forked from mmasana/FACIL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgridsearch.py
122 lines (108 loc) · 5.67 KB
/
gridsearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import importlib
from copy import deepcopy
from argparse import ArgumentParser
import utils
class GridSearch:
"""Basic class for implementing hyperparameter grid search"""
def __init__(self, appr_ft, seed, gs_config='gridsearch_config', acc_drop_thr=0.2, hparam_decay=0.5,
max_num_searches=7):
self.seed = seed
GridSearchConfig = getattr(importlib.import_module(name=gs_config), 'GridSearchConfig')
self.appr_ft = appr_ft
self.gs_config = GridSearchConfig()
self.acc_drop_thr = acc_drop_thr
self.hparam_decay = hparam_decay
self.max_num_searches = max_num_searches
self.lr_first = 1.0
@staticmethod
def extra_parser(args):
"""Returns a parser containing the GridSearch specific parameters"""
parser = ArgumentParser()
# Configuration file with a GridSearchConfig class with all necessary args
parser.add_argument('--gridsearch-config', type=str, default='gridsearch_config', required=False,
help='Configuration file for GridSearch options (default=%(default)s)')
# Accuracy threshold drop below which the search stops for that phase
parser.add_argument('--gridsearch-acc-drop-thr', default=0.2, type=float, required=False,
help='GridSearch accuracy drop threshold (default=%(default)f)')
# Value at which hyperparameters decay
parser.add_argument('--gridsearch-hparam-decay', default=0.5, type=float, required=False,
help='GridSearch hyperparameter decay (default=%(default)f)')
# Maximum number of searched before the search stops for that phase
parser.add_argument('--gridsearch-max-num-searches', default=7, type=int, required=False,
help='GridSearch maximum number of hyperparameter search (default=%(default)f)')
return parser.parse_known_args(args)
def search_lr(self, model, t, trn_loader, val_loader):
"""Search for accuracy and best LR on finetuning"""
best_ft_acc = 0.0
best_ft_lr = 0.0
# Get general parameters and fix the ones with only one value
gen_params = self.gs_config.get_params('general')
for k, v in gen_params.items():
if not isinstance(v, list):
setattr(self.appr_ft, k, v)
if t > 0:
# LR for search are 'lr_searches' largest LR below 'lr_first'
list_lr = [lr for lr in gen_params['lr'] if lr < self.lr_first][:gen_params['lr_searches'][0]]
else:
# For first task, try larger LR range
list_lr = gen_params['lr_first']
# Iterate through the other variable parameters
for curr_lr in list_lr:
utils.seed_everything(seed=self.seed)
self.appr_ft.model = deepcopy(model)
self.appr_ft.lr = curr_lr
self.appr_ft.train(t, trn_loader, val_loader)
_, ft_acc_taw, _ = self.appr_ft.eval(t, val_loader)
if ft_acc_taw > best_ft_acc:
best_ft_acc = ft_acc_taw
best_ft_lr = curr_lr
print('Current best LR: ' + str(best_ft_lr))
self.gs_config.current_lr = best_ft_lr
print('Current best acc: {:5.1f}'.format(best_ft_acc * 100))
# After first task, keep LR used
if t == 0:
self.lr_first = best_ft_lr
return best_ft_acc, best_ft_lr
def search_tradeoff(self, appr_name, appr, t, trn_loader, val_loader, best_ft_acc):
"""Search for less-forgetting tradeoff with minimum accuracy loss"""
best_tradeoff = None
tradeoff_name = None
# Get general parameters and fix all the ones that have only one option
appr_params = self.gs_config.get_params(appr_name)
for k, v in appr_params.items():
if isinstance(v, list):
# get tradeoff name as the only one with multiple values
tradeoff_name = k
else:
# Any other hyperparameters are fixed
setattr(appr, k, v)
# If there is no tradeoff, no need to gridsearch more
if tradeoff_name is not None and t > 0:
# get starting value for trade-off hyperparameter
best_tradeoff = appr_params[tradeoff_name][0]
# iterate through decreasing trade-off values -- limit to `max_num_searches` searches
num_searches = 0
while num_searches < self.max_num_searches:
utils.seed_everything(seed=self.seed)
# Make deepcopy of the appr without duplicating the logger
appr_gs = type(appr)(deepcopy(appr.model), appr.device, exemplars_dataset=appr.exemplars_dataset)
for attr, value in vars(appr).items():
if attr == 'logger':
setattr(appr_gs, attr, value)
else:
setattr(appr_gs, attr, deepcopy(value))
# update tradeoff value
setattr(appr_gs, tradeoff_name, best_tradeoff)
# train this iteration
appr_gs.train(t, trn_loader, val_loader)
_, curr_acc, _ = appr_gs.eval(t, val_loader)
print('Current acc: ' + str(curr_acc) + ' for ' + tradeoff_name + '=' + str(best_tradeoff))
# Check if accuracy is within acceptable threshold drop
if curr_acc < ((1 - self.acc_drop_thr) * best_ft_acc):
best_tradeoff = best_tradeoff * self.hparam_decay
else:
break
num_searches += 1
else:
print('There is no trade-off to gridsearch.')
return best_tradeoff, tradeoff_name