-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathdensity_estimation.py
520 lines (410 loc) · 19.7 KB
/
density_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# Copyright (C) 2017, Nicholas Carlini <[email protected]>
# All rights reserved.
import sys
import time
import tensorflow as tf
import numpy as np
import random
from setup_cifar import CIFARModel, CIFAR
from setup_mnist import MNISTModel, MNIST
sys.path.append("../..")
from nn_robust_attacks.l2_attack import CarliniL2
from fast_gradient_sign import FGS
import keras
from keras import backend as K
#import matplotlib
#import matplotlib.pyplot as plt
#import matplotlib.patches as mpatches
#from matplotlib.backends.backend_pdf import PdfPages
from scipy.stats import gaussian_kde
BINARY_SEARCH_STEPS = 9 # number of times to adjust the constant with binary search
MAX_ITERATIONS = 10000 # number of iterations to perform gradient descent
ABORT_EARLY = True # if we stop improving, abort gradient descent early
LEARNING_RATE = 1e-2 # larger values converge faster to less accurate results
TARGETED = True # should we target one specific class? or just be wrong?
CONFIDENCE = 0 # how strong the adversarial example should be
INITIAL_CONST = 1e-3 # the initial constant c to pick as a first guess
class CarliniL2New:
def __init__(self, sess, model, batch_size=1, confidence = CONFIDENCE,
targeted = TARGETED, learning_rate = LEARNING_RATE,
binary_search_steps = BINARY_SEARCH_STEPS, max_iterations = MAX_ITERATIONS,
abort_early = ABORT_EARLY,
initial_const = INITIAL_CONST, extra_loss=None):
"""
The L_2 optimized attack.
This attack is the most efficient and should be used as the primary
attack to evaluate potential defenses.
Returns adversarial examples for the supplied model.
confidence: Confidence of adversarial examples: higher produces examples
that are farther away, but more strongly classified as adversarial.
batch_size: Number of attacks to run simultaneously.
targeted: True if we should perform a targetted attack, False otherwise.
learning_rate: The learning rate for the attack algorithm. Smaller values
produce better results but are slower to converge.
binary_search_steps: The number of times we perform binary search to
find the optimal tradeoff-constant between distance and confidence.
max_iterations: The maximum number of iterations. Larger values are more
accurate; setting too small will require a large learning rate and will
produce poor results.
abort_early: If true, allows early aborts if gradient descent gets stuck.
initial_const: The initial tradeoff-constant to use to tune the relative
importance of distance and confidence. If binary_search_steps is large,
the initial constant is not important.
"""
image_size, num_channels, num_labels = model.image_size, model.num_channels, model.num_labels
self.sess = sess
self.TARGETED = targeted
self.LEARNING_RATE = learning_rate
self.MAX_ITERATIONS = max_iterations
self.BINARY_SEARCH_STEPS = binary_search_steps
self.ABORT_EARLY = abort_early
self.CONFIDENCE = confidence
self.initial_const = initial_const
self.batch_size = batch_size
self.repeat = binary_search_steps >= 10
shape = (batch_size,image_size,image_size,num_channels)
# the variable we're going to optimize over
modifier = tf.Variable(np.zeros(shape,dtype=np.float32))
# these are variables to be more efficient in sending data to tf
self.origs = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.timg = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.tlab = tf.Variable(np.zeros((batch_size,num_labels)), dtype=tf.float32)
self.const = tf.Variable(np.zeros(batch_size), dtype=tf.float32)
self.const2 = tf.Variable(np.zeros(batch_size), dtype=tf.float32)
# and here's what we use to assign them
self.assign_origs = tf.placeholder(tf.float32, shape)
self.assign_timg = tf.placeholder(tf.float32, shape)
self.assign_tlab = tf.placeholder(tf.float32, (batch_size,num_labels))
self.assign_const = tf.placeholder(tf.float32, [batch_size])
self.assign_const2 = tf.placeholder(tf.float32, [batch_size])
# the resulting image, tanh'd to keep bounded from -0.5 to 0.5
self.newimg = tf.tanh(modifier + self.timg)/2
# prediction BEFORE-SOFTMAX of the model
self.output = model.predict(self.newimg)
# distance to the input data
self.l2dist = tf.reduce_sum(tf.square(self.newimg-tf.tanh(self.origs)/2),[1,2,3])
# compute the probability of the label class versus the maximum other
self.real = real = tf.reduce_sum((self.tlab)*self.output,1)
self.other = other = tf.reduce_max((1-self.tlab)*self.output - (self.tlab*10000),1)
if self.TARGETED:
# if targetted, optimize for making the other class most likely
loss1 = tf.maximum(0.0, other-real+self.CONFIDENCE)
else:
# if untargeted, optimize for making this class least likely.
loss1 = tf.maximum(0.0, real-other+self.CONFIDENCE)
# sum up the losses
self.loss2 = tf.reduce_sum(self.l2dist)
self.loss1 = tf.reduce_sum(self.const*loss1)
if extra_loss != None:
self.extra_loss = extra_loss(self.newimg, self.output)
else:
self.extra_loss = 0
self.loss = self.loss1+self.loss2+self.const*tf.reduce_sum(self.extra_loss)
# Setup the adam optimizer and keep track of variables we're creating
start_vars = set(x.name for x in tf.global_variables())
optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE)
self.train = optimizer.minimize(self.loss, var_list=[modifier])
end_vars = tf.global_variables()
new_vars = [x for x in end_vars if x.name not in start_vars]
# these are the variables to initialize when we run
self.setup = []
self.setup.append(self.origs.assign(self.assign_origs))
self.setup.append(self.timg.assign(self.assign_timg))
self.setup.append(self.tlab.assign(self.assign_tlab))
self.setup.append(self.const.assign(self.assign_const))
self.setup.append(self.const2.assign(self.assign_const2))
self.init = tf.variables_initializer(var_list=[modifier]+new_vars)
def attack(self, origs, imgs, targets):
"""
Perform the L_2 attack on the given images for the given targets.
If self.targeted is true, then the targets represents the target labels.
If self.targeted is false, then targets are the original class labels.
"""
r = []
print('go up to',len(imgs))
for i in range(0,len(imgs),self.batch_size):
print('tick',i)
r.extend(self.attack_batch(origs[i:i+self.batch_size],
imgs[i:i+self.batch_size],
targets[i:i+self.batch_size]))
return np.array(r)
def attack_batch(self, origs, imgs, labs):
"""
Run the attack on a batch of images and labels.
"""
def compare(x,y):
if not isinstance(x, (float, int, np.int64)):
x = np.copy(x)
x[y] -= self.CONFIDENCE
x = np.argmax(x)
if self.TARGETED:
return x == y
else:
return x != y
batch_size = self.batch_size
# convert to tanh-space
imgs = np.arctanh(imgs*1.999999)
origs = np.arctanh(origs*1.999999)
# set the lower and upper bounds accordingly
lower_bound = np.zeros(batch_size)
CONST = np.ones(batch_size)*self.initial_const
upper_bound = np.ones(batch_size)*1e10
CONST2 = np.ones(batch_size)*self.initial_const
# the best l2, score, and image attack
o_bestl2 = [1e10]*batch_size
o_bestscore = [-1]*batch_size
o_bestattack = [np.zeros(imgs[0].shape)]*batch_size
for outer_step in range(self.BINARY_SEARCH_STEPS):
# completely reset adam's internal state.
self.sess.run(self.init)
batch = imgs[:batch_size]
batchlab = labs[:batch_size]
bestl2 = [1e10]*batch_size
bestscore = [-1]*batch_size
# The last iteration (if we run many steps) repeat the search once.
if self.repeat == True and outer_step == self.BINARY_SEARCH_STEPS-1:
CONST = upper_bound
# set the variables so that we don't have to send them over again
self.sess.run(self.setup, {self.assign_timg: batch,
self.assign_origs: origs,
self.assign_tlab: batchlab,
self.assign_const: CONST,
self.assign_const2: CONST2})
print('set new const',CONST)
prev = 1e20
for iteration in range(self.MAX_ITERATIONS):
# perform the attack
_, l, l2s, scores, nimg, extra = self.sess.run([self.train, self.loss,
self.l2dist, self.output,
self.newimg, self.extra_loss])
#print(np.argmax(scores))
# print out the losses every 10%
if iteration%(self.MAX_ITERATIONS//10) == 0:
print(iteration,*self.sess.run((self.loss,self.loss1,self.loss2,self.extra_loss)))
# check if we should abort search if we're getting nowhere.
if self.ABORT_EARLY and iteration%(self.MAX_ITERATIONS//10) == 0:
if l > prev*.9999:
break
prev = l
# adjust the best result found so far
for e,(l2,sc,ii) in enumerate(zip(l2s,scores,nimg)):
if l2 < bestl2[e] and compare(sc, np.argmax(batchlab[e])) and extra[e] <= 0:
bestl2[e] = l2
bestscore[e] = np.argmax(sc)
#print(l2,o_bestl2[e],np.argmax(sc),np.argmax(batchlab[e]),
# extra[e])
if l2 < o_bestl2[e] and compare(sc, np.argmax(batchlab[e])) and extra[e] <= 0:
#print('set')
o_bestl2[e] = l2
o_bestscore[e] = np.argmax(sc)
o_bestattack[e] = ii
# adjust the constant as needed
for e in range(batch_size):
if compare(bestscore[e], np.argmax(batchlab[e])) and bestscore[e] != -1:
# success, divide const by two
upper_bound[e] = min(upper_bound[e],CONST[e])
if upper_bound[e] < 1e9:
CONST[e] = (lower_bound[e] + upper_bound[e])/2
else:
# failure, either multiply by 10 if no solution found yet
# or do binary search with the known upper bound
lower_bound[e] = max(lower_bound[e],CONST[e])
if upper_bound[e] < 1e9:
CONST[e] = (lower_bound[e] + upper_bound[e])/2
else:
CONST[e] *= 10
# return the best solution found
o_bestl2 = np.array(o_bestl2)
return o_bestattack
def pop(model):
'''Removes a layer instance on top of the layer stack.
