forked from AlessandroMondin/YOLOV5m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
144 lines (130 loc) · 2.5 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
from pathlib import Path
import albumentations as A
import torch.cuda
parent_dir = Path(__file__).parent.parent
ROOT_DIR = os.path.join(parent_dir, "datasets", "coco")
# if no yaml file, this must be manually inserted
# nc is number of classes (int)
nc = None
# list containing the labels of classes: i.e. ["cat", "dog"]
labels = None
FIRST_OUT = 48
CLS_PW = 1.0
OBJ_PW = 1.0
LEARNING_RATE = 5e-4
WEIGHT_DECAY = 5e-4
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
IMAGE_SIZE = 640
CONF_THRESHOLD = 0.01 # to get all possible bboxes, trade-off metrics/speed --> we choose metrics
NMS_IOU_THRESH = 0.6
# for map 50
MAP_IOU_THRESH = 0.5
# triple check what anchors REALLY are
ANCHORS = [
[(10, 13), (16, 30), (33, 23)], # P3/8
[(30, 61), (62, 45), (59, 119)], # P4/16
[(116, 90), (156, 198), (373, 326)] # P5/32#
]
TRAIN_TRANSFORMS = A.Compose(
[
A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.0, p=0.4),
A.Transpose(p=1),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.Rotate(limit=(-20, 20), p=0.7),
A.Blur(p=0.05),
A.CLAHE(p=0.1),
A.Posterize(p=0.1),
A.ChannelShuffle(p=0.05),
],
bbox_params=A.BboxParams("yolo", min_visibility=0.4, label_fields=[],),
)
FLIR = [
'car',
'person'
]
COCO = [
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
]
nc = len(COCO)
labels = COCO