-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
278 lines (236 loc) · 9.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from __future__ import print_function
import argparse
import os
from math import log10
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import DataLoader
from networks import define_G, define_D, print_network
# from data import get_training_set, get_test_set
import torch.backends.cudnn as cudnn
from PIL import Image
from tqdm import tqdm
from blur_dataset import BlurDataset, GaussianBlur, INVERSE_NORMALIZE
# Training settings
parser = argparse.ArgumentParser(description='pix2pix-PyTorch-implementation')
parser.add_argument('--dataset', type=str, default=r"/mnt/SSD_Data/mirflickr/",
help='dataset path')
parser.add_argument('--batchSize', type=int, default=1,
help='training batch size')
parser.add_argument('--testBatchSize', type=int,
default=1, help='testing batch size')
parser.add_argument('--nEpochs', type=int, default=200,
help='number of epochs to train for')
parser.add_argument('--input_nc', type=int, default=3,
help='input image channels')
parser.add_argument('--output_nc', type=int, default=3,
help='output image channels')
parser.add_argument('--ngf', type=int, default=64,
help='generator filters in first conv layer')
parser.add_argument('--Diters', type=int, default=5,
help='number of D iters per each G iter')
parser.add_argument('--ndf', type=int, default=64,
help='discriminator filters in first conv layer')
parser.add_argument('--lrD', type=float, default=0.00005,
help='learning rate for Critic, default=0.00005')
parser.add_argument('--lrG', type=float, default=0.00005,
help='learning rate for Generator, default=0.00005')
parser.add_argument('--beta1', type=float, default=0.5,
help='beta1 for adam. default=0.5')
parser.add_argument('--cuda', action='store_true', help='use cuda?')
parser.add_argument('--threads', type=int, default=4,
help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123,
help='random seed to use. Default=123')
parser.add_argument('--lamb', type=int, default=10,
help='weight on L1 term in objective')
parser.add_argument('--clamp_lower', type=float, default=-0.01)
parser.add_argument('--clamp_upper', type=float, default=0.01)
opt = parser.parse_args()
print(opt)
if opt.cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
cudnn.benchmark = True
torch.manual_seed(opt.seed)
if opt.cuda:
torch.cuda.manual_seed(opt.seed)
print('===> Loading datasets')
train_set = BlurDataset(opt.dataset + "train/", GaussianBlur(5, 1.5))
test_set = BlurDataset(opt.dataset + "val/", GaussianBlur(5, 1.5))
training_data_loader = DataLoader(
dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
testing_data_loader = DataLoader(
dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False)
print('===> Building model')
netG = define_G(opt.input_nc, opt.output_nc, opt.ngf, 'batch', False, [0])
netD = define_D(opt.input_nc + opt.output_nc, opt.ndf, 'batch', False, [0])
criterionL1 = nn.L1Loss()
criterionMSE = nn.MSELoss()
# setup optimizer
# optimizerG = optim.Adam(netG.parameters(), lr=opt.lrG,
# betas=(opt.beta1, 0.999))
# optimizerD = optim.Adam(netD.parameters(), lr=opt.lrD,
# betas=(opt.beta1, 0.999))
optimizerG = optim.RMSprop(netG.parameters(), lr=opt.lrG)
optimizerD = optim.RMSprop(netD.parameters(), lr=opt.lrD)
print('---------- Networks initialized -------------')
print_network(netG)
print_network(netD)
print('-----------------------------------------------')
real_a = torch.FloatTensor(opt.batchSize, opt.input_nc, 256, 256)
real_b = torch.FloatTensor(opt.batchSize, opt.output_nc, 256, 256)
if opt.cuda:
netD = netD.cuda()
netG = netG.cuda()
criterionL1 = criterionL1.cuda()
criterionMSE = criterionMSE.cuda()
real_a = real_a.cuda()
real_b = real_b.cuda()
real_a = Variable(real_a)
real_b = Variable(real_b)
TO_PIL = transforms.ToPILImage()
def save_debug_image(tensor_real, tensor_blur, tensor_recovered, filename):
if not os.path.exists("debug/"):
os.mkdir("debug/")
assert tensor_real.size() == tensor_recovered.size()
recovered = TO_PIL(
(INVERSE_NORMALIZE(tensor_recovered.cpu()) * 255).clamp(0, 255).byte())
real = TO_PIL((INVERSE_NORMALIZE(tensor_real.cpu())
* 255).clamp(0, 255).byte())
