-
Notifications
You must be signed in to change notification settings - Fork 101
/
main.py
643 lines (544 loc) · 26.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import argparse
import os
import shutil
import time
import math
import random
import torch
import torch.distributed as dist
import torchvision.models as models
import numpy as np
from utils.dist_utils import dist_print, DistSummaryWriter
import datetime
from utils.utils import CosineAnnealingLR, CrossEntropyLabelSmooth
from model.fcanet import fcanet34, fcanet50, fcanet101, fcanet152
try:
from nvidia.dali.plugin.pytorch import DALIClassificationIterator
from nvidia.dali.pipeline import Pipeline
import nvidia.dali.ops as ops
import nvidia.dali.types as types
except ImportError:
raise ImportError("Please install DALI from https://www.github.com/NVIDIA/DALI to run this example.")
def parse():
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name])) + ['fcanet34', 'fcanet50', 'fcanet101', 'fcanet152']
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR', nargs='*',
help='path(s) to dataset (if one path is provided, it is assumed\n' +
'to have subdirectories named "train" and "val"; alternatively,\n' +
'train and val paths can be specified directly by providing both paths as arguments)')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size per process (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='Initial learning rate. Will be scaled by <global batch size>/256: args.lr = args.lr*float(args.batch_size*args.world_size)/256. A warmup schedule will also be applied over the first 5 epochs.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=50, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--evaluate_model', type=str, default=None, help='the model for evaluation')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--dali_cpu', action='store_true',
help='Runs CPU based version of DALI pipeline.')
parser.add_argument('--prof', default=-1, type=int,
help='Only run 10 iterations for profiling.')
parser.add_argument('--deterministic', action='store_true')
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument('--sync_bn', action='store_true',
help='enabling apex sync BN.')
parser.add_argument('--opt-level', type=str, default=None)
parser.add_argument('--keep-batchnorm-fp32', type=str, default=None)
parser.add_argument('--loss-scale', type=str, default=None)
parser.add_argument('--channels-last', type=bool, default=False)
parser.add_argument('-t', '--test', action='store_true',
help='Launch test mode with preset arguments')
parser.add_argument('--work_dir', type=str, default = './log')
parser.add_argument('--note', type=str, default='')
args = parser.parse_args()
return args
# item() is a recent addition, so this helps with backward compatibility.
def to_python_float(t):
if hasattr(t, 'item'):
return t.item()
else:
return t[0]
class HybridTrainPipe(Pipeline):
def __init__(self, batch_size, num_threads, device_id, data_dir, crop,
shard_id, num_shards, dali_cpu=False):
super(HybridTrainPipe, self).__init__(batch_size,
num_threads,
device_id,
seed=12 + device_id)
self.input = ops.FileReader(file_root=data_dir,
shard_id=args.local_rank,
num_shards=args.world_size,
random_shuffle=True,
pad_last_batch=True)
#let user decide which pipeline works him bets for RN version he runs
dali_device = 'cpu' if dali_cpu else 'gpu'
decoder_device = 'cpu' if dali_cpu else 'mixed'
# This padding sets the size of the internal nvJPEG buffers to be able to handle all images from full-sized ImageNet
# without additional reallocations
device_memory_padding = 211025920 if decoder_device == 'mixed' else 0
host_memory_padding = 140544512 if decoder_device == 'mixed' else 0
self.decode = ops.ImageDecoderRandomCrop(device=decoder_device, output_type=types.RGB,
device_memory_padding=device_memory_padding,
host_memory_padding=host_memory_padding,
random_aspect_ratio=[0.8, 1.25],
random_area=[0.1, 1.0],
num_attempts=100)
self.res = ops.Resize(device=dali_device,
resize_x=crop,
resize_y=crop,
interp_type=types.INTERP_TRIANGULAR)
self.cmnp = ops.CropMirrorNormalize(device="gpu",
dtype=types.FLOAT,
output_layout=types.NCHW,
crop=(crop, crop),
mean=[0.485 * 255,0.456 * 255,0.406 * 255],
