-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathResNet.py
149 lines (119 loc) · 6.01 KB
/
ResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 12 01:09:17 2016
@author: stephen
"""
from tensorflow import keras
import numpy as np
import pandas as pd
np.random.seed(813306)
def build_resnet(input_shape, n_feature_maps, nb_classes):
print ('build conv_x')
x = keras.layers.Input(shape=(input_shape))
conv_x = keras.layers.BatchNormalization()(x)
conv_x = keras.layers.Conv2D(n_feature_maps, 8, 1, padding='same')(conv_x)
conv_x = keras.layers.BatchNormalization()(conv_x)
conv_x = keras.layers.Activation('relu')(conv_x)
print ('build conv_y')
conv_y = keras.layers.Conv2D(n_feature_maps, 5, 1, padding='same')(conv_x)
conv_y = keras.layers.BatchNormalization()(conv_y)
conv_y = keras.layers.Activation('relu')(conv_y)
print ('build conv_z')
conv_z = keras.layers.Conv2D(n_feature_maps, 3, 1, padding='same')(conv_y)
conv_z = keras.layers.BatchNormalization()(conv_z)
is_expand_channels = not (input_shape[-1] == n_feature_maps)
if is_expand_channels:
shortcut_y = keras.layers.Conv2D(n_feature_maps, 1, 1,padding='same')(x)
shortcut_y = keras.layers.BatchNormalization()(shortcut_y)
else:
shortcut_y = keras.layers.BatchNormalization()(x)
print ('Merging skip connection')
y = keras.layers.Add()([shortcut_y, conv_z])
y = keras.layers.Activation('relu')(y)
print ('build conv_x')
x1 = y
conv_x = keras.layers.Conv2D(n_feature_maps*2, 8, 1, padding='same')(x1)
conv_x = keras.layers.BatchNormalization()(conv_x)
conv_x = keras.layers.Activation('relu')(conv_x)
print ('build conv_y')
conv_y = keras.layers.Conv2D(n_feature_maps*2, 5, 1, padding='same')(conv_x)
conv_y = keras.layers.BatchNormalization()(conv_y)
conv_y = keras.layers.Activation('relu')(conv_y)
print ('build conv_z')
conv_z = keras.layers.Conv2D(n_feature_maps*2, 3, 1, padding='same')(conv_y)
conv_z = keras.layers.BatchNormalization()(conv_z)
is_expand_channels = not (input_shape[-1] == n_feature_maps*2)
if is_expand_channels:
shortcut_y = keras.layers.Conv2D(n_feature_maps*2, 1, 1,padding='same')(x1)
shortcut_y = keras.layers.BatchNormalization()(shortcut_y)
else:
shortcut_y = keras.layers.BatchNormalization()(x1)
print ('Merging skip connection')
y = keras.layers.Add()([shortcut_y, conv_z])
y = keras.layers.Activation('relu')(y)
print ('build conv_x')
x1 = y
conv_x = keras.layers.Conv2D(n_feature_maps*2, 8, 1, padding='same')(x1)
conv_x = keras.layers.BatchNormalization()(conv_x)
conv_x = keras.layers.Activation('relu')(conv_x)
print ('build conv_y')
conv_y = keras.layers.Conv2D(n_feature_maps*2, 5, 1, padding='same')(conv_x)
conv_y = keras.layers.BatchNormalization()(conv_y)
conv_y = keras.layers.Activation('relu')(conv_y)
print ('build conv_z')
conv_z = keras.layers.Conv2D(n_feature_maps*2, 3, 1, padding='same')(conv_y)
conv_z = keras.layers.BatchNormalization()(conv_z)
is_expand_channels = not (input_shape[-1] == n_feature_maps*2)
if is_expand_channels:
shortcut_y = keras.layers.Conv2D(n_feature_maps*2, 1, 1,padding='same')(x1)
shortcut_y = keras.layers.BatchNormalization()(shortcut_y)
else:
shortcut_y = keras.layers.BatchNormalization()(x1)
print ('Merging skip connection')
y = keras.layers.Add()([shortcut_y, conv_z])
y = keras.layers.Activation('relu')(y)
full = keras.layers.GlobalAveragePooling2D()(y)
out = keras.layers.Dense(nb_classes, activation='softmax')(full)
print (' -- model was built.')
return x, out
def readucr(filename):
data = np.loadtxt(filename, delimiter = ',')
Y = data[:,0]
X = data[:,1:]
return X, Y
nb_epochs = 1500
#flist = ['Adiac', 'Beef', 'CBF', 'ChlorineConcentration', 'CinC_ECG_torso', 'Coffee', 'Cricket_X', 'Cricket_Y', 'Cricket_Z',
#'DiatomSizeReduction', 'ECGFiveDays', 'FaceAll', 'FaceFour', 'FacesUCR', '50words', 'FISH', 'Gun_Point', 'Haptics',
#'InlineSkate', 'ItalyPowerDemand', 'Lighting2', 'Lighting7', 'MALLAT', 'MedicalImages', 'MoteStrain', 'NonInvasiveFatalECG_Thorax1',
#'NonInvasiveFatalECG_Thorax2', 'OliveOil', 'OSULeaf', 'SonyAIBORobotSurface', 'SonyAIBORobotSurfaceII', 'StarLightCurves', 'SwedishLeaf', 'Symbols',
#'synthetic_control', 'Trace', 'TwoLeadECG', 'Two_Patterns', 'uWaveGestureLibrary_X', 'uWaveGestureLibrary_Y', 'uWaveGestureLibrary_Z', 'wafer', 'WordsSynonyms', 'yoga']
flist = ['Adiac']
for each in flist:
fname = each
x_train, y_train = readucr(fname+'/'+fname+'_TRAIN')
x_test, y_test = readucr(fname+'/'+fname+'_TEST')
nb_classes = len(np.unique(y_test))
batch_size = min(x_train.shape[0]/10, 16)
y_train = (y_train - y_train.min())/(y_train.max()-y_train.min())*(nb_classes-1)
y_test = (y_test - y_test.min())/(y_test.max()-y_test.min())*(nb_classes-1)
Y_train = keras.utils.to_categorical(y_train, nb_classes)
Y_test = keras.utils.to_categorical(y_test, nb_classes)
x_train_mean = x_train.mean()
x_train_std = x_train.std()
x_train = (x_train - x_train_mean)/(x_train_std)
x_test = (x_test - x_train_mean)/(x_train_std)
x_train = x_train.reshape(x_train.shape + (1,1,))
x_test = x_test.reshape(x_test.shape + (1,1,))
x , y = build_resnet(x_train.shape[1:], 64, nb_classes)
model = keras.models.Model(inputs=x, outputs=y)
optimizer = keras.optimizers.Adam()
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.5,
patience=50, min_lr=0.0001)
hist = model.fit(x_train, Y_train, batch_size=batch_size, nb_epoch=nb_epochs,
verbose=1, validation_data=(x_test, Y_test), callbacks = [reduce_lr])
log = pd.DataFrame(hist.history)
print(log.loc[log['loss'].idxmin]['loss'], log.loc[log['loss'].idxmin]['val_acc'])