-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmaximum_mean_discrepancy.py
56 lines (39 loc) · 1.76 KB
/
maximum_mean_discrepancy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (C) 2017, Nicholas Carlini <[email protected]>
# All rights reserved.
import sys
import time
import tensorflow as tf
import numpy as np
import random
import re
import sklearn.decomposition
from setup_cifar import CIFARModel, CIFAR
from setup_mnist import MNISTModel, MNIST
from nn_robust_attacks.l2_attack import CarliniL2
from fast_gradient_sign import FGS
from keras import backend as K
#import matplotlib
#import matplotlib.pyplot as plt
from kernel_two_sample_test import *
from sklearn.metrics import pairwise_distances
def run_test(Data, Model, path):
sess = K.get_session()
K.set_learning_phase(False)
data = Data()
model = Model(path)
N = 1000
X = data.train_data[np.random.choice(np.arange(len(data.train_data)), N, replace=False)].reshape((N,-1))
#Y = data.train_data[np.random.choice(np.arange(len(data.train_data)), N, replace=False)].reshape((N,-1))
Y = data.test_data[np.random.choice(np.arange(len(data.test_data)), N, replace=False)].reshape((N,-1))
#attack = FGS(sess, model, N, .275)
attack = CarliniL2(sess, model, batch_size=100, binary_search_steps=2, initial_const=1, targeted=False, max_iterations=500)
idx = np.random.choice(np.arange(len(data.test_data)), N, replace=False)
Y = attack.attack(data.test_data[idx], data.test_labels[idx]).reshape((N,-1))
iterations = 1000
sigma2 = 100
mmd2u, mmd2u_null, p_value = kernel_two_sample_test(X, Y, iterations=iterations,
kernel_function='rbf',
gamma=1.0/sigma2,
verbose=True)
#run_test(MNIST, MNISTModel, "models/mnist")
run_test(CIFAR, CIFARModel, "models/cifar")