std=[0.229 * 255,0.224 * 255,0.225 * 255])
self.coin = ops.CoinFlip(probability=0.5)
dist_print('DALI "{0}" variant'.format(dali_device))
def define_graph(self):
rng = self.coin()
self.jpegs, self.labels = self.input(name="Reader")
images = self.decode(self.jpegs)
images = self.res(images)
output = self.cmnp(images.gpu(), mirror=rng)
return [output, self.labels]
class HybridValPipe(Pipeline):
def __init__(self, batch_size, num_threads, device_id, data_dir, crop,
size, shard_id, num_shards):
super(HybridValPipe, self).__init__(batch_size,
num_threads,
device_id,
seed=12 + device_id)
self.input = ops.FileReader(file_root=data_dir,
shard_id=args.local_rank,
num_shards=args.world_size,
random_shuffle=False,
pad_last_batch=True)
self.decode = ops.ImageDecoder(device="cpu", output_type=types.RGB)
self.res = ops.Resize(device="cpu",
resize_shorter=size,
interp_type=types.INTERP_TRIANGULAR)
self.cmnp = ops.CropMirrorNormalize(device="gpu",
dtype=types.FLOAT,
output_layout=types.NCHW,
crop=(crop, crop),
mean=[0.485 * 255,0.456 * 255,0.406 * 255],
std=[0.229 * 255,0.224 * 255,0.225 * 255])
def define_graph(self):
self.jpegs, self.labels = self.input(name="Reader")
images = self.decode(self.jpegs)
images = self.res(images)
output = self.cmnp(images.gpu())
return [output, self.labels]
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def main():
time_stamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
global best_prec1, args
best_prec1 = 0
args = parse()
if not len(args.data):
raise Exception("error: No data set provided")
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
# make apex optional
if args.opt_level is not None or args.sync_bn:
try:
global DDP, amp, optimizers, parallel
from apex.parallel import DistributedDataParallel as DDP
from apex import amp, optimizers, parallel
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")
if args.opt_level is None and args.distributed:
from torch.nn.parallel import DistributedDataParallel as DDP
dist_print("opt_level = {}".format(args.opt_level))
dist_print("keep_batchnorm_fp32 = {}".format(args.keep_batchnorm_fp32), type(args.keep_batchnorm_fp32))
dist_print("loss_scale = {}".format(args.loss_scale), type(args.loss_scale))
dist_print("\nCUDNN VERSION: {}\n".format(torch.backends.cudnn.version()))
torch.backends.cudnn.benchmark = True
best_prec1 = 0
if args.deterministic:
# cudnn.benchmark = False
# cudnn.deterministic = True
# torch.manual_seed(args.local_rank)
torch.set_printoptions(precision=10)
setup_seed(0)
args.gpu = 0
args.world_size = 1
if args.distributed:
args.gpu = args.local_rank
torch.cuda.set_device(args.gpu)
torch.distributed.init_process_group(backend='nccl',
init_method='env://')
args.world_size = torch.distributed.get_world_size()
args.total_batch_size = args.world_size * args.batch_size
assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled."
args.work_dir = os.path.join(args.work_dir, time_stamp + args.arch + args.note)
if not args.evaluate:
if args.local_rank == 0:
os.makedirs(args.work_dir)
logger = DistSummaryWriter(args.work_dir)
# create model
if args.pretrained:
dist_print("=> using pre-trained model '{}'".format(args.arch))
if args.arch == 'fcanet34':
model = fcanet34(pretrained=True)
elif args.arch == 'fcanet50':
model = fcanet50(pretrained=True)
elif args.arch == 'fcanet101':
model = fcanet101(pretrained=True)
elif args.arch == 'fcanet152':
model = fcanet152(pretrained=True)
else:
model = models.__dict__[args.arch](pretrained=True)
else:
dist_print("=> creating model '{}'".format(args.arch))
if args.arch == 'fcanet34':
model = fcanet34()
elif args.arch == 'fcanet50':
model = fcanet50()
elif args.arch == 'fcanet101':
model = fcanet101()
elif args.arch == 'fcanet152':
model = fcanet152()
else:
model = models.__dict__[args.arch]()
if args.sync_bn:
dist_print("using apex synced BN")
model = parallel.convert_syncbn_model(model)
if hasattr(torch, 'channels_last') and hasattr(torch, 'contiguous_format'):
if args.channels_last:
memory_format = torch.channels_last
else:
memory_format = torch.contiguous_format
model = model.cuda().to(memory_format=memory_format)
else:
model = model.cuda()
# Scale learning rate based on global batch size
args.lr = args.lr*float(args.batch_size*args.world_size)/256.
