-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_training.py
48 lines (38 loc) · 1.65 KB
/
run_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse
import os.path
from model import create_model
from motive import get_loaders
from train import DEVICE, run_test, train_loop
from utils.evaluate import save_metrics
from utils.utils import PathLocator
def workflow(locator, num_epochs, tgt_type, graph_type, eval_test=False):
leave_out = locator.config["data_split"]
train_loader, val_loader, test_loader = get_loaders(leave_out, tgt_type, graph_type)
train_data = train_loader.loader.data
model = create_model(locator, train_data).to(DEVICE)
best_th = train_loop(model, locator, train_loader, val_loader, num_epochs)
if eval_test:
results, test_scores = run_test(model, test_loader, best_th)
save_metrics(test_scores, locator.test_metrics_path)
results.to_parquet(locator.test_results_path)
print(test_scores)
def main():
"""Parse input params"""
parser = argparse.ArgumentParser(
description=("Train GNN with this config file"),
)
parser.add_argument("config_path", type=str)
parser.add_argument("output_path", type=str)
parser.add_argument("--num_epochs", dest="num_epochs", type=int, default=1000)
parser.add_argument("--target_type", dest="target_type", default="orf")
parser.add_argument("--graph_type", dest="graph_type", default="st_expanded")
args = parser.parse_args()
locator = PathLocator(args.config_path, args.output_path)
if os.path.isfile(locator.test_results_path):
print(f"{locator.test_results_path} exists. Skipping...")
return
workflow(
locator, args.num_epochs, args.target_type, args.graph_type, eval_test=True
)
if __name__ == "__main__":
main()