forked from litian96/fair_flearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_efficiency.py
73 lines (49 loc) · 1.94 KB
/
plot_efficiency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os, sys
import re
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from matplotlib import rcParams
from mpl_toolkits.axisartist.axislines import Subplot
matplotlib.rc('xtick', labelsize=17)
matplotlib.rc('ytick', labelsize=17)
def parse_log(file_name):
rounds = []
accu = []
loss = []
sim = []
accu_train = []
test_accu_1 = []
test_accu_2 = []
train_accu_1 = []
train_accu_2 = []
for line in open(file_name, 'r'):
search_test_accu = re.search( r'At round (.*) testing accuracy: (.*)', line, re.M|re.I)
if search_test_accu:
rounds.append(int(search_test_accu.group(1)))
accu.append(float(search_test_accu.group(2)))
search_loss = re.search(r'At round (.*) training loss: (.*)', line, re.M|re.I)
if search_loss:
loss.append(float(search_loss.group(2)))
search_loss = re.search(r'gradient difference: (.*)', line, re.M|re.I)
if search_loss:
sim.append(float(search_loss.group(1)))
return rounds, loss, accu, accu_train
accuracies = [
"./log_vehicle/ffedavg_run1_q5",
"./log_vehicle/ffedsgd_run1_q5",
]
dataset = ["Vehicle"]
f = plt.figure(figsize=[5.5, 4.5])
sampling_rate=[1]
rounds0, losses0, test_accuracies0, train_accuracies0 = parse_log(accuracies[0])
rounds1, losses1, test_accuracies1, train_accuracies1 = parse_log(accuracies[1])
plt.plot(np.asarray(rounds0)[::sampling_rate[0]], np.asarray(test_accuracies0)[::sampling_rate[0]], linewidth=3.0, label=r'q-FedAvg', color="#d62728")
plt.plot(np.asarray(rounds1)[::sampling_rate[0]], np.asarray(test_accuracies1)[::sampling_rate[0]], '--', linewidth=3.0, label=r'q-FedSGD')
plt.ylabel('Testing accuracy', fontsize=22)
plt.xlabel('# Rounds', fontsize=22)
plt.legend(loc='best', frameon=False)
plt.title(dataset[0], fontsize=22, fontweight='bold')
plt.xlim(0, 10)
plt.tight_layout()
f.savefig("efficiency_qffedavg.pdf")