj)6~=5J2GwmLf8~0pLQRiv)@Dl%AfgW8j$KdNYiWaEI1;a$fPYgyl@$dH^p0Z{Jgo6o)P9`B4C>SDDDyb*B>;ZG8# z+mKQFYk=PG^qobG)t5Jx`8Hx0JGJwTL<2QRE9k`$cGn~N%U?~tB6_go)9)t6k0R$) z;ike)I0&N~(eSscG#$*prT3~1BjZt82^icBdQNiMEcjy||64vzY^+@0OLIUuyIwwz zJK3PD!Fx`-WFZ1l{InQUSDPn=P5TKe1IpG6$CzA%_aU~J%}KZtL)!*dU5(y3no0N8 zhuT-)FaJPuat3mi#q~KWybHA2=H+aO>D2?xkb{f)2hj(7QsZc9YQjW}F8Dt)#LI`l zuP15jsMqgN9U3De{SiJtPjS9AXW$PU+{A!MT6u2J@{w2+V>ixe5poth;7xA3uMRI! zh_fA#edh{Y)AmAdUaT~L+3Qz+8Pi_i5qj<^Hj<)9wjvpDV3GI`mL&93dQseN)iuEZ z<4Aa>V%OcR(VZvnT)B6o$a-Z@>oUNuNWt8uaBzXQbCh@ZTp_!b zwLL19JjlY6^rF@is8Z8@W$oT?a`plulmQ+2UiDK!z&h%EFuyQG0 zI?{$K5>lF6|7nnLA&Z$=5wg$38(h8)ge)VE7Q3q3jTK7T@h06j37Rit*a_5ou~K7~ zrX$Io7Y|P1rs|*Llkxf{(`ETvV9*Zt(51wsH*AC@A6K#3OVu5hVt%R1t4P8OpgnsC z_u<25TK|N&yKJHJGOA6m)p|az-8wNb-!6f#n=!5Z2W8Kla@g;UPkQrQW%c=s#A_qJ zjNg!&A2aQNd}^w!TqwGD_gX;pmj}iS-H(z+=v<(+o20+ZBL|Q_+2-y_+7tQ20Zi98 z3uJ7P6H{LxYZyyQJ z8w0+4$U9=`F4^(c&$Do}L)(1dn2zHiP{+!=YuCM(MFcS13DZcYdk{&XNF5>TfoiUnPO5C$D;CJpy40DK{S}Q5#rH=HHO>tqCEo{rNr~AS8?Y zCymgWpo6vBSslulu~IBAZE^&P_QMy%(e96EPl-m1+hQ6 z#$<8!H2(p~Dv6q*2XQ@id2suV;NVAn_DB5ILUs4#Lrgs_%{kx zz%F0ho6L(6U-olnhrq$2(TgnJIpo-w$baEKgj)Yra3j32pd&1&_=w~oqta^eqpDYp zgagZDr;b+lW{a{a-Us%fu_%BC_yF&QQ#U1yZLf}D-Vrb1OG6UlpDTY;KFs@z>Bm7~ z!Ulh}tc1>H#ANy$6`{@ada(lB5Syo$#Agr`_dW&YuuHi-FUs%&g8Frq7kMU{HO^FT zVFfF4(RG0WN3~5$QIK#z2P&Z}MlI#O4p;pfBo+#Di_|IPIF3=P1&rj{W4O%$u9;W3 z%VYgwgu((>SzlpXyM{D2*h0N^h74IalBn<3gfGrc>%bI}eabBo|=AMt({kQUPadH$irLYjJpeY1C=_ z;k1&6?cHSQ5;Stu>}E07bAXq;;G;$iP6J@*K@va(&jRr2yqYx50dgF|qYnVAZV&j} zKe(-3^BgIPciSDtN!%77SeDS`225FhBa5NPK_h1>j7O}^?UHz9wqL=tDyeRR>+SOI zA{T0JXx7gKqRuA5{g}Nty>q(?C0hQOZJ7!nLyT`SORDl`_Kpv1HQI{#u~(x^184EX z1%v@rU*+Ao{IAgCY-dg;YSO*Qjc{O_4Rqt93KY2u0q#QmaT{~>( zBFKH+L?F$3SK@folfdpkv_hgiiooe9()x7!;-WK?QpkE}sNw~pNVy8{yJ|`+H4>lr zyt9I~9cq^`qN|yh<^JXCTbW6nCizh5$Ec^=HagX{&6QJCk@fl66KyX2jWyD&LK@ID zUFz1^&6N&^^K{ZEZo(S!fG@=?tHTTT0+yj&BjypcgfF?RMI!5GXR_kSeJ$m$$djsD zVTchT*u8yhp_N!or8II5e9PO?18w!cO$j{2Qu=VaC|Xc5<0I@@v1Td<2IhDAA3klad}fCG*cI5MS|&=uDe9UPgtT z9Ur#*=+oekUdzv_msJ~^3|6Vs5|SMP>3Rd@0gb7z*Q2(WIHZTzREFVwPitni-9!Qe zXa3xVtf+P9!QjSJ8>^ar%P(R%62J2C}+9^0?fZ0lm8p; z*rWx1QLCQ%knu}m(*0b-$vEHmO18u-MO;(*uCEV;K*QDMAWf- zY<#)q6^Akwu6zs`P`^LXxmIDgnPu!X$X7`5<9UDk9(1XU5|?tUR+aG?H!qXyFj2Yc z#O)d595_D>8=#<)Ie;#!YF;!w{0=A=D%3tV0cWZ4f+}#eQj6gT>9-pICaw^L`*pjY zIlp0*=2DsxVXmsJuxcd;ImsN@k#L~k8-0DNjC!gstio(}hB_8-rLGd`T@|vmZo1tS z$GytWonxxp*a@VlW*GCSL9+eodVll>F*TWT^AFxC1jP)b!W4QltE&IlB-qrgW#rBr z2t}LshWs|!y(51G-G<+{K>50jqq>mVrMAW1d-i>8k*>XA`FuxjlCUZ5u{s`C-a&4L z8O$m4F4*O9+i$yNciME`#7r1(6i57!+~x*{vEt-_+3MKt6}Mu<6h6L7Z>O@PB&OCh z&kf@dB1V>ULK?$-Do2obiKsH&#eRK-{4%efslSg7b^L{s{v`m%$vB&`0riEz6qu5O z#VjsyeX#&3Z(ji{{252+v&=xv#^ulNk-ml3A4-_G%E}2D_eNIGsnfP%9qz+nuZ7IV zE-wbq**_Bd1)a=oZkU7YdKy7zpnv21bvXvObf%z2i~kU~(vXw2bQ+l&ej86LJ-giB z!b(ez;OtjJA-4{AYf==U`AHXl<5Ldh$7$>e-Z#0703`JjM;CfpInujPOFJ7?vd|&>n%F`926A#dvj)i>p;}24GT+JW9 z2Z3ABt1ZK*S*ogewDwkG+biMT6oiD9-)`EOe^LD{NcQNwzg>cd9aU4kCI^_Yp~J^E z-i3{d_&*yg?uXkKRvH;9G%4=x#W6USgdmga?9$y+bQ!m+4k%aBGl3|>l{sQol#c+c zp;)a0{r@OK_M_(ik@;Rtap3mQ4Iu8+RQDZ$@BFR7K<}Ppsu(I_LN>XrFjNj?g&s@T z#vwkQ@tmiqVex>kE7~3Y5(a;#{O7C za>SHJ6^nIg{dZw|q!|YdaDt&fbI{p9%ca|>zvyRFkwK);F(Cntplgra!HSisfdD+~ znJzBtn-;n|`U(GPU+iW>MpYrksTn>}{Wq9dZ#D{YrIpb^BvW&&XH?Pdx0tvr|ha}+vIUtpTktAs!1hKv+ zb>^Ic^1Jg3n^l#TgDCQ-gzi1J34!>l8sZan!ROic)#=hMs~;Bldr;o5iX81XzYNJr z;$|_<A?SXttP9{`j5s9JV zeVBIDi+o#y;yK&`MM5EDlezrh*eqljd5X}p}j$d7H_bDB>y;RQ`@Jl_$*;} zUR+ZPyLN$6NyN+tKKWwDjfKK4Wq8hN0O_5<#<;*VIhIO0wNXaL4JceAkYVyoGP zL8XJ^tbwHK>8Hfc_M;_qUh=WOMhUD)?cb#_w5bSw=4J6qsO*T#x57TV2c}m11xI^I zySZcs5Z7yZT|uzjmgv7A_r=dTLs^n}*v;i}vpcQLO^wY>t*xFvf~A@v!786t`=Luc zwZ(RI3h!>*AF=BQ)RBf)mrz#?tssJB!Xe5!X68DL?@Y!%zNxw)`n7ej?gVl82sc4d z+JCvz{DUr*5kOxw{Q0Aejn87DaFV?VGawIL8KCZcgqwJ-hGMB!mg`SQxS6G1i%65k zitgHt*RP(pKy+r61BH(UI;V)35xg)}cc<-tteFKXqgSg!V@wsU=wDNQMU%Pom^|QF z8JTvEH{Dl|X!)l6uyB^O3sVe@l~C_Av_2e96z9j0L#=e1S?YCan=3En%=zWUSt5K0 z3$;S}!an7)QO_E8I{fVub+N(CCAhEfXFgv_BmeO6lGX$WU8sH|!0hKo2}d2)!`u~N z%c|4#Ffr!mUHNvJWwhP>)7-`@kF$89C?BUl#n#GnHL%=#S3-4jLv-z4Npg}?NbcQD z^D6U$NDOy?i%S6n%*>8PUpr;p_F*h1A3Rt~-S)adV870#_wfO1sEgbtcx{H4Tm1(j zarYpHagp(rybk{Ay+VDuSyqmZY64iDei`t0Xdh6esQ3?2+&uxG0F<8SGhq5n3)PK$ z>yx9d_-+x-z(@Otu{ZP|0z%2`!M`VI0a=kaYn{D~79KF!X-JYBkZ_X@LgK%j@KRmc zDV4fs4GB?R6Po{dFtjm3K2j>lbkqxpSrN!Kkdr`76sL3LA!!nLo74V4FpY6;FO^J( zBNXK*KwOd%REQE6*18=Ty&l=0kRX`JES!DF-L|>_iKE%6rGKo>NEF zkVg~2wk~&51bEoWRN7|XjMtZZZ-HnKFcc^H@kB-h%lL^y%AH{N#np+h_gq;r{&%kz zurq!{nijt>Ea}=}$=vs=i1vXm>a)yAy{?s2alS7^c{PY~ohro00xhk_fr>7Dk9PGE z7s_)a*2rqKup;h^a*ZSHlmI$x`LpPnBdTLIf0)Z;Vew7d90Nx%D0`RSs->)hU+xhe zzA|kmKRgco>TMi>5AStd|J6iECXoq1s^T9YOCyl3nzEtcX(@Qfw`3G1@D zL|oUskTU+Di;f9R;i3Wm%e)2&>74)jq>AGLTg-z`wL)HK0|;(ETT3+PSv$(3k@L1@ z!&AnjD@@gd2(>qhcKpw$Wt)ePQoBrJ-FM&* zsr)dWeJDJGucD#rqgqc_U@^ewVoF?4$h`7Xh{L1tP2{PZlqqwQUhQ?z)3gMY8+T~n zrLG|K2!m!`$(@5W+JpGgb{DX}@tD+3N|f*@cIG$=9-tzNNgC9bPqbJ+{CgbS9N;=m zRxo!vz^z{!C5AX7P`Or45uG-vY+Lo4>?hz=@K5@8RXT2P%xUfFwaVr(>um=u52*^g z47mD#Hfx)v3)4awCUCzMPCNo()H&6Qw&MMJalLw7yeI6bjuQPuAEF1N*x{iL*LCd7 zZG6P7l((EKbemL2PV$a=HHLw`UPGS=e6{BFof`*2Q!2a=4j)z{_{pw7*T!l&8#^*n z^pQZSV}RcCS*@=U<@*Rb5Dn4l0oA+Q4l%tfqHrfiPEKh~C2jn3Y6-D~hyQz6xgRQD$@o*mUQKtl(=#r8_zpgM&KhgUzERZ%=~ z$~OKA{=2uIeH5D82cQPAEEi-!?ZG}IaRe#psEmnoJn9!TRvAlg`G@|mvbS0YalByep1C=p* zRslg4#gwQ-K^3CPiBK4E*aAG=6c2q3lVf2P5iMhG22kq#m|G^-%Q$5RGmU?V!Q{>yuu*7)>fKQnMhA&?zmkKc~95VD?