-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsent_classif.py
273 lines (236 loc) · 9.13 KB
/
sent_classif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/python
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# Simple MLP classifier for sentence embeddings
import argparse
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data_utils
################################################
def LoadData(bdir, dfn, lfn, dim=1024, bsize=32, shuffle=False, quiet=False):
x = np.fromfile(bdir + dfn, dtype=np.float32, count=-1)
x.resize(x.shape[0] // dim, dim)
lbl = np.loadtxt(bdir + lfn, dtype=np.int32)
lbl.reshape(lbl.shape[0], 1)
if not quiet:
print(' - read {:d}x{:d} elements in {:s}'.format(x.shape[0], x.shape[1], dfn))
print(' - read {:d} labels [{:d},{:d}] in {:s}'
.format(lbl.shape[0], lbl.min(), lbl.max(), lfn))
D = data_utils.TensorDataset(torch.from_numpy(x), torch.from_numpy(lbl))
loader = data_utils.DataLoader(D, batch_size=bsize, shuffle=shuffle)
return loader
################################################
class Net(nn.Module):
def __init__(self, idim=1024, odim=2, nhid=None,
dropout=0.0, gpu=0, activation='TANH'):
super(Net, self).__init__()
self.gpu = gpu
modules = []
modules = []
print(' - mlp {:d}'.format(idim), end='')
if len(nhid) > 0:
if dropout > 0:
modules.append(nn.Dropout(p=dropout))
nprev = idim
for nh in nhid:
if nh > 0:
modules.append(nn.Linear(nprev, nh))
nprev = nh
if activation == 'TANH':
modules.append(nn.Tanh())
print('-{:d}t'.format(nh), end='')
elif activation == 'RELU':
modules.append(nn.ReLU())
print('-{:d}r'.format(nh), end='')
else:
raise Exception('Unrecognized activation {activation}')
if dropout > 0:
modules.append(nn.Dropout(p=dropout))
modules.append(nn.Linear(nprev, odim))
print('-{:d}, dropout={:.1f}'.format(odim, dropout))
else:
modules.append(nn.Linear(idim, odim))
print(' - mlp %d-%d'.format(idim, odim))
self.mlp = nn.Sequential(*modules)
# Softmax is included CrossEntropyLoss !
if self.gpu >= 0:
self.mlp = self.mlp.cuda()
def forward(self, x):
return self.mlp(x)
def TestCorpus(self, dset, name=' Dev', nlbl=4):
correct = 0
total = 0
self.mlp.train(mode=False)
corr = np.zeros(nlbl, dtype=np.int32)
for data in dset:
X, Y = data
Y = Y.long()
if self.gpu >= 0:
X = X.cuda()
Y = Y.cuda()
outputs = self.mlp(X)
_, predicted = torch.max(outputs.data, 1)
total += Y.size(0)
correct += (predicted == Y).int().sum()
for i in range(nlbl):
corr[i] += (predicted == i).int().sum()
print(' | {:4s}: {:5.2f}%'
.format(name, 100.0 * correct.float() / total), end='')
print(' | classes:', end='')
for i in range(nlbl):
print(' {:5.2f}'.format(100.0 * corr[i] / total), end='')
return correct, total
################################################
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="Simple sentence classifier")
# Data
parser.add_argument(
'--base-dir', '-b', type=str, required=True, metavar='PATH',
help="Directory with all the data files)")
parser.add_argument(
'--save', '-s', type=str, required=False, metavar='PATH', default="",
help="File in which to save best network")
parser.add_argument(
'--train', '-t', type=str, required=True, metavar='STR',
help="Name of training corpus")
parser.add_argument(
'--train-labels', '-T', type=str, required=True, metavar='STR',
help="Name of training corpus (labels)")
parser.add_argument(
'--dev', '-d', type=str, required=True, metavar='STR',
help="Name of development corpus")
parser.add_argument(
'--dev-labels', '-D', type=str, required=True, metavar='STR',
help="Name of development corpus (labels)")
parser.add_argument(
'--test', '-e', type=str, required=True, metavar='STR',