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# Initialize Amp. Amp accepts either values or strings for the optional override arguments,
# for convenient interoperation with argparse.
if args.opt_level is not None:
model, optimizer = amp.initialize(model, optimizer,
opt_level=args.opt_level,
keep_batchnorm_fp32=args.keep_batchnorm_fp32,
loss_scale=args.loss_scale
)
# For distributed training, wrap the model with apex.parallel.DistributedDataParallel.
# This must be done AFTER the call to amp.initialize. If model = DDP(model) is called
# before model, ... = amp.initialize(model, ...), the call to amp.initialize may alter
# the types of model's parameters in a way that disrupts or destroys DDP's allreduce hooks.
if args.distributed:
# By default, apex.parallel.DistributedDataParallel overlaps communication with
# computation in the backward pass.
# model = DDP(model)
# delay_allreduce delays all communication to the end of the backward pass.
if args.opt_level is not None:
model = DDP(model, delay_allreduce=True)
else:
model = DDP(model, device_ids=[args.local_rank], output_device = args.local_rank)
# Optionally resume from a checkpoint
if args.resume:
# Use a local scope to avoid dangling references
def resume():
if os.path.isfile(args.resume):
dist_print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
dist_print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
dist_print("=> no checkpoint found at '{}'".format(args.resume))
resume()
if args.evaluate:
assert args.evaluate_model is not None
dist_print("=> loading checkpoint '{}' for eval".format(args.evaluate_model))
checkpoint = torch.load(args.evaluate_model, map_location = lambda storage, loc: storage.cuda(args.gpu))
if 'state_dict' in checkpoint.keys():
model.load_state_dict(checkpoint['state_dict'])
else:
state_dict_with_module = {}
for k,v in checkpoint.items():
state_dict_with_module['module.'+k] = v
model.load_state_dict(state_dict_with_module)
# Data loading code
if len(args.data) == 1:
traindir = os.path.join(args.data[0], 'train')
valdir = os.path.join(args.data[0], 'val')
else:
traindir = args.data[0]
valdir= args.data[1]
if(args.arch == "inception_v3"):
raise RuntimeError("Currently, inception_v3 is not supported by this example.")
