forked from benjaminrich/vpcstats
-
Notifications
You must be signed in to change notification settings - Fork 6
/
DESCRIPTION
65 lines (65 loc) · 1.94 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
Package: tidyvpc
Type: Package
Title: VPC Percentiles and Prediction Intervals
Version: 1.5.2
Authors@R: c(
person("Olivier", "Barriere", email = "[email protected]",
role = c("aut")),
person("Benjamin", "Rich", email = "[email protected]",
role = c("aut")),
person("James", "Craig", email = "[email protected]",
role = c("aut", "cre"),
comment = c(ORCID = "0000-0003-1757-9234")),
person("Samer", "Mouksassi", email = "[email protected]",
role = c("aut")),
person("Bill", "Denney", email="[email protected]",
role="ctb",
comment=c(ORCID="0000-0002-5759-428X")),
person("Michael", "Tomashevskiy", email = "[email protected]",
role = c("ctb")),
person("Kris", "Jamsen",
role = c("ctb")),
person("Certara USA, Inc.", role = c("cph","fnd"))
)
Description: Perform a Visual Predictive Check (VPC), while accounting for
stratification, censoring, and prediction correction. Using piping from
'magrittr', the intuitive syntax gives users a flexible and powerful method
to generate VPCs using both traditional binning and a new binless approach
Jamsen et al. (2018) <doi:10.1002/psp4.12319> with Additive Quantile
Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS)
prediction correction.
URL: https://github.com/certara/tidyvpc
BugReports: https://github.com/certara/tidyvpc/issues
Depends:
R (>= 3.5.0),
Imports:
data.table (>= 1.9.8),
magrittr,
quantreg (>= 5.51),
rlang (>= 0.3.0),
methods,
mgcv,
classInt,
cluster,
ggplot2,
stats,
fastDummies,
utils,
egg
Suggests:
dplyr,
KernSmooth,
knitr,
R.rsp,
nlmixr2,
shiny,
remotes,
vpc,
rmarkdown,
testthat (>= 2.1.0),
vdiffr (>= 1.0.0)
License: MIT + file LICENSE
LazyData: true
Encoding: UTF-8
VignetteBuilder: R.rsp
RoxygenNote: 7.3.2