blur = TO_PIL((INVERSE_NORMALIZE(tensor_blur.cpu())
* 255).clamp(0, 255).byte())
# recovered = TO_PIL(
# (tensor_recovered.cpu() * 255).round().byte())
# real = TO_PIL((tensor_real.cpu() * 255).round().byte())
# blur = TO_PIL((tensor_blur.cpu() * 255).round().byte())
new_im = Image.new('RGB', (real.size[0] * 3 + 10, real.size[1]))
new_im.paste(blur, (0, 0))
new_im.paste(recovered, (real.size[0] + 5, 0))
new_im.paste(real, (real.size[0] * 2 + 10, 0))
new_im.save(os.path.join("debug/", filename))
def train(epoch):
one = torch.cuda.FloatTensor([1])
mone = one * -1
n_critic = 50 if epoch == 1 else opt.Diters
loss_d = []
loss_g = []
gen_iter_cnt = 0
for iteration, batch in enumerate(training_data_loader, 1):
# Prepare tensor
real_a_cpu, real_b_cpu = batch[0], batch[1]
real_a.data.resize_(real_a_cpu.size()).copy_(real_a_cpu)
real_b.data.resize_(real_b_cpu.size()).copy_(real_b_cpu)
# Generate Fake
fake_b = netG(real_a)
if n_critic:
############################
# (1) Update D network:
###########################
optimizerD.zero_grad()
# clamp parameters to a cube
for p in netD.parameters():
p.data.clamp_(opt.clamp_lower, opt.clamp_upper)
# train with real
real_ab = torch.cat((real_a, real_b), 1)
D_real = netD.forward(real_ab)
D_real = D_real.mean()
D_real.backward(mone)
# train with fake
fake_ab = torch.cat((real_a, fake_b), 1)
D_fake = netD.forward(fake_ab.detach())
D_fake = D_fake.mean()
D_fake.backward(one)
# Combined loss
loss_d.append((D_real - D_fake).data)
optimizerD.step()
n_critic -= 1
else:
############################
# (2) Update G network: maximize log(D(x,G(x))) + L1(y,G(x))
##########################
optimizerG.zero_grad()
# noise = Variable(torch.torch.randn(real_a.size()[0], 2))
# First, G(A) should fake the discriminator
fake_ab = torch.cat((real_a, fake_b), 1)
D_fake = netD.forward(fake_ab)
D_fake = D_fake.mean()
D_fake.backward(mone, retain_graph=True)
G_cost = -D_fake
# Second, G(A) = B
loss_g_l1 = criterionL1(fake_b, real_b) * opt.lamb
loss_g_l1.backward()
loss_g.append((G_cost + loss_g_l1).data)
optimizerG.step()
n_critic = opt.Diters
gen_iter_cnt += 1
if gen_iter_cnt == 20:
print("===> Epoch[{}]({}/{}): Loss_D: {:.4f} Loss_G: {:.4f}".format(
epoch, iteration, len(training_data_loader),
torch.cat(loss_d).mean(), torch.cat(loss_g).mean()))
# print(fake_b.data.mean())
loss_d = []
loss_g = []
gen_iter_cnt = 0
if iteration and iteration % 100 == 0:
save_debug_image(
real_b.data[0], real_a.data[0], fake_b.data[0],
"{}_{}.png".format(epoch, iteration))
def test():
avg_psnr, avg_loss = 0, 0
for batch in testing_data_loader:
x, target = Variable(batch[0], volatile=True), Variable(
batch[1], volatile=True)
if opt.cuda:
x = x.cuda()
target = target.cuda()
prediction = netG(x)
mse = criterionMSE(prediction, target)
psnr = 10 * log10(1 / mse.data[0])
avg_psnr += psnr
# train with fake
fake_ab = torch.cat((x, prediction), 1)
D_fake = netD.forward(fake_ab.detach())
D_fake = D_fake.data.mean()
# train with real
real_ab = torch.cat((x, target), 1)
D_real = netD.forward(real_ab)
D_real = D_real.data.mean()
# Combined loss
avg_loss += D_real - D_fake
print("===> Avg. PSNR: {:.4f} dB Avg. Loss: {:.4f}".format(
avg_psnr / len(testing_data_loader), avg_loss / len(testing_data_loader)))
def checkpoint(epoch):
if not os.path.exists("checkpoint/"):
os.mkdir("checkpoint/")
net_g_model_out_path = "checkpoint/netG_model_epoch_{}.pth".format(
epoch)
net_d_model_out_path = "checkpoint/netD_model_epoch_{}.pth".format(
epoch)
torch.save(netG, net_g_model_out_path)
torch.save(netD, net_d_model_out_path)
print("Checkpoint saved to {}".format("checkpoint/"))
# Train Generator First
print("Training generator...")
for iteration, batch in tqdm(
enumerate(training_data_loader, 1), total=len(training_data_loader)):
# Prepare tensor
real_a_cpu, real_b_cpu = batch[0], batch[1]
real_a.data.resize_(real_a_cpu.size()).copy_(real_a_cpu)
real_b.data.resize_(real_b_cpu.size()).copy_(real_b_cpu)
optimizerG.zero_grad()
# Generate Fake
fake_b = netG(real_a)
# G(A) = B
loss_g_l1 = criterionL1(fake_b, real_b)
loss_g_l1.backward()
optimizerG.step()
optimizerG = optim.RMSprop(netG.parameters(), lr=opt.lrG)
# GAN Training
for epoch in range(1, opt.nEpochs + 1):
train(epoch)
test()
if epoch % 2 == 0:
checkpoint(epoch)