forked from litian96/fair_flearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_fairness.py
157 lines (113 loc) · 4.4 KB
/
plot_fairness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os, sys
import re
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from matplotlib import rcParams
from mpl_toolkits.axisartist.axislines import Subplot
import seaborn as sns
accuracies = [
"./log_vehicle/qffedavg_samp2_run1_q0_20_test.csv",
"./log_vehicle/qffedavg_samp2_run1_q5_20_test.csv",
"./log_vehicle/qffedavg_samp6_run1_q0_20_test.csv"
]
flag = "Testing"
dataset = ["Vehicle"]
label_ = ["q=0", "q>0", 'uniform']
def get_bar_y(filename, num_clients, num_bar=39):
num_runs = 1
num_user = num_clients
clients = np.zeros((num_runs, num_bar))
accuracies = np.zeros((num_runs, num_clients))
edges = np.linspace(0, 1, num_bar, endpoint=True)
idx = 0
for line in open(filename, 'r'):
accu = float(line.strip())
accuracies[idx/num_clients][idx % num_clients] = accu
for j in range(num_bar):
if accu > edges[j] and accu <= edges[j+1]:
clients[idx/num_clients][j] += 1
idx += 1
mean_clients = np.mean(clients, axis=0)
std_clients = np.std(clients, axis=0)
num_good = int(num_user * 0.1)
num_bad = num_good
worst = np.zeros(num_runs)
best = np.zeros(num_runs)
variance = np.zeros(num_runs)
for i in range(num_runs):
worst[i] = np.mean(np.sort(accuracies[i])[:num_bad])
best[i] = np.mean(np.sort(accuracies[i])[num_user-num_good:])
variance[i] = np.var(accuracies[i]) * 10000
avg_b = np.mean(worst)
avg_g = np.mean(best)
std_b = np.std(worst)
std_g = np.std(best)
avg_var = np.mean(variance)
std_var = np.std(variance)
print("############################################")
print("file: {}\n, worst 10: {}, std: {}; best 10: {}, std: {}; variance: {}, std: {}".format(\
filename, avg_b, std_b, avg_g, std_g, avg_var, std_var))
print("############################################")
mean_accuracies = np.mean(accuracies, axis=0)
return mean_clients, std_clients, mean_accuracies
def get_dis(filename):
accuracies = []
for line in open(filename, 'r'):
accuracies.append(float(line.strip()))
num_clients = len(accuracies)
hist = np.asarray(accuracies)
return hist
bws=[0.5, 0.6, 0.6]
ax2_y = [3.5, 3.5]
num_clients=[23]
f = plt.figure(figsize=[11, 4.5])
baseline = accuracies[0]
method = accuracies[1]
uniform = accuracies[2]
mean_y1, std_y1, mean_accu1 = get_bar_y(baseline, num_clients[0])
mean_y2, std_y2, mean_accu2 = get_bar_y(method, num_clients[0])
mean_y3, std_y3, mean_accu3 = get_bar_y(uniform, num_clients[0])
########################### q-FFL compared with fedavg (q=0) ###############################
ax1 = plt.subplot(1, 2, 1)
binEdges = np.linspace(0, 1, 40, endpoint=True)
bincenters = np.zeros(39)
for i in range(len(bincenters)):
bincenters[i] = (binEdges[i] + binEdges[i+1]) * 0.5
width = bincenters[1] - bincenters[0]
plt.bar(bincenters, mean_y1, width=width, color='#17becf', alpha=0.4, label = label_[0])
plt.bar(bincenters, mean_y2, width=width, color='#d62728', alpha=0.5, label = label_[1])
plt.xlabel(flag + " accuracy", fontsize=22)
plt.ylabel("# Clients", fontsize=22)
plt.title(dataset[0], fontsize=22, fontweight='bold')
plt.legend(frameon=False, loc=2)
ax2 = ax1.twinx()
ax2.set_ylim(0, ax2_y[0])
ax2.get_yaxis().set_visible(False)
sns.kdeplot(mean_accu1, linestyle='--', ax=ax2, bw=bws[0], color="#17becf")
sns.kdeplot(mean_accu2, ax=ax2, bw=bws[1], color="#d62728")
plt.xlim(0,1)
plt.tight_layout()
plt.ylim(0, 8)
########################### q-FFL compared with uniform ###############################
ax1 = plt.subplot(1, 2, 2)
binEdges = np.linspace(0, 1, 40, endpoint=True)
bincenters = np.zeros(39)
for i in range(len(bincenters)):
bincenters[i] = (binEdges[i] + binEdges[i+1]) * 0.5
width = bincenters[1] - bincenters[0]
plt.bar(bincenters, mean_y3, width=width, color='#17becf', alpha=0.4, label = label_[2])
plt.bar(bincenters, mean_y2, width=width, color='#d62728', alpha=0.5, label = label_[1])
plt.xlabel(flag + " accuracy", fontsize=22)
plt.ylabel("# Clients", fontsize=22)
plt.title(dataset[0], fontsize=22, fontweight='bold')
plt.legend(frameon=False, loc=2)
ax2 = ax1.twinx()
ax2.set_ylim(0, ax2_y[1])
ax2.get_yaxis().set_visible(False)
sns.kdeplot(mean_accu1, linestyle='--', ax=ax2, bw=bws[2], color="#17becf")
sns.kdeplot(mean_accu2, ax=ax2, bw=bws[1], color="#d62728")
plt.xlim(0, 1)
plt.tight_layout()
plt.ylim(0, 8)
f.savefig("fairness_vehicle.pdf")