forked from grimme-lab/std2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadxtb.f
executable file
·201 lines (178 loc) · 5.53 KB
/
readxtb.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
! This file is part of stda.
!
! Copyright (C) 2013-2019 Stefan Grimme
!
! stda is free software: you can redistribute it and/or modify it under
! the terms of the GNU Lesser General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! stda is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Lesser General Public License for more details.
!
! You should have received a copy of the GNU Lesser General Public License
! along with stda. If not, see <https://www.gnu.org/licenses/>.
!
ccccccccccccccccccccccccccccccccc
! read out xTB input c
ccccccccccccccccccccccccccccccccc
! ncent : # atoms
! nmo : # MOs
! nbf : # AOs
! nprims : # primitives (in total)
! co(ncent,1:3) : Cartesian coordinates
! co(ncent,4) : nuclear charge
! cxip(nprims) : contraction coefficients of primitives
! exip(nprims) : exponents of primitives
! cmo(nbf,nmo) : LCAO-MO coefficients
! eps(nmo) : orbital eigenvalues
! occ(nmo) : occupation # of MO
! ipty(nprims) : angular momentum of primitive function
! ipao(nbf) : # primitives in contracted AO
! ipat(ncent) : # of atom, the primitive is located on
subroutine readxtb0(imethod,ncent,nmo,nbf,nprims)
implicit double precision (a-h,o-z)
integer, intent( out ) :: imethod,ncent,nmo,nbf,nprims
! temporary variables
integer ii,i,j,k,maxlen
logical ex
write(*,*)
write(*,*)'reading: wfn.xtb'
call header('M O / A O I N P U T ',0)
inquire(file='wfn.xtb',exist=ex)
if(.not.ex)then
write(*,*)'file: wfn.xtb not found'
stop 'input file not found'
endif
iwfn=29
open(unit=iwfn,file='wfn.xtb',form='unformatted',
. status='old')
rewind(iwfn)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
! read rhf/uhf flag c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
read(iwfn)imethod
! read dimensions
read(iwfn)ncent,nbf,nmo,nprims
close(29)
! determine length of ncent integer (for fitting printout with next routine to prevent ***)
maxlen=0
call lenint(ncent,maxlen)
write(*,'(a)',advance='no')'atom '
do i=1,maxlen-1
write(*,'(a)',advance='no')' '
enddo
write(*,'(''#'',10x,''x'',13x,''y'',
. 13x,''z'',12x,''charge'')')
return
end
subroutine readxtb(imethod,ncent,nmo,nbf,nprims,cc)
use stdacommon
implicit double precision (a-h,o-z)
integer, intent( in ) :: imethod,ncent,nmo,nbf,nprims
real*8, intent ( out ) :: cc(imethod*nbf*nmo)
! temporary variables
integer ii,i,j,k,maxlen
real*8 dum
character*79 prntfrmt
! determine length of ncent integer (for printout to prevent ***)
maxlen=0
call lenint(ncent,maxlen)
prntfrmt=' '
write(prntfrmt,'(a,i0,a)')'(2x,a2,x,i',maxlen,
. ',2x,3f14.8,3x,f10.2)'
iwfn=29
open(unit=iwfn,file='wfn.xtb',form='unformatted',
. status='old')
rewind(iwfn)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
! read rhf/uhf flag c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
read(iwfn)ii
! read dimensions
read(iwfn)ii,i,j,k
! now read coordinates
do i = 1,ncent
read(iwfn) atnam(i)
enddo
do i = 1,ncent
do j=1,3
read(iwfn) dum
co(i,j)=dum
enddo
read(iwfn) k
co(i,4)=dble(k)
if(co(i,4).lt.1.0d0) atnam(i)='xx'
enddo
*************************
* print out coordinates *
*************************
do i=1,ncent
write(*,prntfrmt) atnam(i),i,co(i,1),co(i,2),co(i,3),co(i,4)
enddo
!303 format(2x,a2,i3,2x,3f14.8,3x,f10.2)
**************************
! Now read basis set data
**************************
! ipty
do i=1,nprims
read(iwfn) k
ipty(i)=k
enddo
! ipat
do i=1,nprims
read(iwfn) k
ipat(i) = k
enddo
! ipao
do i=1,nprims
read(iwfn) k
ipao(i) = k
enddo
! first exponents, then contraction coefficients
read(iwfn) exip(1:nprims)
read(iwfn) cxip(1:nprims)
*********************
! now the mo data *
*********************
k=0
if(imethod.eq.2) then
!uks case: nmo = nmo_a + nmo_b
! alpha first, beta second
! occs + energies
k=nmo/2
read(iwfn) occ(1:k)
read(iwfn) eps(1:k)
k=k+1
read(iwfn) occ(k:nmo)
read(iwfn) eps(k:nmo)
! read MO coefficients
i=nmo*nbf/2
read(iwfn) cc(1:i)
i=i+1
k=nmo*nbf
read(iwfn) cc(i:k)
else
!rks case
! occs + energies
read(iwfn) occ(1:nmo)
read(iwfn) eps(1:nmo)
! read MO coefficients
read(iwfn) cc
endif
close(iwfn)
write(*,95) ncent,nmo,nprims,nbf
95 format (/,1x,'# atoms =',i5,/,
. 1x,'# mos =',i5,/,
. 1x,'# primitive aos =',i5,/,
. 1x,'# contracted aos =',i5,/)
if(imethod*nbf.gt.nmo)then
write(*,*) 'spherical AO basis'
else
write(*,*) 'cartesian AO basis'
endif
call etafill(nprims)
return
end