&r zcatu|!0)HHiJ|AG27E01{V~})3a4m~cE*l!cFa-_x7)K#(TrAW-u2UsZ5Hn3YhAYfgOzmo8H+|Dg1SeFq>Pcc| zG0QDuGxzkYo%PbcB-^+@e_WyRt!OA|j%R)tvIGXsUc~;c#UQmJ1(h4g@XryjVfQ;JKR}ui4$i;-Jg4~&K~_twH3nVr z#}`GrY%fC(r+KYp88iDto*CJ3UBO|U|vxdab0 zxZ8e(T^!0m6x`z0*(m60@mT;ai>f_I8qNIOYSQ4Mr#Y$*7B5KRJI3a^&a#|IwBtXO z&)M2IO_Oi3f5~5ynZ!5j$+mr82e1F8LQ?v2syn@>|17ui&a_>om5dfl4EoRJ2Do5;V-qFg*z`AVoMJpGO2F=gm>=kT50T@y zh2f25u@Q?bqCeOLEvoc&M)8%vQvM^%gQv<;Cg^kd0*pi}aht>1OPO}p>A~R$$U`DF zyVc8P1zc9@$PKThOTm8BfZe-Zd(PWFPxnhh2!i(bF6$}RYChXKh`?HX$~SygMA&+L+)b83U(%8k6yyqm*aAujjX&6R83mmt#S!6E&~iw$^-Dp z*Erwzc3t$9tcAiR@auaov3u*6EY9qYQz{z9l>s%^ugUkSSNN^AoSxPzs)VnNo3p^q z4X6`tKn;))W3 zz{`d>4yt-G#RyhiE%AE?Opd{ulaWl%iyiP7sY=KJ_@Iar9IXOM)hd_ zA$SrcxhHsHI8Eq-Y3#C{dvDrkS7r{UTc75l1+UTeytNPQ3juYL8*F_W{N|_=1QqKI zz?R`{wMbf2*1f?03Q_;dV4EEHNQWzqE2#stE^nG)m9eo`4t*_Thv%~~K-TGQu6bBU zL;8kFMC$M>`$oYQ`%ZQhs$}NNd^jA_1Io+0%+_Owb`ziWEgP^rlJ5Y|7ry=?t1SjK zZBPdYnm_%0{~?%_>NXL(QSYUX-HORcHhxN8=;8+|Oz@`X;ZFgk$V1I0>q|MsyN)Jyq)t0f=z971tiP5Qu)Hwq z;3%xu{cxP6*Mj=;@xV&l<28pyH6R?0e+GV~E01#vHMRwx#kjcdi@xS{qJ_XQy(|xi zE&?ohcia70rfwPuF2!oo&Zi6fmjsI=Tqne~_nzMU`+QE%##_KDI(?WSfeeTuidfqZ z9ghvUU91TT$57o(wOI$$LbCJoM4r;<$PQ}SRiLQ7Mp$#)6I}f(Yg*1H57=+Qa~44>;Ca% z?1T7&prU`8TK#@8=(nXxe<#5y#y}SftR{HP6SGqJMFO}mZPsnNyYO8nzUdo$ogFAz zd#oa)SKc?0MkgNLCA+Pbe9fcQ?+P+vjY#Rfx|`h}Lbg?07EAFLhA-ER6ubyS#Ud(; zJ=gzm4$yJ_Hi>JCBUYA{7$Up*(%+iAFQV9mjsfm)*#3DtwSu_|32j%(TUIFY44&3v zNLTE1-eX^SD*Zg*9vhVwfC$QkC4u&wtLv~Jihinz03)m*TVXBPN4zCnA}Rn;G- zjxppigKV;Ag`t0%Q&{wwC->SPgMp!a9QEN>V3dTa#EJK{&FG{Znq<}CzwZZ!3>8*m z#SE1`6n{~S{n5tFB@FYC$=s{Pq!w7<-S0K(#H=(|W~Ey=5&v1?DavY20l??yGr53jZ+scgo|h)>oai6m8o;ZxUMvNmWy>JRwI8&}%m% z5A|9+TZSU{QLw<+w!h8_%YAq8pbWQ7y4b*M@QBh3LN5PASBgp%GU1JyiAxprN{buU zf%Zgu6Lo8@+>p1ZrEuV*)_#z`c`hEHxBR2JC5@TFuzn$#aUqk;!%-?N$6R*p@I&2fmpWb>CyIp15(5Yy~ zGLFfCWjA!!?`r516?fDUk~l88M7bd2`SCN~>3cLrsOEl5ILv{&6d*T(XzJjNV=Q(b z*1Q@8Q!zhm75q7yvSbxfcc5~s!j*e1>O?pVQi>lqNBMY^e1eYYuTH=-Z)L=Cwa}XD z9$vj{#K1|iuy026RLY%7^L{x)KJ@1$;R6YMyo;=|;GD${FC{1>u9AOdev% z_76mToinR0A(J2Anz6fG@o7fr(^C-_cfW1um*{@leQopLEa4ZIBmNF^(U&sWzZ7T$ zc*|h#Z*^<(nO2N|FbvD7lXlLREj4L}K1pd`7K5|h66N*n&&3O0KGR}7Ysk%cQ?y3C z&7k|EX~_Az$2h+fXO$YBLrQ{5hch>QfCIIvNsBuJeO` zayzV?GLrSeqPel9`PXYD`w;>bArUdM2P(PH{21;Oj?Iyey*=~Lp3HfGesb$c&0f90= z{$;WSH@g%e^{)CK=lpZibNv=n`C5C;!XUf+g3ggIAbSqV&y;;A254rD%Iu6=hss?x zdF&Chzm~~uAxL>oj*wN}U|S+Y3=xa8O;gi_8t~c9jB?%31VI)7P(D_wgI!MX{Xf%c z*i4-d`cd!kq&Ujna{w4xq)(_dawr=9{|5R!*&)>v^5abR7Xc3{Ae9@Yp(owr6aPC! z*tDAX5-t`i`u01qb9?P+X7DzIU(5DpWJ*#)pO8Iay_xLW3r909v6!dX%|`lVOVg(w z5w4BkiJA;j;uBAxq0OP?7`$b?0n$g51=p-11VC*u6izUWE#z^QrO~+cuHO6}RN6lm zKJb9WC>py_1?29-7>`%66wRtgip1FddOVKVBJ@kRi=j#njE%M3$={UZi0v zSlx>t(}VUu1KGh`gMI=Jl~YmvbWKpki0{qy^Q^3YLKNzoA}{DYK>PYK#Nzr1W#7t5 zwh$0@31ai}mAuH**fr>aFy*K;iTU@k5k#K7qbA>_F=nXmrzlN%T&-AV(rNL|7_QR~ zCVJVLLBh^IIzmTWxQG}LI{s3q$FHM~VUK^?B29&~`tm6i>QC5<)o*XiJUaKfwkXY) zIb@Bkx9$H*`p#MZ7A4g7yeQMUu@}%PWepz4#a5Wd7MV7+^hKu#)we{hr8m*-#|=!# zi53e4FQ~b>9-BH~=n*^c%2^WUKH2tQnF*JnZ5UxEmODPO-FV&UIj`NaROmPQG*j2i zT^8f57B2VK{o;Ky(DBPBwq2^0CK8i-IxQs{NmIux&)OYsIMG?BK0DD^+nQmoVYmF2 zXrGI=cInS!3oD;8Aq-&y1t|Z5Is1Fskq2Y!xaYjo>fp~}Z z;)Uk6a2n_bQIa`sZadzUrzII{H*kZ5$0r4|6a|SOh7U~U;rL~pnD}jFUas$kU(^=z z7VK`HyC9Wgbp~ARJ$n0N26BuU++{8xzI4aSNHnz+3_J*>t(I)eGM#rNVDtZgUBOha zymAt}$B>37WSjbq_-A5tANu=0iXWV~ zu>6t1MvaBUKSn*Nvh74uaxCK^qcgrsA;`!@vSPD$l|;B1+)N!|KHi%0Bkzc+EC3{e zZ{ps|b!RB?kb@ZL$#74N#jRRPuu~W>0$q$nd{HfeZTyPqKbwi>=!*5-R$ENp;lDk9 zJUo2c=|D<<&KmE4b*Vg*e?-`m5zy*o0LZ5OGdP=O6Cc7UQV#t;cHGcwvUnXEZe%g1 zC*zyMm}%2#X7M#O@zS^UD>Veg-96nrGfJ}rSWt#HEe~#@9DjYPs9nAy`g$m%gm0 zMH3;7QgRNet3U%bV*Z-V`vFg2&}F7Q_iLqT=g7%~ti7|q_ht`*oA~oSDA%?_v@rSi zt@7w}H!Iu55;vyLc#%}5WX@$Q9g^5HZ&x=ha8W`6yRN=D{3>;?RoY%%>K&HA7qT}X zbJdwTQrR_TT=JY1j~0)b(tw(0r}<#6k0uzPB)JO}e1EP8)Qu!Q0%83a=#9THb-(5Q zOTy|=ax1)e9}WGzK?MunA9L0}YZ@&^&F5GP_|n+t_1FK0H-%@_Za*c?ZS{N4s8hp$ z$V^*1Ck|@8$-VEKGOP|3Q<5wHya$e) zinc?%&ET#@yC!{2VkGDKTZQ=uBTzo+5lVI@M-HGWv2=p>zWwt>v|_l{*zpMa&HpB+ ziV?xj?w{ov$)>}q|t%EjDb)euai<+?I_K39f zOlDmmz!!VsUi&w)P}Zl#u<{#!@U)Uq^~4%vg-^WpOesI-$MGfE${^$} zKTPl&@6aQJ3VBt{;4T*r-PFqRsNi;P@bN`d<{QbO?62W2cCY~W>E-}`MP8TGj9HwK zYG0LplYhFu>>wI3ZOq*Vcz&$@Y=9$EUrRr05wup*M5ct`f$!xVriMFoGwxg=`9NU;ugo5-C@?2PA00p?r}fi`$fg9p9x+?c!w@ink0X zf|+pGDSbwh29OPI% zHs;=3vCbu#x92ARF~8N;m_6i#67t(kIKGbnfOZ%9b{s6aXfwm!#wwB&a{KQVt~pbA z4%3q1dC&F_t4J<(_+|k(bPX&XN;=eq*|-R;j;^}X|IDQxHl<**EWAuDs+~cTfukEn z!Sa@o>}hc>&siDuz-BSuctt|)PSoXn&^>_xU#=tY?(Ky+R5Y^mI2Ma~?S#Z^ znwq$$uP)Tr=lzffNX!VBEKy-j`p-5y6j`<(%pMmJWt2Pbj>PK0k?q900a0pJ0r>5P zJA}2(b7u-7{!H}}b|W1M}>Gfmy8 zaYc&Sko8Ne|7Bc$?%nkrJ4|jY(^DsPt?GAFn{_8pOtKp<~_%c7lCN z4QM<(+w~AEEFMr|b(a1hPs}km`nQE>JHhtjCW;ua-C~xjCe}#oB_7^$5(2GZu*uI-Fn<|NlT|8Iu$b* zSFH5{# zw~C4#sogygos`pJ?dd`*8wz}W6Q`Z2U?@*+yEJo>a9qxUCQv3fs-zr3?h|$I{9;FM z&NnmkmJ64-tx~19!q;PWRT(wbAx^~y!k_oB`?00a5Ytd*Cjyeqx=S!vKoFeVv!dkr z0o=6M>p2>68*A>^Y>`4Ua{LdJeUsb#)CZoBYd@jH4;I@ae9xz3jPRDSzaE4$iS zTUkf+?las%okrMYCCz{^C4S{HX^M;2`?oLG*uL*~%Gs8pcM4M`v!Ef{WUawdC8YhW zGxf#t$#n_W0*xss6)xG$jP&suMphO6qm;FZ`}*DBkD@G|Kg=@Km2%t25`I6n|0&z5 zF{gL-aOXcAvJ-s#mecX~_f-npmBFie_-=J{MzqY%suicRG;A_}Io{y)Z@WsKRh^As zeAMU4^U7T-R*T<*_}s|!k>7#ruibv^GX@3&7?Z!bOGk^{RiZvv#k8`MKK3|J?r0A19K5 zr8D@UG$Z=(r$%P0^O&{Lr#Z!59s93qfBb7<+V|xPzE1f)J1Xd&Cxh_beVOHpO5YZI ziIV~>%BxCHd>r_l`+o?