This code is thanks to @joelthchao https://github.com/fchollet/keras/issues/2371#issuecomment-211734276
'''
if not model.outputs:
raise Exception('Sequential model cannot be popped: model is empty.')
else:
model.layers.pop()
if not model.layers:
model.outputs = []
model.inbound_nodes = []
model.outbound_nodes = []
else:
model.layers[-1].outbound_nodes = []
model.outputs = [model.layers[-1].output]
model.built = False
return model
class DensityEstimate:
def __init__(self, sess, hidden, centers, image_size, num_channels, sigma=20):
self.sess = sess
centers = hidden.predict(centers).reshape((centers.shape[0],1,-1))
print(centers.shape)
self.centers = centers
self.sigma = sigma
self.gaussian_means = tf.constant(centers)
self.X = tf.placeholder(tf.float32, (None, image_size, image_size, num_channels))
self.dist = tf.reduce_sum(tf.square(self.gaussian_means - hidden(self.X)[tf.newaxis,:,:]),axis=2)
self.Y = tf.reduce_mean(tf.exp(-self.dist/self.sigma),axis=0)
self.hidden = hidden
def make(self, X):
dist = tf.reduce_sum(tf.square(self.gaussian_means - self.hidden(X)[tf.newaxis,:,:]),axis=2)
return tf.reduce_mean(tf.exp(-dist/self.sigma),axis=0)
def slow(self, x):
x = x.flatten()
dist = np.sum((self.centers.reshape((self.centers.shape[0],-1))-x)**2,axis=(1))
dist = np.sort(dist)
print(dist)
#plt.plot(np.cumsum(np.exp(-dist/self.sigma)))
#plt.show()
return np.mean(np.exp(-dist/self.sigma))
def predict(self, xs):
return self.sess.run(self.Y, {self.X: xs})
def estimate_density(model, de, data):
labels = model.model.predict(data)
res = []
for i in range(10):
r = []
this_class = data[np.argmax(labels,axis=1)==i]
for j in range(0,len(this_class),10):
probs = de[i].predict(this_class[j:j+10])
r.extend(probs)
res.append((r))
return res
def estimate_density_full(model, de, data):
labels = model.model.predict(data)
res = []
for j in range(0,len(data),1):
i = np.argmax(labels[j])
probs = de[i].predict(data[j:j+1])
res.extend(probs)
return np.array(res)
class RobustWrap:
image_size = 28
num_channels = 1
num_labels = 11
def __init__(self, model, de):
self.model = model
self.de = de
def predict(self, xs):
de = self.de.make(xs)
padded = tf.pad(self.model.predict(xs), [[0, 0], [0, 1]], "CONSTANT")
maximum = tf.reshape(tf.reduce_max(padded,axis=1),(-1,1))
de = -8-tf.log(de) #TODO
dee = tf.pad(tf.reshape(de, (-1,1)), [[0, 0], [0, self.num_labels-1]], "CONSTANT")
padded = padded + 1*maximum*dee
return padded, de
def extra_loss(de, target_lab):
def fn(img, out):
return tf.nn.relu(-tf.log(de[target_lab].make(img))-DECONST)
return fn
def compute_optimal_sigma(sess, model, hidden_layer, data):
sigma = tf.Variable(np.ones(1)*100,dtype=tf.float32)
de = [DensityEstimate(sess, hidden_layer, data.train_data[np.argmax(data.train_labels,axis=1)==i], model.image_size, model.num_channels, sigma) for i in range(10)]
#print(de[0].centers)
#print(estimate_density(model, de, data.test_data))
xs = []
for const in np.arange(0,5,.1):
sess.run(sigma.assign(np.ones(1)*(10**const)))
r = []
for labA in range(10):
print(labA)
for labB in range(10):
subset = data.validation_data[np.argmax(data.validation_labels,axis=1)==labB,:,:,:]
r.append(np.mean(np.log(1e-30+de[labA].predict(subset))))
r = np.array(r).reshape((10,10))
diag = np.mean(r[np.arange(10),np.arange(10)])
r[np.arange(10),np.arange(10)] = 0
rest = np.mean(r)
value = diag-rest
xs.append(value)
print(xs)
plt.plot(np.arange(0,5,.1),xs)
plt.xlabel('sigma')
plt.ylabel('Log liklihood difference')
plt.show()
exit(0)
def run_kde(Data, Model, path):
global DECONST
sess = K.get_session()
