-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathnn_layer_detect.py
296 lines (216 loc) · 11.2 KB
/
nn_layer_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright (C) 2017, Nicholas Carlini <[email protected]>
# All rights reserved.
import sys
import time
import tensorflow as tf
import numpy as np
import random
import re
import sklearn.decomposition
from setup_cifar import CIFARModel, CIFAR
from setup_mnist import MNISTModel, MNIST
from resnet import ResnetBuilder
from nn_robust_attacks.l2_attack import CarliniL2
from fast_gradient_sign import FGS
from keras import backend as K
from keras.models import Model
from keras.models import load_model
from keras.callbacks import LearningRateScheduler
from keras.layers import Dense, Dropout, Activation, Flatten, Lambda, Input, MaxPooling2D
from keras.layers.convolutional import Conv2D
from keras.layers.core import Lambda
from keras.optimizers import SGD, Adam
#import matplotlib
#import matplotlib.pyplot as plt
class RobustModel:
def __init__(self, model_with_detector):
self.model_with_detector = model_with_detector
self.num_channels = 3
self.num_labels = 11
self.image_size = 32
def predict(self, data):
print('here',data)
predicted, is_bad = self.model_with_detector(data)
padded = tf.pad(predicted, [[0, 0], [0, 1]], "CONSTANT")
maximum = tf.reshape(tf.reduce_max(padded,axis=1),(-1,1))
padded = padded + 2*maximum*tf.pad(1+is_bad, [[0, 0], [self.num_labels-1, 0]], "CONSTANT")
print(padded)
return padded
def train(sess, model, train_data, actual_train_labels, train_labels, file_name,
LEARNING_RATE=0.01, MOMENTUM=0.9, OPTIMIZER='sgd', NUM_EPOCHS=20, BATCH_SIZE=256):
print('train')
# there appears to be a bug in Keras that batchnorm will still update
# even if the layer isn't trainable.
# this is an ugly hack to fix that.
for layer in model.layers:
if not layer.trainable:
layer.updates = []
layer.params = []
#print([x.name for x in layer.weights])
if OPTIMIZER == 'sgd':
OPTIMIZER = SGD(lr=LEARNING_RATE, momentum=MOMENTUM, nesterov=False)
elif OPTIMIZER == 'adam':
OPTIMIZER = Adam(lr=LEARNING_RATE)
model.compile(loss='binary_crossentropy',
optimizer=OPTIMIZER,
metrics=['accuracy'])
if True:
print(file_name, OPTIMIZER, LEARNING_RATE, MOMENTUM, NUM_EPOCHS, BATCH_SIZE)
best_acc = 0
idxs = list(range(len(train_data)))
random.shuffle(idxs)
train_data = train_data[idxs]
train_labels = train_labels[idxs]
actual_train_labels = actual_train_labels[idxs]
for epoch in range(NUM_EPOCHS):
weights = model.get_weights()
model.fit(train_data[1000:], [actual_train_labels[1000:], train_labels[1000:]],
batch_size=BATCH_SIZE*4,
epochs=1)
a = model.predict(train_data[:1000])[1].flatten()>.5
b = train_labels[:1000].flatten()
acc=np.mean(a == b)
print('acc',acc)
if acc > best_acc:
print('improved')
best_acc = acc
model.save_weights(file_name)
else:
model.load_weights(file_name)
return model
class Wrap:
image_size = 32
num_channels = 3
num_labels = 10
def __init__(self, model):
self.model = model
def predict(self, xs):
return self.model(xs)
def train_nn_detection(Data, Model, path=None, num=0):
data = Data()
sess = K.get_session()
K.set_learning_phase(False)
"""#Uncomment this ugly block of code to set up the weights of the detector
with tf.variable_scope("model"):
model = ResnetBuilder.build_resnet_32((3, 32, 32), 10)
model.load_weights("models/cifar-resnet")