-Kasq|j%u$^Ur>*Y11T{Awu=5kAb=D4elm{E#LfkmOKe}h zkMNcFYpv(2zOuf&9{eRc_TR50Ua6nMtB2L2-9I{?Ve|mJCifcK$?YpJ-EJwI^wUGN zCeDs?vFCxX$U=hD%Z^TKRWTjaIoN54pJ!eJk%-l*QVcm2Jbwa`0)c;cmiNJNp};`u ztG{!OwD7Fj>1tD+G#NTdGl-7S?HH9Gw7O8=$QA}h-~K(>iCVw1gw^TW?FJBb83Z?_ zKy6BaPi^8?H{xQ$C%fw7>UV9<`Pth%{(Zh()xo&Z(yh9;6+5dzttL3c^PdeMfK%IO zXL`iC>f?qdeZ|W3&nWcdQt9+bmj*CB`Bb^Q4fOr5CR>L^Hk4--EC>7MF4IqQr9B|9 z2?W6VLVLgbxY8__ZZFF!tr@C*xt%b#5yihkp`EP1`kd1cxKFXM;}qw&$A9{yJz9R5@lXs z(I2JZ4bg8^EnfVYj9Tra0UtAN1PBPp`}k@9_pqrU55cM|9}f>pKL-zdA?zmS3DWS@ zcHiOfTwhQt>1JbFLJ{sI>k){;o*Y?3SK4mHK)_w`1p~h#=N0cF=SgMkL*kR4$8F&a{tZf1E zvDkk%n^PEsjAEZAcnv8!84yMStJp2rBJ>7QYj;E}rJCcQyUgxu`n>2pp0z3bC#t0) zBLIZ{?mq-8l@P!$04KA~6@XSp-j0MyKZH)3n<9(vX;`F;r2a7^-2 zQYG5$p|F{66e^($>dll~!to<7S#M$#8j4!cze6iN+1uwy7^6+_m%=K&xDYC`M+v|@)Z z&vOae8pK;T(%$nTfs830p}WbGLU%7GKgR|G&xwx%z308;A!{)&9m+1?n@bh#ahd)9 zXUmG|rB)>{$WC@SwZM;2Z;Kf2PF|3MrsSm)*s)}k-wLUFwWV)SntZC0?`tln+8`8d z&)qzPmLfxbZ@)$L1y_EFLJnh0IpT^}8O{AwfgKd{M22BUwL~bCo(O1><~xMc+iSvP z&w)4%a4yRpuQXR&4m$Benf!hT!V>@ROZ>iJT3-O_@za^JLTNwI=-A69F}3>w}luC{R|aCA83zV)22@?=G;_Lcc=<>iING37%d z$1)W$t$?7AP5B!+xu=^PTMNp<+XSa>htx;NAgwjWiS*R`fldh=FY;7gP1u=2wZH)` zC6(ai3oXr-ugh-+$#QVp}U?oF3_vtL%w7vlgUsF&c7Acd(MnQ6VfWQ9aXmFO< zwI>FX{wfP0NB!VG%xKQ5LDSgXoXl(Lh-qg#OfP!hVPpuY^1MagZBd}L`#rl}h)7k@ zjM1|GnaL!dB5}=5^!8+6G>w&$HdNeVFNsPD%U_uRXtlAVxl9aB>pzC7bAUzCzg= zi|T9V!jmyiKK_97nSJ-qRA&TQXRJ}h6IoYv_XWGQ<%n&6R%QMEk8r!Y7r0TH9iE@G z3y3O?CsK{9ESaRjx{NnA(3Uhf+};S?KwQ-H#*GF7XIqlYhdpS{+MTi4Nj1LIkQz!Y zO`ypUe`(r6qxyt`ha*F!Erto|$4H!MvjX7c zscLaQ;NP>-sQRw~H<;ZSeG3EX5C&nh-e23oG&k(O763NPQIO8hqEvSCp9%T9-FTKf zKgiTetTT8Qhq8A6#^pjWr6oAZ)PpSd`B>7l7xxn8X~#)9{c{`i1I@ZBq>oeK%P9J; zX@goVH8WF|S@XF*SHu~_(BdIZS-%!tDH<;uy_@B}bAUb6gi)a%Vgv#xY1EZNkJ$Sc zjVo}}i{$pHgCHfw&%_hK;5YQSjICjtKW~RJCtY4R_zL}7^?#teD{`;W7KRh_#LUxn zy(yfyZ8wcKaGOw0i>e~Z-VYqUtr(NaNOAm?AolCq1i{)*3m;32e1R25R7JSkLCJ>f zrGtXOOTb*Uo}u&)S)rmIOHcD!Z7E^X)I+u;VfV(YJ6aq3F4?SzPnt{)yfvT1iO&SJ z>j@|faXFRNrWJ}&?Jq|Q;~wwd$2kiiH=5Gl#8hqh9gp}M3$5-?etXt}#u$Gw0J}JU z7LRWo_c|0oU8t0Fui$&k=$_;-xb^sc9n~kWOWUX$cUvqosX`=js*N_H6X%|LD2IK@ zdFIZKoqbTHYgp3zQGjkM^PsX3iIkK5F^kTfOe;2LTBAkB67pe=rWO5L%4AjVC6OHI zKUN_ht%Ee@tHdJ}EL?#qG39ogHf5F42?whO>S=j!DPyH#Qs>}F#S>TcEUWGwi1ylP z?yf5OtKE5w_rs9&UPD&sT7?RN+kl%O^7mof)#RvA)u$TR)RH>0&99hwJZ|!LknV4!}bC%4_G){f) zil%?L7=!4fwI}NVctToge+57MC0r)EW0G!^o<6CuMpFJ31Y1mmuRQ?C$MwoBBrT6c z4OpX&+I$?ir-t14Uc7$_;>y;gFVp>;jI5r;trB31y;IwutQOO_9rF<{jMAQAx@1T& zBJsr=#YL_<1|t4m-$gM|IF7Fww5#u&?U`~wFnc9We_h2vAUW)j-fc|`aV36bb`S_k zxsvM4|GTnDN*V!?V=;Z8e;J@Qz-{%HjCq*Qg!OG>%XDvmTI<_l%0@TL6#s1ZAed3S z;`p5=UL8g>Vq@wk$*9bkM@A7H$nFaHrE4(Dqr$ir(!8;Pb?X zZhWi@AJDR1F~3dY=za2))nnqjVE9UfND^CMN4HhC8?#G02*J~pD4eo37uri~@0BxQ zM}uo_`{^r7yN}kbJ!nmfl6W2rp4d?iIBcIjVBhNt!E*JDxoS9>SR*eRrxu#ayOxvh zBbw@xwg3706~h8$a)zX47mg8kD`+J6DfT`+X$m1MK(U5(vdM?KkTaL2+a=46JupSV zC1c2cSSUmWA`x!VmHC=ZGqgk- z{cCs}$8K_9*#DD7g|)-7mbG4t3PtT&d%u~Ue3M^aKpJ{N-GwAJDl)16gdMw8wgG z{bE?(>zcb}YXh7ty$}85g0sRPsO64m{vTaf5jmqWlr_r> zX$pHG5~Qd6A!bX$aXdzb_SKOpn8T>!D&YPzOyX*`Ut`r1y!)hktcFggGJSqtFmKir zC;s=(doUdV7IAV+b-GJ#F>;S_y-b)e`7Y%M->7G}=6qpk20(TPk{eX>zf+bZ_Q^h#5$mc?|fiK=TDF* z>4^v4s{UEfz|PdZbTi_Ia9bR4qT#BT@;Bkt6gDN0>4w{D<3kq~X$IGnq^`e-fZJmg zb%!^ll+=%HN4y!LHMm_MgXlh`TG009sitai08C)l820`9j-eKlo51e@pu|jI@(URB z@0Ikd_|pR ziE=LVwu;htyrwckIgoiwk}8zi=W84exUWKZj3nUc^TyA+TAUGvAx%D4_a9OG5FP~m zo<11ZcqhbuE?XZU6LWE^U&SApD}2s(agbXlCnwaLRX>UU0Jd-J?crY+_;bT^d_~d` zC%F4$`jmHRBvHhf7~Z)BobFHtPvKrGs(-;WJZa;v58QY|S^b>#{{RH|=g19jsNC3H z-D&qEu)@0*aS_fyWh@kDAolWYPyPul`$K3cb*y;7ZFM{QCn_|1YsQSoQHr16NUIjX zjE$^!DdV+sMdh@Y?<%DJM_)E3ancQ+K>pUBx0~K+)A(QE%#9YFPS?3c+V^9j3;opR z>U-dEUTN@?;}5|P8F+}ctF0?Nua)I#`h~zrreXfD5HhT!@$xo62D7wJ*wgmr@n?l( z)U19MEycc=g3<_=NVSp%%Ab?ZC`60_8D?@`FHvq)7M^HwjxDs59hvu!!C%_n_80KCiD0?$g~p|&>JcTH zMKsF_T16xa0<$cM8;}`bMauvH?s3P}J}&Uzz(3j>NYlJc4Zfvyry?0`wLJ&KcK1=s zAE+s8;eh9-T$=ocgZ>GR`)TVC#|EwNy8gx@hjh~4zyk5t=99iZ&lU9t?0@i|_P70> z?X12Y&*8}inPnR(yE?VF1=-87AHB#Kd=F3wuPZvn;Hu$y;WaCLlfMNTu&HLOpHuF8 zkAQv#j{Y4Z;YaN;ci|iRi)6-)B=MxT1D&j5-)`(W@*_OvxDSor2fyH<9|tuI z_*Y>%U+d~FHE17AVg9)3UMPwv+;kh^XL#5T_c;7(;3o{L5dIez<*D>=mMWZdmCv0t z{X^o+cF}4d7Cb+!*y@)VYm=+lNeqtJ!6Y~p#QxPjA8!->&t5BASe{oJG_n;7ob4O` z0H%Km`|rU&6n+kTQr3sUT{~LWC!0dIjYZSzscUJ%g=ceTY?2fQg1eb{2L`*XPvPIe z`|Eh@b^Tl5%0z8~%5Qb}C6U(z9pT^%`++$JImyVcXA6V&ZZ#>+>qCmJDJ#Zm%>I1; z0N}Gap#K1c!QtNzt^(M2V$v|4nLye7YvPyMNL4^UJdA&z@vp2u;IMk+cmDvjhNWo{ z1#K*Cpimfbwj~96`sTh%W?h5k#&h4Te#e(4u(3Zl#LJqznjX7XYH#^ZUOtrXIh9Y6 z{Nv`&HCcA<+y_2@5A*$L=Q~v~f!TQf06*5f3nL8&GdGquF()}BnqZI=;eqF^D;=0u zetQ5v&-l_FMgZ;4G+0AasbX`-I3Be1KQ0p-^vy=@#BV(A^yL2l_3B(7E9c`Uj4pHj zG%y?YUjXnrl6VyCWP+q}c?45<1BD#>(}@MVzcYcy2bxacHP~;+VVray=lRg2ZrTXk zfBOFbl?a^R9-Rdt1%6zSj=snGQyB0zv185;8SnmoDsU>!0N{EP)BHb`N4RIH0Cmsf z`Ba4%9nFj%!~X!)OJEda4WKUobBtsB`&X-c7t~|4(5+&e6BBC?rQ8$E6}_#*W@zLK zEXU-=VPm#$kZlA5&ODnvvB%cC&xKmHi(_d$rPbsX)0JtFuOUZ;#Bfg7{oyIRlB%Gi zWWNPZT&mxY(u=gtGX7&F+fGg}PVO=*idi*QSwwv~CJsiN4c&DBOIMkg-LXKXiw3Y}@7&^L(pIr}($Sa7`7p-R-~29fIFk znaQ=gi5k_}WijB&50=HF9$8YO4#tT^+V63k7sP3;kBP4m*4ymq=A1&V%n%cuzd0@6 zqY}fRB!X)uH&GamcTx9EKg16M-=DIuDlinOByc-ttwydRiy+{U##fL309|%LE<=WH z^%*^;TGgDKmbhWluvPE))%_Dc+7SQ-cXAI}&$N{q$Uq%;37wb%df*SIZq=ipM6Ibt z#0-Kl?NKJRxpb7SnmupAx5)%gCgaMe+72_v{{UXQFAjK(V+1iLBa-Ke^E*q!1X6=9 z48Rlk3b||IA1i2CIPaYFuO6i(JJ|K9PnJ5LL3mHbR@RY!$H^e$0QRo8{uc$lg{B$& z@JJct^Z3`zmYy}5)+{W<9E@hOyi4&K^6nvOZVLg>gVMPj2{zHzsz-Lu(l7WVfBY0@ z;#b1oiXRiTJwHm(wG9qUKT5E<)3sDMoyodz!G|Mg-U{?