-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
421 lines (345 loc) · 13.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="author" content="Joshua G. Mausolf" />
<meta name="date" content="2016-11-16" />
<title>Machine Learning in Python</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/bootstrap.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<link rel="stylesheet"
href="site_libs/highlight/default.css"
type="text/css" />
<script src="site_libs/highlight/highlight.js"></script>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs && document.readyState && document.readyState === "complete") {
window.setTimeout(function() {
hljs.initHighlighting();
}, 0);
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
</head>
<body>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
.tabbed-pane {
padding-top: 12px;
}
button.code-folding-btn:focus {
outline: none;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 51px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 56px;
margin-top: -56px;
}
.section h2 {
padding-top: 56px;
margin-top: -56px;
}
.section h3 {
padding-top: 56px;
margin-top: -56px;
}
.section h4 {
padding-top: 56px;
margin-top: -56px;
}
.section h5 {
padding-top: 56px;
margin-top: -56px;
}
.section h6 {
padding-top: 56px;
margin-top: -56px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<div class="container-fluid main-container">
<!-- tabsets -->
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = true;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.9em;
padding-left: 5px;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">My Website</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
<li>
<a href="about.html">About</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Machine Learning in Python</h1>
<h4 class="author"><em>Joshua G. Mausolf</em></h4>
<h4 class="date"><em>November 16, 2016</em></h4>
</div>
<div id="prerequisites" class="section level1">
<h1>Prerequisites:</h1>
<p>If you have not already done so, you will need to properly install an Anaconda distribution of Python, following the installation <a href="https://uc-cfss.github.io/setup00.html">instructions from the first week</a>.</p>
<p>I would also recommend installing a friendly text editor for editing scripts such as <a href="https://atom.io">Atom</a>. Once installed, you can start a new script by simply typing in bash <code>atom name_of_your_new_script</code>. You can edit an existing script by using <code>atom name_of_script</code>. <a href="https://www.sublimetext.com">SublimeText</a> also works similar to Atom. Alternatively, you may use a native text editor such as <a href="https://www.linux.com/learn/vim-101-beginners-guide-vim">Vim</a>, but this has a higher learning curve.</p>
<p><a href="http://stackoverflow.com/questions/22390709/open-atom-editor-from-command-line"><em>Note: If <code>atom</code> does not automatically work, try these solutions</em></a>.</p>
<p><strong>Further documentation can be found on the <a href="https://github.com/jmausolf/Python_Tutorials/tree/master/Machine_Learning">tutorial README</a>.</strong></p>
<hr />
</div>
<div id="machine-learning-tutorial" class="section level1">
<h1>Machine Learning Tutorial</h1>
<p>This module illustrates some basic machine learning in Python using Sci-Kit Learn.</p>
<p>A fundamental principal is that we do not assume <em>a priori</em> that any single model will be best for the data. Instead, we loop over multiple classifiers and parameterizations. In this way, we can run hundreds of models and select the best one on a variety of metrics, such as precision and recall.</p>
<div id="example-precision-recall-plot" class="section level3">
<h3>Example Precision-Recall Plot:</h3>
<div class="figure">
<img src="https://raw.githubusercontent.com/jmausolf/Python_Tutorials/master/Machine_Learning/results/example.png" />
</div>
<hr />
</div>
<div id="quick-start-guide" class="section level2">
<h2>Quick Start Guide</h2>
<p>Example data for this repository comes from the <a href="http://gss.norc.org/get-the-data/stata">General Social Survey (GSS) 2014</a>. More notes on the data preprocessing are detailed in the <a href="https://github.com/jmausolf/Python_Tutorials/tree/master/Machine_Learning/data">data</a> folder.</p>
<div id="to-run-the-example-link-to-tutorial-repository" class="section level5">
