Skip to content

Latest commit

 

History

History
340 lines (250 loc) · 11.3 KB

README.md

File metadata and controls

340 lines (250 loc) · 11.3 KB


GitHub releases GitHub stars GitHub forks GitHub downloads GitHub issues

πFlow is an easy to use, powerful big data pipeline system.

Table of Contents

Features

  • Easy to use
    • provide a WYSIWYG web interface to configure data flow
    • monitor data flow status
    • check the logs of data flow
    • provide checkpoints
  • Strong scalability:
    • Support customized development of data processing components
  • Superior performance
    • based on distributed computing engine Spark
  • Powerful
    • 100+ data processing components available
    • include Spark、MLlib、Hadoop、Hive、HBase、TDengine、OceanBase、openLooKeng、TiDB、Solr、Redis、Memcache、Elasticsearch、JDBC、MongoDB、HTTP、FTP、XML、CSV、JSON,etc.

Architecture

Requirements

  • JDK 1.8
  • Scala-2.12.18
  • Apache Maven 3.1.0 or newer
  • Spark-3.4.0
  • Hadoop-3.3.0

Compatible with X86 architecture and ARM architecture, Support CentOS and Kirin system deployment

Getting Started

To Build:

  • install external package

        mvn install:install-file -Dfile=/../piflow/piflow-bundle/lib/spark-xml_2.11-0.4.2.jar -DgroupId=com.databricks -DartifactId=spark-xml_2.11 -Dversion=0.4.2 -Dpackaging=jar
        mvn install:install-file -Dfile=/../piflow/piflow-bundle/lib/java_memcached-release_2.6.6.jar -DgroupId=com.memcached -DartifactId=java_memcached-release -Dversion=2.6.6 -Dpackaging=jar
        mvn install:install-file -Dfile=/../piflow/piflow-bundle/lib/ojdbc6-11.2.0.3.jar -DgroupId=oracle -DartifactId=ojdbc6 -Dversion=11.2.0.3 -Dpackaging=jar
        mvn install:install-file -Dfile=/../piflow/piflow-bundle/lib/edtftpj.jar -DgroupId=ftpClient -DartifactId=edtftp -Dversion=1.0.0 -Dpackaging=jar
    
  • mvn clean package -Dmaven.test.skip=true

        [INFO] Replacing original artifact with shaded artifact.
        [INFO] Reactor Summary:
        [INFO]
        [INFO] piflow-project ..................................... SUCCESS [  4.369 s]
        [INFO] piflow-core ........................................ SUCCESS [01:23 min]
        [INFO] piflow-configure ................................... SUCCESS [ 12.418 s]
        [INFO] piflow-bundle ...................................... SUCCESS [02:15 min]
        [INFO] piflow-server ...................................... SUCCESS [02:05 min]
        [INFO] ------------------------------------------------------------------------
        [INFO] BUILD SUCCESS
        [INFO] ------------------------------------------------------------------------
        [INFO] Total time: 06:01 min
        [INFO] Finished at: 2020-05-21T15:22:58+08:00
        [INFO] Final Memory: 118M/691M
        [INFO] ------------------------------------------------------------------------
    

Run πFlow Server:

  • run piflow server on Intellij:

    • download piflow: git clone https://github.com/cas-bigdatalab/piflow.git

    • import piflow into Intellij

    • edit config.properties file

    • build piflow to generate piflow jar:

      • Edit Configurations --> Add New Configuration --> Maven
      • Name: package
      • Command line: clean package -Dmaven.test.skip=true -X
      • run 'package' (piflow jar file will be built in ../piflow/piflow-server/target/piflow-server-0.9.jar)
    • run HttpService:

      • Edit Configurations --> Add New Configuration --> Application
      • Name: HttpService
      • Main class : cn.piflow.api.Main
      • Environment Variable: SPARK_HOME=/opt/spark-2.2.0-bin-hadoop2.6(change the path to your spark home)
      • run 'HttpService'
    • test HttpService:

      • run /../piflow/piflow-server/src/main/scala/cn/piflow/api/HTTPClientStartMockDataFlow.scala
      • change the piflow server ip and port to your configure
  • run piflow server by release version:

    • download piflow.tar.gz:
      https://github.com/cas-bigdatalab/piflow/releases/download/v1.2/piflow-server-v1.5.tar.gz