@G-Ms4A8hFV0Pt7cM@xm^ z)IJmVX5t|+TXtCFc0}x~#~H`3)9YV{pYTq-YhBg;E%?vEwpXj=NoQ|)EF^$gqhf%A z{{U?{A4>Y`$GV(94gMd`tK3T%y?Fe)P*eEZp*;4kY)%R>uA?s3`_a{ft4?@+Yiim1 zRr^2uSNP-clfrQL;?6icGpA|*HNAwk5y)cqKwBUlxMFa74wc$Z;t$#@M$|vEzu^_p zJXxl+0LeAo;_31k2|p&lk|_WMIXKQw0~xQxKMnkM{j7BzD7;@3HO)Hmc>e&>6Hf8& zvu$h!azaN9(s@9(2rJW(j2sSU#-9|wY!;2Bo8woAiO0wv;;)G%$4+o>hvCI}@r_Dy zy1kESU@6w8%;yE`zu=C`#1~U8qjL<(s={UttH=i@BlE0@ZljOoFVOHkKfCRA#)~<%v9gwY@f;hm|PuyBcYGADC67JfDEXWfF@u76zhfs6Ku7gO`L1l74{{Uw-HutqHOIse5 zq24LLS0rR@#de+^kV+4(IQ6eE&~*=)M>x(w^shkho$ODNBFQZV z0QRqywXAA?7p`rkgL++fyu~zSNi2_dhZrC1lV4Kl6Qd&h_&MueEcjAmfAO9x=|Ony zH5<$6)5|AvqPSnj%#u3!{PL2oDir(89-bb2k(9iTrhX_~-P!m_wQVL;^V$HG@|^8U ziB1r=p#_&C&}P25_*WK*;r{>t=~j9`Zy_up7Qx$+yB7@Jq>fL$d@$EqjrKMrp%R|uC#n0_A@w&+bnjW~)!h{nKlAj>yjz%k|8A44c z$6FCbq#NdaPrYN+4cvkVzzpXfAmjXTSU(&-8f%*W0ELp*M!B_nneP(aU^6Ow#|21s zAadAWuNCsAg1>2xi=H5nG%G8~E^ps+NwOu{6b^E6g;nZU;0{SRtiOrBv^R@YmEi5}z_mQmXCbVNdJa|J$Z9h@)CyX^XWY+Aa zV{FzglOzlWD$=RJKFge7gM+~NHhG%H{#!{hvO^(O9*4bpyuT2xHEHgyH3r=(A;hXN zl20cU<6jhSWw7yU+ztiGES}7I6Z%$pl^ap#k3uNQ?#6e=OGvffhZ=-Ifq1Qq(Xi^R zAJ3osbdScaUihllQt-ZssaeRf$bfl@rNC-xakPw%RFCUY zcxF8|^WpW8T`8xF%27Fh?R3B+aPOM=meP{B)RWltOD$>*S~zYYU8rr>Z*TH>tqmqs z{?)f&-~lod&uzlEUx(ML_E7{^jWj41$&rU71B@SjnXbD}o65Xa^D~3H*QYh(X0<)E zX06e$!1r=GijHSOPo$#%02Fsu8cvO>Six$<=pxzuDi zagGi?mGFEoR;$L!4p&zFQTy+U6e+$NgyOYTBd`6tBhGwVGk<8vGl9DxXMx3KL8#ru zF6gdZPVNXKf1cH?;)5Udw4km*Rlv<*DJDiMj3~QC{Xk zNjq6v`qUEZ*YR8npSH+dF^sl<&(f<2gEqiMLlMXFs?$pvBQ7#n^v_CZI4uP!HjVi_ zaj5DWXT2aicpH_lPwQKr6ZqHTPYhn2OF;1j?VPO{jLC0u$iYu+gUH~1Rp;?e$bM0u zsqI3_0Qm{Y$>+D{RTqxd{eG?xJtU+#L`J;BC%-RMPeKRag6X(^#d6`wc@@k@eFHZhGvGH$(_Oy2oDnj9Q2gx9ubssmVuE<8T;M`Lbsy)xXufJ%Y z5!iS_>r%Y&dc|h84K%a)fJ5c&EL@YqfH~diTo=Nx+xx&)y6wVPd|I)P&1}mnTIy&S zxFiK&ah&>cGw)wF_}|CADvRL#^`5J!G>a~QIS_-jc9>g?4xD=cYwdmzJJxs|;r!!6;ah-g0aLp@jeywJu*P=Uy~mc{B;z+6K^iQ#{_Z>Lhv}dnRd!#jC|mc@3?cres$RR)8c*Rncy!5 zYOqL)Ka+D4sk)FxZH3R6igppuvE+Mt3hsPAUZRY>qr9JOjK8#F8?IfCy*z*7y(_?Q zy~^rQT3OuAR#!6xPd6b~sm4xm^{N_g#XIYpDDEtE29--~^HN~nkrnY5h4uw-VK^lBFY;8kQ4jeYv)wv?{;?cYjduX;vTk(v2_`nfI;4BuA}4c z5YKP2JzjL&04%bQe=*H-fuoUC)ioO@vUHLiFKbTBNWmM(2cEe#>l(L@e`U6~l6!xGJ~*7nPV+jz4=1Q1 zZVwpi>s}rEIuwKAav@#9YiGhATxa@M(6hP=Hjg>T>Lfv z0D_zA16}>Ed}ktn5jBZp81J>V{{Tw);zsPD(+1m7){{ZbF;_XsX zmY-Ukj!t^HKaF`yZe=)=3-90Xuh{T#aKlAQvG8?Y?+C)M%VZB;^z$do2h30BOlfwU zFeBIAhArIi+>C#oYpZvuo}=3h{6n8Zoc{oy&X52`04FD$ifXF!BEE7xX}jcQ%8ciy zH0&YDc=KIWK#Lk=;YLr*y=fZPH;l%HV^J0yM5WaMKX=dCr7Q0@)L7#TF1 zuyVwYulfFUBW-oyV3E%s=k=wq2nv-xS;hxU_5T1ql)z3&VT|xN#RM)kcRrM-aT$Jo zzl|Cp=n6nlpHM%~r9HNk-OBCgF^Y-);Oo?M6#cl3RP%w@;~hULEz~*z7y(WQ{zsmD zs={BqFolXdkfbqhPX7RfRwRYU7{_1p+J#4EX2%1c=Si!rMgZ;@&N4n=M_=))HuL?R zK_ejh{{WoS029XC_W;s>WC2e+jDS9$oes=bchI`J%c}ji8gjt0kcc zxC6-g^YyBbXJE#0j)xUx+Cdpp&fb6ym7Ctkh%~ifraNKS0)KjP1#b9Zcj`e?816mm z4@FE{mmuW3pTjl3;O+0J?NA0fA8N|B%+`~4Na`-GOks}y0GW@>2l&+$)Z5M3$;ti` z(wVGH`}YXIDPxtan66LTf)mrWD~1tmHg?_E-n`bGXJ|=d^5Z+JBT&|#?K>Yl4hC=q zQ@+$3-Ma!YlZ+b6y}Oo4@QgbA#PzF%JIg{`?5%U$zu=wzA&S%XioCU-L$|w+Q&9`g zI_0f`q>}DlI-f5U^tbIDXf$gXg4MV%P`WS zW|iBP+@R;)xUE@}#NIKp(d55GhT~I;JD)URRwj@M7?G2Jxjj2qn%6D-j`-A*vOUkh z9ux6L#I0h-!oCpFCBM{fKo<7Uk(WDiPEG&-0!cUk44TIAu8XYrFT_`V6Y(Xh+TYnu zW4nRa5{xsEk&u4^MSbP)3*fD%?34R6Ui@|O&XDkUzs6TGMd8S9KoVPNxg{jq)l7r; zoZ#&-i~D5l3&33xdSIF zVC~1?I#$aSg}1vj{$#pU8`!lK{s#948R`ZzPDzllIbqI!-9Lp#YoqwaRWYZ5^?$2r z(htLtQpw@}02o_grSN{Jg@+*6Nzdt5?WsLeC)u|4BwLS^68z+KO*!g-(ZvcDgIxG(D`lQoBsfB^fu3@rxi-9THIdEr)G3EdZPjnn~~gB z#+j|OBw>jin2tqp0^?VJd2;BNYlX=#Zo~Rji+y(T2gBRSgB=V;k82x*VI*lkrI3SL3^scKz__YP61<5$i93QPrs>LH% z!bjA)7P$ab24j=g2D}5{h3&P6i@Zxxa&cDbU24hlYGf3rBCMYWYirV~E~0jyU&>ebsRz0obrTtH{R5 zJWV%!72n``6rU^_M|t7hL&bVstQy75{OPM*-Twe+U0&MC%JIxdDp7_Cg#ZP|K%fql z>I36^_wj`BufqQT3ThV($<%IbZY-skkK$#uxP~V^%WT|FB$~wV^`?@GJ(v6^I$fy} zWt#0|IKaTh)Ia3aFCX|HL)P@>k`If%7>@4%B=R-K$~eygE_>tNsyOT_ddwacvTdYl z_=CqXYqrNrw$yBNn>HbZhLI48BaTM)B*`v2d5pw%HOTna;vT7QrHc(-@;P9)Tt-wb z<~;!K05e) zEqCO>ZZ3%<2f2i2oV=z4b01_cn#arPypBj8t)AS1)#qhoScapr&L2Kp>zr1y3 zAdpDlMw@1gPs_Ak6P&d9bCg@rwbT}3mmR6 z8#p_%YcE;wj-BC2TH8?ZRgK(RvOdaW%HzISMh$b`2=P{zqxg$f(bHBE+s7+ht;+(t z18o>N_axWG)lO8;T9rAH-0 z11l&wA485$O3l@7UiVnkrh736jI3lS-rdjE! zD_B}AVem>R!u|uG{5@;Sz~tC`9x2wPqiWXqpL3h>zG0o@{{T|OS?Znr4jaW_wxuGd z3P@j^eJd7R@fdJ3$OLEct)CT*+LMl>Xf=g0yrXjP;PM;m#e1J`Q}fNWL~`ysH;gcB zocdL1BvyUe@J;t3fb_57*{h{+~02XIbvRc_r0yS>N*w2+)A8OA~H>)MoV z#_ij1di4gPdGd@SEtAuZ5BO9@=*ARGx%35n{c51nx0y2Ldmc~m8^nJQFYWc4i=T#X zd*R3-l-#DFdLd~5IP)VMo&Y3q{Hi@G!V}$iGS64jZJ_%!)=4G2GZIv!ApIsKH?Mw>2t zMzfd2pARlIKMh^MbeGy}k;Ao!F)>2B8G5b{2kBoZY2N~VBIz2{wxvCUEU+^E>M5KF zFzb+gG8Z-On$L@TS>Y?uqxgGLXydxIB5OyDBweS1z&JZe>_?_*orbaFkr`WgOAKY2 zOI08re2VPLahQw^IeR-bBOFC2*Rp*NBJnT4pNak>@g4rFE{N&6>&&*6JD!M2s8BwD zxBmcMx?d4|9r3oQW24$8mvfs$mKnp{B#Nb_2Y4j^02f?#0=v7f9Q;PNh@^M6#NdLT z+3=7@)S)!b4fvgDmNK9*a_iC&3b3R?+o~(z}_3V(L6;G2%Z~xpiwU8NlZ#6 zL)ZZ5Nay&CX!uq`b*4omqBz4SB?fSucFk_YtoxA&AfXM9r&{qdEY^61DstJgriKzU zz3!#G=Ovj#9;BL)C3kEG``vz8qi*t|4cTvUYRnRqT^TD65kJ#xi;9 z-|hp2DD6cDZKSS2^T&_N94pLn%1V$^ajY61}X^Q_)=SJ_7Im0EL^UBuvfb zhfuloQ(sKJi>b0;TFP*|e23FD@?XPEPHRsX*xcCOUR%nOe(qZtLQ1E$#wBolIUid0 zpZH8XL2<2rqBslrG=du3)KjT5b{x1CS{OQVZ7{Y!e(Um8c`ewBdffdFiV~lhLm6bMy zE1ZrGT>k)#DQ$yk$V58Xe%_8o3H!e6l=bAJENeCz9UNOj|E&wV? z&!&IJ`qZE-i-*oY>JL9kiO?$o!=B&g{Aop?R=A3}0Jcd7r?>h1Da_b?!9W@64^Q*? zQYv6&@^U-U^i#MFx#(zbP~C|kP}$%8IOF{BQbztP{B!YSB3F}F?*e{?& z#Rz4PoN#h_P#kCHn4dwOpXc7Bj>Z%7jPB1PrAZ!