-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_hyper_optimizer.py
88 lines (70 loc) · 4.03 KB
/
test_hyper_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import unittest
import numpy as np
from hyper_optimizer import Parameter, HyperBaseEstimator, RandomOptimizer, SkOptOptimizer, \
SigOptOptimizer, SpearmintOptimizer, BayesOptimizer
class NegatedBranin(HyperBaseEstimator):
def __init__(self, a=0, b=1):
super(NegatedBranin, self).__init__(a=a, b=b)
def predict(self, X, y=None):
pass
def fit(self, X, y=None):
pass
def score(self, X, y=None):
import numpy as np
import math
return -(np.square(self.b - (5.1 / (4 * np.square(math.pi))) * np.square(self.a) +
(5 / math.pi) * self.a - 6) + 10 * (1 - (1. / (8 * math.pi))) * np.cos(self.a) + 10)
class TestHyperOptimizer(unittest.TestCase):
def test_random_optimizer(self):
opt = RandomOptimizer(estimator=NegatedBranin(),
params=[Parameter('a', Parameter.DOUBLE, min_bound=-5, max_bound=10),
Parameter('b', Parameter.DOUBLE, min_bound=0, max_bound=15)],
max_trials=20)
opt.fit(np.arange(100), np.arange(100))
self.assertIsInstance(opt.best_estimator_, NegatedBranin)
self.assertIsInstance(opt.cv_results_, dict)
self.assertIsInstance(opt.best_params_, dict)
print(opt.best_params_, opt.best_test_score_)
def test_skopt_optimizer(self):
opt = SkOptOptimizer(estimator=NegatedBranin(),
params=[Parameter('a', Parameter.DOUBLE, min_bound=-5, max_bound=10),
Parameter('b', Parameter.DOUBLE, min_bound=0, max_bound=15)],
max_trials=20)
opt.fit(np.arange(100), np.arange(100))
self.assertIsInstance(opt.best_estimator_, NegatedBranin)
self.assertIsInstance(opt.cv_results_, dict)
self.assertIsInstance(opt.best_params_, dict)
print(opt.best_params_, opt.best_test_score_)
def test_sigopt_optimizer(self):
# the SigOpt starter plan does not really support cross validation, so we provide a separated validation set
opt = SigOptOptimizer(estimator=NegatedBranin(),
params=[Parameter('a', Parameter.DOUBLE, min_bound=-5.0, max_bound=10.0),
Parameter('b', Parameter.DOUBLE, min_bound=0.0, max_bound=15.0)],
max_trials=20, api_token='',
cv=(np.arange(10), np.arange(10)))
opt.fit(np.arange(100), np.arange(100))
self.assertIsInstance(opt.best_estimator_, NegatedBranin)
self.assertIsInstance(opt.cv_results_, dict)
self.assertIsInstance(opt.best_params_, dict)
def test_bayes_optimizer(self):
opt = BayesOptimizer(estimator=NegatedBranin(),
params=[Parameter('a', Parameter.DOUBLE, min_bound=-5.0, max_bound=10.0),
Parameter('b', Parameter.DOUBLE, min_bound=0.0, max_bound=15.0)],
max_trials=20, cv=(np.arange(10), np.arange(10)))
opt.fit(np.arange(100), np.arange(100))
self.assertIsInstance(opt.best_estimator_, NegatedBranin)
self.assertIsInstance(opt.cv_results_, dict)
self.assertIsInstance(opt.best_params_, dict)
def test_spearmint_optimizer(self):
opt = SpearmintOptimizer(estimator=NegatedBranin(),
params=[Parameter('a', Parameter.DOUBLE, min_bound=-5.0, max_bound=10.0),
Parameter('b', Parameter.DOUBLE, min_bound=0.0, max_bound=15.0)],
max_trials=20, cv=(np.arange(10), np.arange(10)),
expr_name='spearmint_test_negated_branin')
opt.fit(np.arange(100), np.arange(100))
self.assertIsInstance(opt.best_estimator_, NegatedBranin)
self.assertIsInstance(opt.cv_results_, dict)
self.assertIsInstance(opt.best_params_, dict)
print(opt.best_params_, opt.best_test_score_)
if __name__ == '__main__':
unittest.main()