-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathblur_dataset.py
107 lines (87 loc) · 3.24 KB
/
blur_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader, Dataset
class SimpleBlur(object):
def __init__(self, kernel_size):
self.kernel_size = kernel_size
self.filter = Variable(torch.FloatTensor(
3, 3, kernel_size, kernel_size).fill_(0), requires_grad=False)
for i in range(3):
self.filter[i, i, :, :] = 1 / kernel_size / kernel_size
def __call__(self, tensor):
return F.conv2d(Variable(tensor, requires_grad=False), self.filter).data
class GaussianBlur(SimpleBlur):
def __init__(self, kernel_size, std):
self.kernel_size = kernel_size
center = (kernel_size + 1) / 2
variance = std ** 2
tmp_kernel = np.zeros((kernel_size, kernel_size))
# TODO: make efficient
for i in range(kernel_size):
for j in range(kernel_size):
tmp_kernel[i, j] = (
(i + 1 - center)**2 + (j + 1 - center)**2
) / variance * -1
tmp_kernel = np.exp(tmp_kernel)
tmp_kernel = tmp_kernel / np.sum(tmp_kernel) # make sum to one
print("Kernel:", tmp_kernel)
tmp_filter = np.zeros((3, 3, kernel_size, kernel_size))
for i in range(3):
tmp_filter[i, i, :, :] = tmp_kernel
self.filter = Variable(
torch.from_numpy(tmp_filter), requires_grad=False
).float()
DEFAULT_TRANSFORMS = transforms.Compose([
transforms.Scale(256),
transforms.RandomSizedCrop(132),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
class BlurDataset(Dataset):
def __init__(self, path, blur, transforms=DEFAULT_TRANSFORMS):
self.img_folder = ImageFolder(path, transforms)
self.shrink_size = blur.kernel_size // 2
self.blur = blur
def __getitem__(self, idx):
X, _ = self.img_folder[idx]
return (
self.blur(X.unsqueeze(0)).squeeze(0),
X[:, self.shrink_size:-self.shrink_size,
self.shrink_size:-self.shrink_size]
)
def __len__(self):
return len(self.img_folder)
class InverseNormalize(object):
"""Normalize an tensor image with mean and standard deviation.
Given mean: (R, G, B) and std: (R, G, B),
will normalize each channel of the torch.*Tensor, i.e.
channel = (channel - mean) / std
Args:
mean (sequence): Sequence of means for R, G, B channels respecitvely.
std (sequence): Sequence of standard deviations for R, G, B channels
respecitvely.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
# TODO: make efficient
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
return tensor
INVERSE_NORMALIZE = InverseNormalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])