}2;(i2_etbdPH{{M;gBKy@B==* zDavD4+*ptgzxl;X`gDAuX2(_MKjc%_O@cVLs<8TW`qOPCaSTG=E)-*oRfimMNxH`JuHu_l^|Eh0O&Z$>?ObK1I31(MfAl01M8Ptv)a zJUF$96Fjan{oZ-vx}O5X8tL0O8RUw_yR==7ygXZ$g!;i(kdhPTCm?pL4>Uz^U#8x? z^Iaal8wmW=3()kgF79VXU|fDDITg=_ySc4ZrlgWxNMs`+gMHj_RHT`e%Kn(eOC-n4 z${Ysj2hys_C6-*E+AIS=%4(BFQXDIov%LJc+^#)x zrvkq8_z(LD==y%AZK!MT9b;06f~mBNcw4c@@gJ|{Up1WOSS%JIQk=Eydw2{kBM}6m zv^k%L-wHfgtLWN)hP3F2x3#v42fUCFr)q(aI+NbM-2VWAW&Z%dHarKfd`FMsf5cq} z?YcjQhugIq%}Nkrnb+n>Lbu8RBXf1isRWI}x*vnzvqqPuz%}0zqKkMG83|vP*eLF6 z>mQC95&_LpufbscWqr@w_p8Z^KqTOIOMf8YkbPYIh<%`wiMJs}-m=#PH3 z3OG6{Quv;W^*&Mm0D^;l&{OVD|ShrL3ucCixe;AnjHLhPYpE|(NllA$3nXi`ZE@LWZkdW>`R6gBLwQ%tjMwBV1 z-sffl5Lahq7lYugN{HwGfQ#e8*Mh$ zORKA}5pY`={J)T|nS|;?-A8JKcRd$P_?N5MH`+h7pMlQ#ItqtV{it;97c**JGDJYw zkjBjWPi*W5Z%*~&*Udh?BVX&tWrqc=w6^<${iy)^%zY07>&-2ff^Bt|TkjFu#__HM zHi)}pjC%^`k2ABJiBFbVBi{Ty`$b=Phfa@C(fm%AP`BNd3HPrbL+i#XX5Zu2h~Nho zqa^h>ua`BS3S9Uq{P>gM<=5F|QX1mL9}wIQxMA4iq3SEQ@c#gd?fgllL#o zx~l>~2izQk^s28aly!u!7x)S-N>-B8_Ye4JJ$s)zD4g}oktzIX7xsz2IB7KdW(|Nh zLcif&IQP!L10m^xbLrZkmsBpTv54z~SUg@Mq?umMo7Ts;C+!-EmTeNmlfnJMkLA*} zd@J$$LDqHaO*c~T-kOVZa*>zvx&lD#dsofV>aL`NIV3j#w>4wI{vnbtALvlDm@TZ@ z=O?K1SG9EEaTv+fQFC^`avG+f+e<_ChfV(gf=&2p=WN=CjI9)Z9AiqHZW-utbTRqU z?0?{mzXWWb&x=>Ljm&~VV$<$N%nozS+3(M}>zex*C{chZYxVpe31KIPjH|ZW^JmA) zHN^9`8!wVROPBr$C-9QuUpikHT&o|wlpql7IT;{wfH0Ajeq_L1!VD-@c#hDZV69GHJe-BX;+e4T*P_@M=O!)4^Vr8EB6_fJlE%^ z{1!v@Z*3yt&-RM&t%DeE$g=SOj1#hOzqy$EGATpY6kqRG%W)SBQ^Da~d^*u?dU;lF zTCIO&UGKN4`E&6a^#_`z0^sB^=hv_0UR|f_R&sdXSc>Zt|Z}WhH?23crKJ*&-pPou!TH1OuGVGjidNnfh{0l{sB4{{S=5t%Rdqq^~PGU3uxT^ekG0ZiA-$9Ew|u zup{!yfsvlI<~o1IJ9s>4s(4daw-HBUZ}x$7gyYK!tlNj<`d4G6>)Lj+V3*oe@=pw- zRKQ5Mf?u6r6fwjMaAdQSf%?nJ)YTYq)eE5CO-ruS?rgsFS-|cK-l^jFOv` zmZo=zG{hggxhorO%Ojnq9-_JX?PfhIThlZh8dSKxzq*Wh5wK#hZu!{t;3zfPTl_cp zbEhMJX82Cg1M+u8pQl>T(7Yw#Z5r_E8ZU<|t>-C&G%%{M9G*>5uSzRhwf6}^T@k;f z+cXx@j2x&O066?BTE!ARh46<#7nRi6k6#(REr)sic80G^G&#bWKvp;6^!#37J2 z?n(5;Lp9ucwnj$ooScl+V|>o!MpZ_B={P2u&ZMg|V0Sz7&1)sgE4{?qTbjBx<0Zn) zxTCIi`x=H{8EWzTqVhwxIr)gB(&S>n%b#}Qu^3|yClqm!co0FgO z%^||C%sc$FWf^iCC%$M_EIAoH&ML$R#DZBzKXlUW1n$on^#1@q<4kf%`E!Cg8bGAC z1RqXl3laeN!zsb^KS~*Q4o_@yKA)W!A#zRzImIHJ_dkdE{{ZXI1HjKM&U;d1gOWP+ z1FbbO*~vY!dlODD3z3wRO6gQT6AlJw|57QyaW9y=!QNt!j@BvdVW8ZN{Ycs?F9GY zqllc4qo1uvtYl(^c?USp6%OD?qY7{d$3eE9u0Z8aUUt(V4U(*RBd;|yNVwaR!0Vos zla;pt%12Oe2VZWLVK(3fQhr>V4r!n!z~x66$R`K?0IgHTzyQR7&!=uHCdyE}Zbut! z1e73=kT&OzPH8S&708K!Jml1c<7H*uc^L%f^P=y}5jj>JIXUfriEp$Nkn*j-#d?>Ibtp955CHisyG}Z19Vx%E*X+0BZ`y;$-`ILfeTz+l_qwjL zG$o?8kDO!!^E(his5vJmfEkAt7ZD0nC0e7jQQL^7L*V}ahTa?yKoNf1sLX)Rc;oowa0c$D0C2fD11CR6_$T3> zji5lc6T+`B8E0YAz7sp+Dw4e{E|Krm{{WZfd)a!_Li_LYZ~V`RbCWi^d9x}N5U_Insi}SD|Ld_72iC?e&`kRzsE25C@1Xs@B~Yu zL90Wq>v595VAEv|kTC5miU>kKx-#ERwb=g4zqdu#?IZApNiHq)%?j!{+s%f@ao&Wm zLgn3#epAyUfxxeZ#6vT$N832QUhMk3JaDuch4t)xQScv2wfLp+{?Ee}c3<%!@Z@cK zb;rugm=W$hGGy9u-BrB}d3Wu(@v3hec*9rMW0;#eVr{hG5B#!HKtGQy{{RB6%iur8 zp9*{__$lIF4p_?X;*StqF*=H}c`?JcYOd|uxCTN#U%esv*N=Fs!I~e9G>gk^S6C@> z#eT*TL@~EqtDV4(*dsmiE9>}rSS$`+qbaUwJHOEKGYDdFIHx5Y60-eIjXpZdtay{b zSK4-uV?EvF-Nb1W7RX)PnFc@uB=8M*H;%k7;va^Zf7?DJ*_#L?w)4a-Cn7wNhQ~w4 z-0R5CrGAWfH{cGh;ja{0_^unBBh9vsRQn{CxQweQ1d_a#Ad#Ng^vSC}Ed7B$X5Wt5 zjgFV`qr?E|mUF$tkglUDnE@Z_L5G|k4oTps#dc#b_zY!5FKUxk>T}X~nlNd>pNqaI z{ib{_y28bycn%3|H{wF``DK^cS3Lb|vG{YT+4ze~i(ivUdpmp3e#&ev6h@8-7&sf% z^O4u6JuBM&KmP#15dI|Ed{EUj583cpUFbJErPFll-EIZAvr{H~ws&P&2wshlNF0py z((w2E6EpU^@UMjv!Mbsq!yvggN3 zzYf~nY2UMdk7Ly&zM4I1IkX4+JVihen1p-YMq!=I;vl2|1O4Ih^=VS5o9)+Q)J|&1 z@(&hiW5TzZr^Gv1W@nzwR^rxKNsr~g5@WCft~19YzH_`VxWXHn3#6ia6;mtIpz zl^gz2QMxjcyRtj6$j=q-y5H=T`%CM(G~ODU;E#$J8&`@ugz)Xd5Ue>y`7n6MT=ePm z@jnrM#ox4MkKr9E!1!%?S-qscd} z*XncBsVa3jtaSRWrGG7~wmL-dM|C29qt7z=ii97Sl>`>!1E~Ai=NPVc!~XygFVk0l z33%2RthH4eqX_>1xw}9<{7icLsriS$TEx))6#mve1M>~n!2bXn>LJi9M(@LOY$%|U ziA!g4=L7{|$542!Tkj8ezsI_0PZWO7UMYg!IK=IBZMu0a+l{QCM69xW%f}sg;g{dUIVrf~3@RpB`!2_M>Aj z*`d9TM!*3PYq}E!s zn?m8o+-|7j9o2%c`d3FqbJxSu#8YsR(T*~4cUzy%N9{TA%f){Pz9Z`Y01v!pr~Q*r z(r;w9xrMq0Q;op)QaJ~>Aos5~xq{jBT{BUUz-vuTSjp|R<0SqW+h3{w0Pt{c?9-y! z_ybSwbFBfNf;!3GNk@BRh(WOw0d}{NBc5RgVEbZ*2in&iHgXMm>CB=^zT>~5+9h# z+q3K1wRM?^ia#|@+;B?q=~#2`E>$o=Ib4k9xg&ine2vm#ODi+xB_(;!AaH$I`WmT-t{3Vm4M0Zwr!71n?>je7(eAXB^O9 zYL@P~&QJ2F{NjE_BRS~YnjBWT66eyw@frX@IXy_{>q;H=k1)4GoSvVTtwzoU<#4!e zfKeQPFy8qM_f%Gn@6gHF>c-0MptcFYV|A8$iJN(eSIXedO$DT3pCT3H&3dJx5BoU7L_H*%>FjWJPe#7$o2-^e3%Mw`NF7 zV1h^-9=z5y8*=wX)~%yh+=$Dm86=;)Kfc_aM)04idKPD?M zRUJ6Uujz$*AC@bC4U+7gItpuG{H!_8BAl!M<+1Ef_)}Pdeqea#0;vyHBSzWS7q2}& zl_%X^MhO`_b*8vg>bUM{3o}SCKwMB8kKC*ddXd+yAt1KJIzM&JjoC}!J&e=q+4T`hsJBXnbd!N(XB^o>;TIQ7pans+M#pbk0Df5-f3 z`2dU^+;RmB87x5+cLEN23YcRXRd^K&V3D%`o=+XA>Px8`ij)1}*XdZbs1m}YWk}|w zjh7!La(f=VD!7D&z?Y!uPg5e0RmtNVR7%b02{wzUV{9pNkU8fbyi?-9!NA%NT=GAl z=~WS=C--vuV2Y7Uo3bS!DC&CmteRuFWR198tJD*o27P~2YO%bB-6sX{w`v7qkOBtaR|BCn-F!a`mM-c~5tGQS2_4Q6Ip^-z*8c#p59}TBEB1)e z;qhjz3urzNV&db(H+WTbjevEC9B*!;KXphsIT)`eGsIHE;asXaBfBqz>Q%HA*}?o1 z{hIzDe%D_UPlfzCrVTE`W9oW?qiu}~0kuE}bcdWT8QO9{8L!np+3)sI_+$Gy{5p?E zk?pj-D#c8b-w(>b;2$W_lH{em*ZFM>-$7}bi0{#Pa51>>9S-dou`v+ZmZaN zYI6Pgk(~3^zF*R{Ul;sK*I&h6E!6HWX3i1cl|k850ksr=bN~mXb{c)2qYPk(UHBMX zy(`thaFz!IldJE~tLgGNF&Xu0>Bf@fMGZ&dPPwG&5?f8B`RpGiQ#LdD8vOwO0D@m? zTD{-G3%z>g-J*`_{3um?hAWfl*9<>8_ybwf=DD5ZlHUWmkzb;p@J|~j(m!UME=9=m z?&pz4IqDN1`0Xw!ROsaH5nHr{lGUj^ZJX$QBNvEotk=q0rd94SQ9p~d3-4Y7Ij3z8vgT;q{{V#7SO;vEk`e*_Jocu4!e6Wv$h>Ul zsA4M-m}3Ks`_QlaKvrf8JNDhc$Ry)5t?