K.set_learning_phase(False)
data, model = Data(), Model(path)
model2 = Model(path)
hidden_layer = pop(model2.model) # once to remove dense(10)
hidden_layer = pop(hidden_layer) # once to remove ReLU
#compute_optimal_sigma(sess, model, hidden_layer, data)
#MNIST SIGMA: 20
de = [DensityEstimate(sess, hidden_layer, data.train_data[np.argmax(data.train_labels,axis=1)==i], model.image_size, model.num_channels, sigma=20) for i in range(10)]
de2 = [DensityEstimate(sess, hidden_layer, data.train_data[np.argmax(data.train_labels,axis=1)==i][:100], model.image_size, model.num_channels, sigma=20) for i in range(10)]
p = tf.placeholder(tf.float32, (None, model.image_size, model.image_size, model.num_channels))
#print(np.log(de[0].predict(data.test_data[:10])))
#print(sess.run(rmodel.predict(p)[1], {p: data.test_data[:10]}))
#exit(0)
N = 1
print(model.model.predict(data.train_data[:N]))
print(hidden_layer.predict(data.train_data[:N]))
for i in range(10):
print(de[i].predict(data.train_data[:N]))
start_density = estimate_density_full(model, de, data.test_data[M:M+N])+1e-30
print("starting density", np.log(start_density))
DECONST = -np.log(start_density)
l = np.zeros((N,10))
#l[np.arange(N),np.random.random_integers(0,9,N)] = 1
for i in range(N):
r = np.random.random_integers(0,9)
while r == np.argmax(data.test_labels[i]):
r = np.random.random_integers(0,9)
l[i,r] = 1
attack1 = CarliniL2(sess, model, batch_size=1, max_iterations=3000,
binary_search_steps=3, initial_const=1.0, learning_rate=1e-1,
targeted=True)
attack2 = CarliniL2New(sess, model, batch_size=1, max_iterations=10000,
binary_search_steps=5, initial_const=1.0, learning_rate=1e-2,
targeted=True, extra_loss=extra_loss(de2, np.argmax(l)))
#l = data.test_labels[:N]
#l = np.zeros((N,10))
#l[np.arange(N),1] = 1
print("RUN PHASE 1")
adv = attack1.attack(data.test_data[M:M+N], l)
print('mean distortion',np.mean(np.sum((adv-data.test_data[M:M+N])**2,axis=(1,2,3))**.5))
print("RUN PHASE 2")
adv = attack2.attack(data.test_data[M:M+N], adv, l)
np.save("/tmp/q"+str(M),adv)
#adv = np.load("/tmp/qq.npy")
print('labels',np.mean(np.argmax(sess.run(model.predict(p), {p: adv}),axis=1)==l))
print('mean distortion',np.mean(np.sum((adv-data.test_data[M:M+N])**2,axis=(1,2,3))**.5))
a = estimate_density_full(model, de, data.test_data[M:M+N])+1e-30
b = estimate_density_full(model, de, adv)+1e-30
show(adv)
print('de of test', np.mean(np.log(a)))
print('de of adv', np.mean(np.log(b)))
print('better ratio', np.mean(np.array(a)>np.array(b)))
exit(0)
#density = gaussian_kde(np.array(np.log(a))-np.array(np.log(b)))
#density_a = gaussian_kde(np.log(a))
#density_b = gaussian_kde(np.log(b))
xs = np.linspace(-25,25,200)
fig = plt.figure(figsize=(4,3))
fig.subplots_adjust(bottom=0.17,left=.15, right=.85)
plt.xlabel('log(KDE(valid))-log(KDE(adversarial))')
plt.ylabel('Occurrances')
#plt.hist(np.log(a),100)
#plt.hist(np.log(b),100)
plt.hist(np.log(a)-np.log(b),100)
#plt.hist(np.array(np.log(a))-np.array(np.log(b)),100)
#a = plt.plot(xs,density_a(xs), 'r--',color='blue', label='Valid')
#b = plt.plot(xs,density_b(xs), color='red', label='Adversarial')
#plt.plot(xs,density(xs))
#plt.legend(handles=[a[0], b[0]])
pp = PdfPages('/tmp/a.pdf')
plt.savefig(pp, format='pdf')
pp.close()
plt.show()
def show(img):
remap = " .*#"+"#"*100
img = (img.flatten()+.5)*3
print("START")
for i in range(28):
print("".join([remap[int(round(x))] for x in img[i*28:i*28+28]]))
#M = int(sys.argv[1])
M = 0
run_kde(MNIST, MNISTModel, "models/mnist")
#run_kde(CIFAR, CIFARModel, "models/cifar")