    • unzip piflow.tar.gz:
      tar -zxvf piflow.tar.gz

    • edit config.properties

    • run start.sh、stop.sh、 restart.sh、 status.sh

    • test piflow server

      • set PIFLOW_HOME
        • vim /etc/profile
          export PIFLOW_HOME=/yourPiflowPath/bin
          export PATH=$PATH:$PIFLOW_HOME/bin

        • command
          piflow flow start example/mockDataFlow.json
          piflow flow stop appID
          piflow flow info appID
          piflow flow log appID

          piflow flowGroup start example/mockDataGroup.json
          piflow flowGroup stop groupId
          piflow flowGroup info groupId

  • how to configure config.properties

    #spark and yarn config
    spark.master=yarn
    spark.deploy.mode=cluster
    
    #hdfs default file system
    fs.defaultFS=hdfs://10.0.86.191:9000
    
    #yarn resourcemanager.hostname
    yarn.resourcemanager.hostname=10.0.86.191
    
    #if you want to use hive, set hive metastore uris
    #hive.metastore.uris=thrift://10.0.88.71:9083
    
    #show data in log, set 0 if you do not want to show data in logs
    data.show=10
    
    #server port
    server.port=8002
    
    #h2db port
    h2.port=50002
    
    #If you want to upload python stop,please set hdfs configs
    #example hdfs.cluster=hostname:hostIP
    #hdfs.cluster=master:127.0.0.1
    #hdfs.web.url=master:50070
    

Run πFlow Web:

  vim /usr/lib/systemd/system/docker.service
  ExecStart=/usr/bin/dockerd -H tcp://0.0.0.0:2375 -H unix://var/run/docker.sock
  systemctl daemon-reload
  systemctl restart docker

Restful API:

  • flow json

    flow example
        
          {
    "flow": {
      "name": "MockData",
      "executorMemory": "1g",
      "executorNumber": "1",
      "uuid": "8a80d63f720cdd2301723b7461d92600",
      "paths": [
        {
          "inport": "",
          "from": "MockData",
          "to": "ShowData",
          "outport": ""
        }
      ],
      "executorCores": "1",
      "driverMemory": "1g",
      "stops": [
        {
          "name": "MockData",
          "bundle": "cn.piflow.bundle.common.MockData",
          "uuid": "8a80d63f720cdd2301723b7461d92604",
          "properties": {
            "schema": "title:String, author:String, age:Int",
            "count": "10"
          },
          "customizedProperties": {
    
      }
    },
    {
      "name": "ShowData",
      "bundle": "cn.piflow.bundle.external.ShowData",
      "uuid": "8a80d63f720cdd2301723b7461d92602",
      "properties": {
        "showNumber": "5"
      },
      "customizedProperties": {
    
      }
    }
    

    ] } }

  • CURL POST:

  • Command line:

    • set PIFLOW_HOME
      vim /etc/profile
      export PIFLOW_HOME=/yourPiflowPath/piflow-bin
      export PATH=$PATH:$PIFLOW_HOME/bin

    • command example
      piflow flow start yourFlow.json
      piflow flow stop appID
      piflow flow info appID
      piflow flow log appID

      piflow flowGroup start yourFlowGroup.json
      piflow flowGroup stop groupId
      piflow flowGroup info groupId

docker-started

  • pull piflow images
    docker pull registry.cn-hangzhou.aliyuncs.com/cnic_piflow/piflow:v1.5

  • show docker images
    docker images

  • run a container with piflow imageID , all services run automatically. Please Set HOST_IP and some docker configs.
    docker run -h master -itd --env HOST_IP=*.*.*.* --name piflow-v1.5 -p 6001:6001 -v /usr/bin/docker:/usr/bin/docker -v /var/run/docker.sock:/var/run/docker.sock --add-host docker.host:*.*.*.* [imageID]

  • please visit "HOST_IP:6001", it may take a while

  • if somethings goes wrong, all the application are in /opt folder

use-interface

  • Login:

  • Dashboard:

  • Flow list:

  • Create flow:

  • Configure flow:

  • Load flow:

  • Monitor flow:

  • Flow logs:

  • Group list:

  • Configure group:

  • Monitor group:

  • Process List:

  • Template List:

  • DataSource List:

  • Schedule List:

  • StopHub List:

Contact Us

  • Wechat Official Account