_fkD8DANDFAV`h{bVB zaI8xtpy$x@N{#~TSq~$TQ|&CQ*>_euSpF^ef(9|Pbc>N<^VS2W73%<%AdS)Hs=R4-CB}c zjatXJ>3_E8#r-bbAhhvy>@sS}B{{X^keGyPFqH=SN z{F?c$NnIF5806#Wih<{rGxKCHBoIY)M>ECKvQum3&RJ5UH)j-mUkCgYyW>P3DDjh? z$9=LkIQ1%OX+PklpB6P0VRhoklroHYD6wN5Ps#^c`5fLm4a#tH$;}d6v5YAIo=0Al z*A5}gBJ`~*e~FN=cuufiarH&d?Z@MdQf87*iC!a&xWav#U!FV@-vP1uR$briJ>whL ziHqZh#H)ACOF`o~NCVRh2o>{x+in3nO5|Vxp0#S%Sdt|O(hdBNm+M-tBF%2wtuMWe zV6cgN3+_FqS@^5t&1^^$_OAHF2biEq9DX^FE=Dj$7v=ma?}h$9{?MKfWPKa<$M}fx zqa4Mm+*#@wUqaU~IVQYF_>xrlm+uU89V#2I65U9J7v%YVQ=TfL#JQ@He%fDqA>eRt z>?7BIXz$z4TwKWxx#68MXl4*bW?1BiTdK0NMl;57(1U|t zfL|E3Xf;nA*xy5JikA;0n1wc=EZN$lJOS8tuh;J%$aQZ9Yc}MvnY62<^D~}W7Xyy< z`0w#|O#Z;}29Q!*u$7CkJzH?k^RKw!T+b7l%A>C?X)gQh&jUHb!wm?kYRR6d`#Si- zPX$G(Ot%Qoxwd#!p93t#SbcCu2hq4S{XvIBj!g8K>Pv4b^ibX{xbNhMe$CH;i;v~w3lxU%Dzc`?Ynn97!rBz zD}z1BC61h{(fHR+>c+WlVyMP6=JY4 zBQpkP1QU>WVmSRpcODJ#ca3#DTw8sVvdXUaYjZeJWwz#c$_x*gu&M`ajxwRqHq>5x% z<0oQ}G0y6_;@^$lJktDUd8g_3Dj>DHXvzoyU4SoAMou{=9;cjQx__`SuGY4y`;qn9 zQEu$_pR^ep=NJU{U)GSYB<^j+dIB+;@b4OYaPg*r;;-ymYl}4wip-)i!adO|4tVHJ zanHR^;{O1RJ~Gj6bl)QC)+D{Pif~K?w&ghtNdSU#)7rA9kz@VaC24F_@sxE}*!HhA zLXwPfrz}XRA-W95IVE>TD)8NT9^aK& zj^&*~M%c%vQTbQTUNiW;<11eWY4;jtve4a67I!27iAZt@<$j!2gdY_=dlrSFYDZZR zt;Lj$b8#n^i5yA>0=78=91h01)j-=&owz==3Qj%;K$>?`?siT`R zDy*By198tB`d5H>{{Z5DjCAPqsp9b)L-wsGw672Vyri=301i7II(`+QuXwk|*A}{N ztzoZEZxlLwR~I)TMPEFbcCw6uxg2swe)Wg;CN9fVuW#};Nqnd z#HctRV;w8zkBmMv@fC)M~B! z32jk}gUfuQEyxwkjLNHEaPg})nw8MuS~IBPx*L}FYNK>OZ6g46&o$;h86(-^mc5M% zl8WmlaCifzK9%SxaItT2tUx?u*C+8_$|;OD;GCGS*{<#vNoGzhZkoT`$i_A78$UE% z0h1$eIrXNhw;=`qJ!`Iigg+3Z0RI5OF?0b0^1tIr{{RYi;ySTNyfJa>xo~q|yehG3 z_dh&IwR;?y48sh#0OO@GQI)gkKhOCU*iG;-Hsr58$$RoFW*H+&M{vxWACxkCR9Ap7L3&HfldeeX5R{TR= zKj99(Cvn}2MmY5yDf7o`mCGg2<)T(WfW2|fXu%^nC)T=u_*T9;$RF^DUwpuoQEJ?N zl>>Y~@tQ7W@XhL+bvDiZ6)L1zI+zX$<6__+L7EwkK*{;Dj`{0bQusT?Dl;aDc!drK zYjc2qDvnPJ>rpr@q)q|kW+VDh?IU4545d@RM?RRRFx+xi2R*9$Xu7Jd^QTSMua;?z zrr$>Ue#qwsINE4ai(pa=Pj1xge7k|qu{AieybgBTHbZbQb4o1koxH(p+#i@?ozfW) z$^)LH4CHmEu6(_~V2+&s0F5|9b_ovw2ewzW0vnJPGZ_OO{L*i@g;#ChxyC`_ra%wQ z%a5megvR^)uOy5fMkp&fk{37_H3PJ}l@Xlw=QNV}oT1!XpdaU@ zIK|yEn!cfe>=j5DA2v@lHKv()uWDA>R+R%yaWuF{kYthpC-fBv!X96!;2NJu@eZNk zFB56rBhjQ(xw5$vLS>9P?q5)NBh((Xc5Ye;B;LCpM1IU4v)+TC>xbe8$Bzw3sOc6E zd9mpR{cWx8B*@3wZU_3ffXQH)cKe{FcMkLRhW`M9oLPTi+x#{7cLlZXouyfM(iQ{P(y-uGX*l6WTK2Emlfa96etb=T zZ^U`>mDhug{{WxzuUe!jP^6;-l1H59I`uv0bJctg;ENv&=Jj;Bp;1{!C+Yob#+;j(*%+j(a=swC zwRUL@s;*9UfsEJRf3f64P5qrbHxsVbk_jbcWBut}zpZ|IYnRd7P9u#71-@)o=^wz$ zc=WG>9u%`DZ;kE4EmCte|px^FWY@ zve?{n!98lH+I-W<>&HLRhPx^bB_IRPpMP3XyH`Y)3*?s!4+D={jaiEnE6SJb80QsQIlw!k z1AigAz;!v-8~0;!9iFOd9mLQbl17r#98 z;)|hlxoM@|Lhb;SI5hKi3ukv3@ED{x50J5!{&K=}vwy}6^BA$C}jeUS+F@<$o# zRhDKA%U~Wcp5B!l_ll|`&jEUYjQi9^WyW)yaCzsY9MWLq>`eCzV>^cYW6Q&I=cm$% zuA`PeFqYn=`H7xD^{UBv6DW0Yf;kxJNN0GY4-0@nAeQGN9Vkh+q7$-~h_I3s8Q-5z zdP6Fb6r7Whl6%xMc|K5*2~UEyq}~Z3k77t7 zv**;>A^{_}f5M0_e8YxPK4NfBwLV=nD*BeS#aqu0U0Oz`d%)^4-l{hZLt3gO zj;b<3USP5J=lWOclvjV~u8iAA7*+t9{FVKsoI|Izo;H|uEMWZ_zeC_2Z>-c_pQ+&I ztvV=^;ZK|WwdO&E62T-hC~Tfkka62JYvJaqw;m?bCc23XuwKQnwhZ7(r$4E#BjKj8 zF!2?=@?10R`CdHZAdR{FGhG*kqgl11b*A$zuy>UhebBsv@6CO+dNPEjpJTwKB%r-c zw)f*tj(h>*ElWhV)+bvSb;g|(=l6SLB!xYJ83c6pudn<8&ls4jNgqnV>8sp1%jeha;Jaf~IeQR&_bnwTC z{t^6nx6ySSLw%k7oXr!%De~@AAt8wM9*3oTj&+n_G1w(KUPW{7W+8>r;7oGV8n5hAyBJQ40I0?)uc645U_-8R92Hthz(aPBrX zGBCt|K2cY^QFCyb1>@RW`4cU(v{U1D)3o8S-yWUuUP17q;!ln|N8-lQZuP+=D=BHC zk_@+&7dZt~1qU7b@x^;NWei;C&C->WcU{g}v!NEfr(KT!08RK!;O!Ff-t$egkteme zX)WANenNAV1E$lH#YsQItrlCAP;O!~#Dn7~?s~eB_QgVG!^s!+b&b{o?-s4S1C3+EQ4_8qDb;$b__eSd0=R z{{Ra0drf-O#bhR&w3kt-RaH21wZ4~*jf>srK8wtjS91BD^r^B2f=+a#Cn+2 z^$m7!Fhmf3>3ReSpQ*(+TKF5FYctqA_N{R1V-!(rAOR$4&=R;HpIWoy4~RORiL51t znW4PiT#5FVf0atH;ZUEv$J3|1bH5NiJzaQW;?QaO8F;R3{MC8#jh;bWr<~*p(+`Qw zt8yxScGy#+gjaGsBTlwWHp)8$o>^8U$D1<(aqfH9KjXiK`hSkEV7$K6WkrENi6e|2 zcV{^@$9RwShSanx9Wwe&0wp*0zGDZQjvE9FetkRDe-wOq)~viOX{=b-+ojaujM2(Y z2@U`&$jHVkIyfxKooLmBY}>cYw^t9#%HEbcOOJyZJ@$nLi~Y5J65SnQbZEf=oI7Xb z^#jwTXhrasN4C;zw2`b|1+ht18C8>US71uERE%&xD#!R=@fvRtcoBS2u9#zSBdm*W z8317YO*7*c#Jz98Hg>mKR5ryf2@Lb)ik>h+msTWV*R%+{8C1P&n>+;PN=CnxDn56`uxa8svJ6B5SiU+0c0!Qgc`sg@r#oK@djZ`BhS;gp?^V%7XL;O%1RZ}qJr-gy>1s?%Zifu218 zgIw_Ti)yx3w{gUgCdlJLK2Qfi?Oq?^pNTrHuZQ%x*5+cGfRM>4$C%_W8To!y9lxD= zKf(mjCh*0!xpQE%-ENQ;mO$i?><3Od0i0JJGY5(KuQhk>r=f7EN>wcl&eknb3(J2t z3xs&sXL6BQzAZ$PPZBGVLE}C9)VKPw-A-Iak+574tBRp>aMu=+M5j0(m^r7AFK3U6 MT|*X=!@HmV**6Ld-T(jq literal 0 HcmV?d00001 diff --git a/providers/base/data/images/image_quality_plain.jpg b/providers/base/data/images/image_quality_plain.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9405fc6e424518fcb15077a4d819a4cdd8617b4a GIT binary patch literal 5427 zcmex=iF;N$`UAd82aiwDF383NJD#LCRf%Eivc4pu@E@&5pWAP3_ErUqt4B?cxz zMrJ|A|3?_)f$n4lI}hks2w-GlW?^Mx2Refrs9>uA(D}^FKu5CzT?|xR3zTPI5o8ro zG<0MW4oqZMDikqloVbuf*=gfJ(V&YTRE(2~nmD<{#3dx9RMpfqG__1j&CD$Muc{znDOAzz*^kBU3pLGYhh?DjKp0IR>&P778mFHFAhJ zOe65s#iL;`ng&MGz-Ss6O#`E8U^ESkrh(BkFq#HN)4*sN7)=ACX<#%BjHZFnG%!fh I0Q3Kw0Eo=`0RR91 literal 0 HcmV?d00001 diff --git a/providers/base/tests/test_camera_quality.py b/providers/base/tests/test_camera_quality.py new file mode 100644 index 0000000000..fc2940ea80 --- /dev/null +++ b/providers/base/tests/test_camera_quality.py @@ -0,0 +1,119 @@ +#!