with tf.variable_scope("model_with_detector"):
model_with_detector = ResnetBuilder.build_resnet_32((3, 32, 32), 10, with_detector=2)
layers1 = [(i,x) for i,x in enumerate(model.layers) if len(x.weights)]
layers2 = model_with_detector.layers
layers2 = [(i,x) for i,x in enumerate(layers2) if all('/detector' not in y.name for y in x.weights) and len(x.weights)]
set_layers = []
for (i,e),(j,f) in zip(layers1,layers2):
ee = [re.sub("_[0-9]+","",x.name) for x in e.weights]
ff = [re.sub("_[0-9]+","",x.name).replace("model_with_detector","model") for x in f.weights]
set_layers.append(j)
assert ee==ff
f.set_weights(e.get_weights())
print(set_layers)
model_with_detector.save_weights("models/cifar-resnet-detector-base")
#"""
model_with_detector = ResnetBuilder.build_resnet_32((3, 32, 32), 10, with_detector=2)
model_with_detector.load_weights("models/cifar-resnet-detector-base")
set_layers = [1, 2, 4, 5, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 25, 26, 28,
30, 32, 33, 35, 37, 39, 40, 42, 43, 45, 47, 48, 50, 52, 54,
55, 57, 59, 61, 62, 64, 66, 68, 69, 71, 73, 75, 76, 78, 79,
81, 83, 84, 86, 88, 90, 91, 93, 95, 97, 98, 102, 106, 110,
112, 116, 120, 128]
for e in set_layers:
model_with_detector.layers[e].trainable = False
#print('Test accuracy',np.mean(np.argmax(model_with_detector.predict(data.test_data)[0],axis=1)==np.argmax(data.test_labels,axis=1)))
train_data, train_labels = data.train_data, data.train_labels
N = len(train_data)
""" # uncomment to create the adversarial training data
model = ResnetBuilder.build_resnet_32((3, 32, 32), 10, activation=False)
model.load_weights("models/cifar-resnet")
model = Wrap(model)
#attack = FGS(sess, model)
attack = CarliniL2(sess, model, batch_size=100, binary_search_steps=3,
initial_const=0.1, max_iterations=3000, learning_rate=0.005,
confidence=0, targeted=False)
for i in range(0,N,1000):
now=time.time()
train_adv = attack.attack(data.train_data[i:i+1000], data.train_labels[i:i+1000])
print(time.time()-now)
print('accuracy',np.mean(np.argmax(model.model.predict(train_adv),axis=1)==np.argmax(data.train_labels[i:i+1000],axis=1)))
np.save("tmp/adv"+path.split("/")[1]+str(i), train_adv)
print('Accuracy on valid training',np.mean(np.argmax(model.model.predict(data.train_data),axis=1)==np.argmax(data.train_labels,axis=1)))
print('Accuracy on adversarial training',np.mean(np.argmax(model.model.predict(train_adv),axis=1)==np.argmax(data.train_labels,axis=1)))
#"""
train_adv = []
for i in range(0,N,1000):
train_adv.extend(np.load("tmp/adv"+path.split("/")[1]+str(i)+".npy"))
train_adv = np.array(train_adv)
newX = np.zeros((train_data.shape[0]*2,)+train_data.shape[1:])
newX[:train_data.shape[0]] = train_data
newX[train_data.shape[0]:] = train_adv
newY = np.zeros((train_data.shape[0]*2,1))
newY[:train_data.shape[0]] = 0
newY[train_data.shape[0]:] = 1
for i in range(100):
train(sess, model_with_detector, newX, np.concatenate([train_labels]*2,axis=0), newY,
path+"-layerdetect-"+str(i)+"-"+str(num),
LEARNING_RATE=10**random.randint(-5,-1), MOMENTUM=random.random(),
OPTIMIZER=random.choice(['sgd', 'sgd', 'sgd', 'sgd', 'sgd', 'adam', 'rmsprop']),
NUM_EPOCHS=20,
BATCH_SIZE=2**random.randint(4,9))
def run_nn_detection(Data, path):
data = Data()
sess = K.get_session()
K.set_learning_phase(False)
model_with_detector = ResnetBuilder.build_resnet_32((3, 32, 32), 10,
