Skip to content

Latest commit

 

History

History
37 lines (32 loc) · 1.12 KB

02_vectors.md

File metadata and controls

37 lines (32 loc) · 1.12 KB

Vectors

Addition

$$\begin{bmatrix} x_1\\ y_1 \end{bmatrix} + \begin{bmatrix} x_2\\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2\\ y_1 + y_2 \end{bmatrix}$$

Scaling

  • Scalar: a number used to scale a vector $$\alpha \begin{bmatrix} x_1\ y_2 \end{bmatrix} = \begin{bmatrix} \alpha x_1\ \alpha y_2 \end{bmatrix}$$

Unit Vectors

  • Vectors can also be represented by linear combination of unit vectors.

Basis

  • The "span" of $\overrightarrow{v}$ and $\overrightarrow{w}$ is the set of all their linear combinations $$\alpha \overrightarrow{v} + \beta \overrightarrow{w}$$ We let $\alpha$ and $\beta$ vary over all real numbers.
  • Span of $n$ vectors can be at most $\mathbb{R}^n$
  • Definition - The basis of a vector space is a set of linearly independent vectors that span the full space

Linear Dependence

  • Linear dependent - at least one vector can be represented as a linear combination of the other vectors.
  • Linear independent - $\alpha_1 \overrightarrow{v_1} + \alpha_2 \overrightarrow{v_2} + \dots + \alpha_n \overrightarrow{v_n} = 0$ if and only if $\alpha_1, \alpha_2, \dots, \alpha_n = 0$.