/usr/bin/env python3 +# +# This file is part of Checkbox. +# +# Copyright 2023 Canonical Ltd. +# Written by: +# Fernando Bravo +# +# Checkbox is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License version 3, +# as published by the Free Software Foundation. +# +# Checkbox is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with Checkbox. If not, see . +# + +import os +import unittest +from unittest.mock import patch + +import cv2 + +from bin.camera_quality_test import brisque + +default_dir = os.path.join(os.path.dirname(__file__), '../data') +data_dir = os.getenv('PLAINBOX_PROVIDER_DATA', default=default_dir) + + +class CameraQualityTests(unittest.TestCase): + """This class provides test cases for the camera_quality_test module.""" + + # Setup the patch for all the tests + def setUp(self): + self.patcher = patch('cv2.VideoCapture') + self.mock_capture = self.patcher.start() + + def tearDown(self): + self.patcher.stop() + + def test_device_not_opened(self): + """ + The test should fail if the camera device is not opened. + """ + + # Set the mock + self.mock_capture.return_value.isOpened.return_value = False + + assert brisque() == 1 + + def test_grab_not_available(self): + """ + The test should fail if the camera device can't grab an image. + """ + + # Set the mock + self.mock_capture.return_value.isOpened.return_value = True + self.mock_capture.return_value.grab.return_value = False + + assert brisque() == 1 + + def test_image_not_read(self): + """ + The test should fail if the camera device can't read the image. + """ + + # Set the mock + self.mock_capture.return_value.isOpened.return_value = True + self.mock_capture.return_value.grab.return_value = True + self.mock_capture.return_value.read.return_value = (False, None) + + assert brisque() == 1 + + def test_good_image_from_camera(self): + """ + Check if the test passes with a valid image. + """ + # Set the mock + img_path = os.path.join(data_dir, "images/image_quality_good.jpg") + img = cv2.imread(img_path) + self.mock_capture.return_value.isOpened.return_value = True + self.mock_capture.return_value.grab.return_value = True + self.mock_capture.return_value.read.return_value = (True, img) + + assert brisque() == 0 + assert brisque(save=True) == 0 + + def test_good_image_from_file(self): + """ + Check if the test passes with a valid image from a file. + """ + + img_path = os.path.join(data_dir, "images/image_quality_good.jpg") + + assert brisque(file=img_path) == 0 + + def test_bad_image_from_file(self): + """ + Check if the test fails with a bad image. + """ + + # Set the mock + img_path = os.path.join(data_dir, "images/image_quality_bad.jpg") + + assert brisque(file=img_path) == 1 + + def test_invalid_image_from_file(self): + """ + Check if the test fails with a plain image. + """ + + # Set the mock + img_path = os.path.join(data_dir, "images/image_quality_plain.jpg") + + assert brisque(file=img_path) == 1 diff --git a/providers/base/tox.ini b/providers/base/tox.ini index 16f0557b92..b974b67f72 100644 --- a/providers/base/tox.ini +++ b/providers/base/tox.ini @@ -21,16 +21,18 @@ commands = deps = flake8 coverage == 5.5 - natsort == 4.0.3 - requests == 2.9.1 - urwid == 1.3.1 + distro == 1.0.1 Jinja2 == 2.8 + libsvm == 3.23.0.4 MarkupSafe == 0.23 - XlsxWriter == 0.7.3 + natsort == 4.0.3 + opencv_python == 4.4.0.42 + requests == 2.9.1 tqdm == 4.19.5 + urwid == 1.3.1 pyparsing == 2.0.3 - distro == 1.0.1 PyYAML == 3.11 + XlsxWriter == 0.7.3 setenv= # we do not care about the package version in tox # but it breaks some old python3.5 builds @@ -40,43 +42,49 @@ setenv= deps = flake8 coverage == 5.5 - natsort == 4.0.3 - requests == 2.18.4 - urwid == 2.0.1 + distro == 1.0.1 Jinja2 == 2.10 + libsvm == 3.23.0.4 MarkupSafe == 1.1.0 - XlsxWriter == 0.9.6 + natsort == 4.0.3 + opencv_python == 4.8.1.78 + requests == 2.18.4 tqdm == 4.19.5 + urwid == 2.0.1 pyparsing == 2.2.0 - distro == 1.0.1 PyYAML == 3.12 + XlsxWriter == 0.9.6 [testenv:py38] deps = flake8 coverage == 7.3.0 - natsort == 7.0.1 - requests == 2.22.0 - urwid == 2.0.1 + distro == 1.4.0 Jinja2 == 2.10.1 + libsvm == 3.23.0.4 MarkupSafe == 1.1.0 - XlsxWriter == 1.1.2 + natsort == 7.0.1 + opencv_python == 4.8.1.78 + requests == 2.22.0 tqdm == 4.30.0 + urwid == 2.0.1 pyparsing == 2.4.6 - distro == 1.4.0 PyYAML == 5.3.1 + XlsxWriter == 1.1.2 [testenv:py310] deps = flake8 coverage == 7.3.0 - natsort == 8.0.2 - requests == 2.25.1 - urwid == 2.1.2 + distro == 1.7.0 Jinja2 == 3.0.3 + libsvm == 3.23.0.4 MarkupSafe == 2.0.1 - XlsxWriter == 3.0.2 + natsort == 8.0.2 + opencv_python == 4.8.0.76 + requests == 2.25.1 tqdm == 4.57.0 + urwid == 2.1.2 pyparsing == 2.4.7 - distro == 1.7.0 PyYAML == 6.0.1 + XlsxWriter == 3.0.2 From 9051f4ba0f1c0be77632eda02b4d71fac219514e Mon Sep 17 00:00:00 2001 From: Sylvain Pineau Date: Tue, 17 Oct 2023 18:26:05 +0200 Subject: [PATCH 4/8] Add packaging meta data units to depend on opencv and libsvm python bindings Nota: Only for 22.04 (until the syntax allows >= 22.04) --- providers/base/units/camera/packaging.pxu | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/providers/base/units/camera/packaging.pxu b/providers/base/units/camera/packaging.pxu index 0b90c61179..8a8b89d8e7 100644 --- a/providers/base/units/camera/packaging.pxu +++ b/providers/base/units/camera/packaging.pxu @@ -13,3 +13,14 @@ unit: packaging meta-data os-id: ubuntu Depends: python3-pyqrcode +# For camera/camera-quality_.