<h5>To run the example <a href="https://github.com/jmausolf/Python_Tutorials/tree/master/Machine_Learning">(link to tutorial repository)</a>:</h5>
<pre class="bash"><code>git clone --recursive https://github.com/jmausolf/Python_Tutorials
cd Python_Tutorials/Machine_Learning
python run.py</code></pre>
<hr />
</div>
</div>
<div id="modifying-the-details" class="section level2">
<h2>Modifying The Details</h2>
<p>To modify the default data, outcome variable, or parameters, open the <code>run.py</code> script with your favorite text editor, such as Atom, Sublime, or Vim. Here, you must specify the dataset (as .CSV), the outcome variable you would like to predict (for binary classification), and the features you would like to use to make the predictions.</p>
<div id="default-example" class="section level4">
<h4>Default Example:</h4>
<pre class="python"><code>#Define Data
dataset = 'file'
outcome = 'partyid_str_rep'
features = ['age', 'sex', 'race', 'educ', 'rincome']</code></pre>
<p>Once you edit these fields, save the script, and in terminal execute: <code>python run.py</code></p>
</div>
<div id="note" class="section level4">
<h4>Note:</h4>
<p>Your data may have hundreds of features (independent variables/predictors). If you would like to use all of them (and would rather not type write them all out explicitly) simply uses the <code>--all_features</code> option of the magic loop.</p>
<pre class="bash"><code>python run.py --all_features True</code></pre>
<p>Of course, an overlooked aspect thus far is feature development. The GSS data in the example is not in the ideal form. For example, most of the data is categorical. We might want to make indicators for each categorical column, calculate various aggregations or interactions, among other possibilities. An ideal data pipeline might make the changes to the feature set prior running this script.</p>
<hr />
</div>
</div>
<div id="looking-under-the-hood" class="section level2">
<h2>Looking Under the Hood:</h2>
<p>To understand the in’s and out’s of the magic loop <a href="https://github.com/jmausolf/magicloops/blob/master/magicloops.py">(full code here)</a>, let’s first look at a very simple example of the example data on a single model:</p>
<pre class="python"><code>from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split
import pandas as pd
# Define Data
df = pd.read_csv('data/gss2014.csv', index_col=0)
outcome = 'partyid_str_rep'
features = ['age', 'sex', 'race', 'educ', 'rincome']
# Set, X, y, Train-Test Split
X, y = df[features], df[outcome]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Build Model and Fit
clf = RandomForestClassifier(n_estimators=10, max_depth=None,
min_samples_split=2, random_state=0)
y_pred = clf.fit(X_train, y_train).predict_proba(X_test)[:,1]
# Calculate Result
result = metrics.roc_auc_score(y_test, y_pred)
print(result)</code></pre>
<p>Here, we are fitting a <a href="http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier">Random Forest Model</a>. Here, we set some arguments, such as <code>n_estimators=10</code>. We could have passed other parameter options such as <code>n_estimators=5</code> or <code>n_estimators=100</code>. In the magic loop, we systematically loop over a set of options for <code>n_estimators</code> and other arguments. This process is repeated for other classifiers. In this way, we can estimate hundreds of models with relative ease.</p>
<div id="now-that-we-have-covered-the-basics-fork-this-repository-and-analyze-your-own-data." class="section level5">
<h5>Now that we have covered the basics, <a href="https://github.com/jmausolf/Python_Tutorials/blob/master/README.md#fork-destination-box">FORK</a> this repository and analyze your own data.</h5>
<hr />
</div>
<div id="acknowledgements" class="section level4">
<h4>Acknowledgements</h4>
<p>This tutorial makes use of a <a href="https://github.com/jmausolf/magicloops">modified submodule</a>, originally forked from <span class="citation">@rayidghani</span> <a href="https://github.com/rayidghani/magicloops">magicloops</a>. It has been updated to run in Python2 or Python3. In addition, my modified fork modifies the plotting code and several of the functions to take a user-specified dataset, outcome variable, and features.</p>
<hr />
</div>
</div>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
$(document).ready(function () {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>