with_detector=2, activation=False)
model_with_detector.save_weights("/tmp/q")
model_with_detector.load_weights("models/cifar-layerdetect-37-0")
N = 10#len(data.test_data)//100
""" # uncomment to generate adversarial testing data
model = ResnetBuilder.build_resnet_32((3, 32, 32), 10, activation=False)
model.load_weights("models/cifar-resnet")
model = Wrap(model)
#attack = FGS(sess, model)
attack = CarliniL2(sess, model, batch_size=100, binary_search_steps=3,
initial_const=0.1, max_iterations=3000, learning_rate=0.005,
confidence=0, targeted=False)
for i in range(0,N,1000):
test_adv = attack.attack(data.test_data[i:i+100], data.test_labels[i:i+100])
np.save("tmp/testadv"+path.split("/")[1]+str(i), test_adv)
#"""
test_adv = []
for i in range(0,N,1000):
test_adv.extend(np.load("tmp/testadv"+path.split("/")[1]+str(i)+".npy"))
test_adv = np.array(test_adv)
print('Accuracy of model on test set',np.mean(np.argmax(model_with_detector.predict(data.test_data)[0],axis=1)==np.argmax(data.test_labels,axis=1)))
print('Accuracy of model on adversarial data',np.mean(np.argmax(model_with_detector.predict(test_adv)[0],axis=1)==np.argmax(data.test_labels,axis=1)))
print('Probaility detects valid data as valid',np.mean(model_with_detector.predict(data.test_data)[1]<=0))
print('Probability detects adversarail data as adversarial',np.mean(model_with_detector.predict(test_adv)[1]>0))
xs = tf.placeholder(tf.float32, [None, 32, 32, 3])
rmodel = RobustModel(model_with_detector)
preds = rmodel.predict(xs)
y1 = np.argmax(sess.run(preds, {xs: data.test_data[:N]}),axis=1)
print('Robust model accuracy on test dat',np.mean(y1==np.argmax(data.test_labels[:N],axis=1)))
print('Probability robust model detects valid data as adversarial', np.mean(y1==10))
y2 = np.argmax(sess.run(preds, {xs: test_adv}),axis=1)
print('Probability robust model detects adversarial data as adversarial', np.mean(y2==10))
attack = CarliniL2(sess, rmodel, batch_size=10, binary_search_steps=3,
initial_const=0.1, max_iterations=300, learning_rate=0.01,
confidence=0, targeted=True)
targets = np.argmax(model_with_detector.predict(test_adv[:N])[0],axis=1)
realtargets = np.zeros((N, 11))
realtargets[np.arange(N),targets] = 1
np.save("tmp/adaptiveattack",attack.attack(data.test_data[:N], realtargets))
adv = np.load("tmp/adaptiveattack.npy")
print('Accuracy on adversarial data',np.mean(np.argmax(model_with_detector.predict(adv)[0],axis=1)==np.argmax(data.test_labels,axis=1)))
print('Probability detector detects adversarial data as adversarial',np.mean(model_with_detector.predict(adv)[1]>0))
d=np.sum((adv-data.test_data[:N])**2,axis=(1,2,3))**.5
print("mean distortion attacking robust model", np.mean(d))
d=np.sum((test_adv[:N]-data.test_data[:N])**2,axis=(1,2,3))**.5
print("mean distortion attacking unsecurred model", np.mean(d))
model_with_detector_2 = ResnetBuilder.build_resnet_32((3, 32, 32), 10,
with_detector=2, activation=False)
model_with_detector_2.load_weights("models/cifar-layerdetect-42-0")
print('Accuracy on adversarial data',np.mean(np.argmax(model_with_detector_2.predict(adv)[0],axis=1)==np.argmax(data.test_labels,axis=1)))
print('Probability detector detects adversarial data as adversarial',np.mean(model_with_detector_2.predict(adv)[1]>0))
#for i in range(100):
# train_nn_detection(CIFAR, CIFARModel, "models/cifar")
#run_nn_detection(CIFAR, "models/cifar")