* +unit: packaging meta-data +os-id: ubuntu +os-version-id: 22.04 +Depends: libsvm3 + +# For camera/camera-quality_.* +unit: packaging meta-data +os-id: ubuntu +os-version-id: 22.04 +Depends: python3-opencv From d358905d3e71c7e4676514216e93e02132a78c90 Mon Sep 17 00:00:00 2001 From: Fernando Bravo Date: Wed, 18 Oct 2023 15:34:49 +0200 Subject: [PATCH 5/8] Removed the requirement of fswebcam in camera --- providers/base/units/camera/jobs.pxu | 14 -------------- 1 file changed, 14 deletions(-) diff --git a/providers/base/units/camera/jobs.pxu b/providers/base/units/camera/jobs.pxu index b9c977ed0a..ac5348d8e6 100644 --- a/providers/base/units/camera/jobs.pxu +++ b/providers/base/units/camera/jobs.pxu @@ -77,14 +77,6 @@ flags: also-after-suspend _summary: Webcam still image capture test for {{ product_slug }} estimated_duration: 120.0 depends: camera/detect -requires: - {%- if __on_ubuntucore__ %} - executable.name == 'fswebcam' - {%- else %} - package.name == 'gir1.2-gst-plugins-base-1.0' - package.name == 'eog' - package.name == 'fswebcam' or package.name == 'gir1.2-gst-plugins-base-1.0' - {% endif -%} command: camera_test.py still -d /dev/{{ name }} _description: @@ -107,12 +99,6 @@ flags: also-after-suspend _summary: Webcam multiple resolution capture test for {{ product_slug }} estimated_duration: 1.2 depends: camera/detect -requires: - {%- if __on_ubuntucore__ %} - executable.name == 'fswebcam' - {%- else %} - package.name == 'fswebcam' or package.name == 'gir1.2-gst-plugins-base-1.0' - {% endif -%} command: camera_test.py resolutions -d /dev/{{ name }} _description: From 1d2a5ab4e30a49e3b3ad0f9b983950f7a5f58b3f Mon Sep 17 00:00:00 2001 From: Fernando Bravo Date: Wed, 18 Oct 2023 14:24:08 +0200 Subject: [PATCH 6/8] Added opencv and libsvm to provider base in snap --- checkbox-core-snap/series22/snap/snapcraft.yaml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/checkbox-core-snap/series22/snap/snapcraft.yaml b/checkbox-core-snap/series22/snap/snapcraft.yaml index 1773ff74e7..af61e45538 100644 --- a/checkbox-core-snap/series22/snap/snapcraft.yaml +++ b/checkbox-core-snap/series22/snap/snapcraft.yaml @@ -306,6 +306,7 @@ parts: - libasound2 - libcap2-bin - libfdt1 + - libsvm3 - lsb-release - lshw - mesa-utils @@ -323,6 +324,7 @@ parts: - python3-evdev - python3-gi - python3-natsort + - python3-opencv - python3-pil - python3-psutil - python3-pyqrcode From 988bea912136e331ee73c384a0224a8f044b508f Mon Sep 17 00:00:00 2001 From: Fernando Bravo Date: Wed, 25 Oct 2023 19:42:32 +0200 Subject: [PATCH 7/8] Added blas and lapack to LD_LIBRARY_PATH --- checkbox-core-snap/common_files/config/wrapper_common_classic | 2 ++ 1 file changed, 2 insertions(+) diff --git a/checkbox-core-snap/common_files/config/wrapper_common_classic b/checkbox-core-snap/common_files/config/wrapper_common_classic index 14cf917f6a..5144801a3a 100644 --- a/checkbox-core-snap/common_files/config/wrapper_common_classic +++ b/checkbox-core-snap/common_files/config/wrapper_common_classic @@ -25,6 +25,8 @@ else append_path LD_LIBRARY_PATH $RUNTIME/lib append_path LD_LIBRARY_PATH $RUNTIME/lib/$ARCH append_path LD_LIBRARY_PATH $RUNTIME/usr/lib/$ARCH + append_path LD_LIBRARY_PATH $RUNTIME/usr/lib/$ARCH/blas + append_path LD_LIBRARY_PATH $RUNTIME/usr/lib/$ARCH/lapack append_path LD_LIBRARY_PATH $RUNTIME/lib/fwts append_path GI_TYPELIB_PATH $RUNTIME/usr/lib/girepository-1.0 append_path GI_TYPELIB_PATH $RUNTIME/usr/lib/$ARCH/girepository-1.0 From 9a9b79c76bd4aa0aae5a185cec83e7bcb4d962b5 Mon Sep 17 00:00:00 2001 From: Fernando Bravo Date: Thu, 26 Oct 2023 13:07:56 +0200 Subject: [PATCH 8/8] Added a timeout to camera quality test --- providers/base/units/camera/jobs.pxu | 8 +++++--- providers/base/units/camera/test-plan.pxu | 2 +- 2 files changed, 6 insertions(+), 4 deletions(-) diff --git a/providers/base/units/camera/jobs.pxu b/providers/base/units/camera/jobs.pxu index ac5348d8e6..37be1dc695 100644 --- a/providers/base/units/camera/jobs.pxu +++ b/providers/base/units/camera/jobs.pxu @@ -118,10 +118,12 @@ _summary: Webcam brisque score for {{ product_slug }} estimated_duration: 20s depends: camera/detect command: - camera_quality_test.py -d {{ name }} + timeout 120 camera_quality_test.py -d {{ name }} || + (>&2 echo "Timeout computing score"; false) _description: - Takes multiple pictures and computes the quality based on a No-Reference image - quality assessment algorithm called BRISQUE. + Takes a picture and computes the quality based on a No-Reference image + quality assessment algorithm called BRISQUE. This test will timeout and fail + if the quality has not been compute within 120 seconds. unit: template template-resource: device diff --git a/providers/base/units/camera/test-plan.pxu b/providers/base/units/camera/test-plan.pxu index 450e638bfe..57c6a53ceb 100644 --- a/providers/base/units/camera/test-plan.pxu +++ b/providers/base/units/camera/test-plan.pxu @@ -36,7 +36,7 @@ _description: Camera tests (automated) include: camera/detect certification-status=blocker camera/multiple-resolution-images_.* certification-status=blocker - camera/camera-quality_.* certification-status=non-blocker + camera/camera-quality_.* certification-status=non-blocker bootstrap_include: device