help="Name of test corpus without language extension")
parser.add_argument(
'--test-labels', '-E', type=str, required=True, metavar='STR',
help="Name of test corpus without language extension (labels)")
parser.add_argument(
'--lang', '-L', nargs='+', default=None,
help="List of languages to test on")
# network definition
parser.add_argument(
"--dim", "-m", type=int, default=1024,
help="Dimension of sentence embeddings")
parser.add_argument(
'--nhid', '-n', type=int, default=[0], nargs='+',
help="List of hidden layer(s) dimensions")
parser.add_argument(
"--nb-classes", "-c", type=int, default=2,
help="Number of output classes")
parser.add_argument(
'--dropout', '-o', type=float, default=0.0, metavar='FLOAT',
help="Value of dropout")
parser.add_argument(
'--nepoch', '-N', type=int, default=100, metavar='INT',
help="Number of epochs")
parser.add_argument(
'--bsize', '-B', type=int, default=128, metavar='INT',
help="Batch size")
parser.add_argument(
'--seed', '-S', type=int, default=123456789, metavar='INT',
help="Initial random seed")
parser.add_argument(
'--lr', type=float, default=0.001, metavar='FLOAT',
help='Learning rate')
parser.add_argument(
'--wdecay', type=float, default=0.0, metavar='FLOAT',
help='Weight decay')
parser.add_argument(
'--gpu', '-g', type=int, default=-1, metavar='INT',
help="GPU id (-1 for CPU)")
args = parser.parse_args()
print(' - base directory: {}'.format(args.base_dir))
args.base_dir = args.base_dir + "/"
train_loader = LoadData(args.base_dir, args.train, args.train_labels,
dim=args.dim, bsize=args.bsize, shuffle=True)
dev_loader = LoadData(args.base_dir, args.dev, args.dev_labels,
dim=args.dim, bsize=args.bsize, shuffle=False)
# set GPU and random seed
torch.cuda.set_device(args.gpu)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
print(" - setting seed to %d" % args.seed)
# create network
net = Net(idim=args.dim, odim=args.nb_classes,
nhid=args.nhid, dropout=args.dropout, gpu=args.gpu)
if args.gpu >= 0:
criterion = nn.CrossEntropyLoss().cuda()
else:
criterion = nn.CrossEntropyLoss()
#optimizer = optim.Adam(net.parameters(), weight_decay=0.0)
# default: pytorch/optim/adam.py
# Py0.4: lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False):
# Py1.0: lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False):
optimizer = optim.Adam(net.parameters(),
lr=args.lr,
weight_decay=args.wdecay,
betas=(0.9, 0.999),
eps=1e-8,
amsgrad=False)
corr_best = 0
# loop multiple times over the dataset
for epoch in range(args.nepoch):
loss_epoch = 0.0
print('Ep {:4d}'.format(epoch), end='')
# for inputs, labels in train_loader:
for i, data in enumerate(train_loader, 0):
# get the inputs
inputs, labels = data
labels = labels.long()
if args.gpu >= 0:
inputs = inputs.cuda()
labels = labels.cuda()
# zero the parameter gradients
net.zero_grad()
# forward + backward + optimize
net.train(mode=True)
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
loss_epoch += loss.item()
print(' | loss {:e}'.format(loss_epoch), end='')
corr, nbex = net.TestCorpus(dev_loader, 'Dev')
if corr >= corr_best:
print(' | saved')
corr_best = corr
net_best = copy.deepcopy(net)
else:
print('')
if 'net_best' in globals():
if args.save != '':
torch.save(net_best.cpu(), args.save)
print('Best Dev: {:d} = {:5.2f}%'
.format(corr_best, 100.0 * corr_best.float() / nbex))
if args.gpu >= 0:
net_best = net_best.cuda()
# test on (several) languages
for l in args.lang:
test_loader = LoadData(args.base_dir, args.test + '.' + l,
args.test_labels + '.' + l,
dim=args.dim, bsize=args.bsize,
shuffle=False, quiet=True)
print('Ep best | Eval Test lang {:s}'.format(l), end='')
net_best.TestCorpus(test_loader, 'Test')
print('')