forked from listenzcc/data_review
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_player.py
64 lines (50 loc) · 1.73 KB
/
data_player.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
import mne
import os
import sys
from load_preprocess_view import get_epochs
sys.path.append('C:\\Users\\liste\\Documents\\Python Scripts\\clock_tools')
from simple_timer import simple_timer
filedir = 'D:/BeidaShuju/rawdata/ZYF'
def para_setting(train=True, filedir=filedir):
if train:
fname_list = list(os.path.join(
filedir, 'MultiTraining_%d_raw_tsss.fif' % j)
for j in range(1, 6))
ortids = [2, 6, 9, 14, 17, 33]
event_ids = dict(ort015=2, ort045=6, ort075=9,
ort105=14, ort135=17, ort165=33)
tmin, t0, tmax = -0.2, 0, 0.8
else:
fname_list = list(os.path.join(
filedir, 'MultiTest_%d_raw_tsss.fif' % j)
for j in range(1, 9))
ortids = [8, 16, 32, 64]
event_ids = dict(ort45a=8, ort135a=16,
ort45b=32, ort135b=64)
tmin, t0, tmax = -0.4, -0.2, 0.8
return fname_list, ortids, event_ids, tmin, t0, tmax
st = simple_timer()
train = True
fname_list, ortids, event_ids, tmin, t0, tmax = para_setting(train=train)
t = np.triu(np.ones([1001, 1001])/1001, 0)
ts = np.linspace(tmin, tmax, 1001)
for fname in fname_list:
print(fname)
epochs, raw = get_epochs(fname=fname, event_id=event_ids,
tmin=tmin, t0=t0, tmax=tmax,
freq_l=1, freq_h=5,
use_good_sensors=False)
evoked = epochs.average()
evoked.plot_topo(show=False)
data = np.dot(evoked.data, t)
data = evoked.data
plt.figure()
plt.plot(ts, data.transpose())
evoked.data = data
evoked.plot_topo(show=False)
st.click()
break
plt.show()