# crop_size = 299
# val_size = 320 # I chose this value arbitrarily, we can adjust.
else:
crop_size = 224
val_size = 256
pipe = HybridTrainPipe(batch_size=args.batch_size,
num_threads=args.workers,
device_id=args.local_rank,
data_dir=traindir,
crop=crop_size,
dali_cpu=args.dali_cpu,
shard_id=args.local_rank,
num_shards=args.world_size)
pipe.build()
train_loader = DALIClassificationIterator(pipe, reader_name="Reader", fill_last_batch=False)
pipe = HybridValPipe(batch_size=args.batch_size,
num_threads=args.workers,
device_id=args.local_rank,
data_dir=valdir,
crop=crop_size,
size=val_size,
shard_id=args.local_rank,
num_shards=args.world_size)
pipe.build()
val_loader = DALIClassificationIterator(pipe, reader_name="Reader", fill_last_batch=False)
# criterion = nn.CrossEntropyLoss().cuda()
criterion = CrossEntropyLabelSmooth().cuda()
if args.evaluate:
validate(val_loader, model, criterion)
return
len_epoch = int(math.ceil(train_loader._size / args.batch_size))
T_max = 95 * len_epoch
warmup_iters = 5 * len_epoch
scheduler = CosineAnnealingLR(optimizer, T_max, warmup='linear', warmup_iters=warmup_iters)
total_time = AverageMeter()
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
avg_train_time = train(train_loader, model, criterion, optimizer, epoch, logger, scheduler)
total_time.update(avg_train_time)
torch.cuda.empty_cache()
# evaluate on validation set
[prec1, prec5] = validate(val_loader, model, criterion)
logger.add_scalar('Val/prec1', prec1, global_step=epoch)
logger.add_scalar('Val/prec5', prec5, global_step=epoch)
# remember best prec@1 and save checkpoint
if args.local_rank == 0:
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, work_dir = args.work_dir)
if epoch == args.epochs - 1:
dist_print('##Best Top-1 {0}\n'
'##Perf {2}'.format(
best_prec1,
args.total_batch_size / total_time.avg))
with open(os.path.join(args.work_dir, 'res.txt'), 'w') as f:
f.write('arhc: {0} \n best_prec1 {1}'.format(args.arch+args.note, best_prec1))
train_loader.reset()
val_loader.reset()
def train(train_loader, model, criterion, optimizer, epoch, logger, scheduler):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, data in enumerate(train_loader):
input = data[0]["data"]
target = data[0]["label"].squeeze().cuda().long()
train_loader_len = int(math.ceil(train_loader._size / args.batch_size))
if args.prof >= 0 and i == args.prof:
dist_print("Profiling begun at iteration {}".format(i))
torch.cuda.cudart().cudaProfilerStart()
if args.prof >= 0: torch.cuda.nvtx.range_push("Body of iteration {}".format(i))
scheduler.step()
# compute output
if args.prof >= 0: torch.cuda.nvtx.range_push("forward")
output = model(input)
if args.prof >= 0: torch.cuda.nvtx.range_pop()
loss = criterion(output, target)
# compute gradient and do SGD step
optimizer.zero_grad()
if args.prof >= 0: torch.cuda.nvtx.range_push("backward")
if args.opt_level is not None:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.prof >= 0: torch.cuda.nvtx.range_pop()
if args.prof >= 0: torch.cuda.nvtx.range_push("optimizer.step()")
optimizer.step()
if args.prof >= 0: torch.cuda.nvtx.range_pop()
if i%args.print_freq == 0:
# Every print_freq iterations, check the loss, accuracy, and speed.
# For best performance, it doesn't make sense to print these metrics every
# iteration, since they incur an allreduce and some host<->device syncs.
# Measure accuracy
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
# Average loss and accuracy across processes for logging
if args.distributed:
reduced_loss = reduce_tensor(loss.data)
prec1 = reduce_tensor(prec1)
prec5 = reduce_tensor(prec5)
else:
reduced_loss = loss.data
# to_python_float incurs a host<->device sync
losses.update(to_python_float(reduced_loss), input.size(0))
top1.update(to_python_float(prec1), input.size(0))
top5.update(to_python_float(prec5), input.size(0))
torch.cuda.synchronize()
batch_time.update((time.time() - end)/args.print_freq)
end = time.time()
if args.local_rank == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Speed {3:.3f} ({4:.3f})\t'
'Loss {loss.val:.5f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, train_loader_len,
args.world_size*args.batch_size/batch_time.val,
args.world_size*args.batch_size/batch_time.avg,
batch_time=batch_time,
loss=losses, top1=top1, top5=top5))
logger.add_scalar('Train/loss', losses.val, global_step = epoch * train_loader_len + i)
logger.add_scalar('Train/top1', top1.val, global_step = epoch * train_loader_len + i)
logger.add_scalar('Train/top5', top5.val, global_step = epoch * train_loader_len + i)
logger.add_scalar('Meta/lr', optimizer.param_groups[0]['lr'], global_step=epoch * train_loader_len + i)
# Pop range "Body of iteration {}".format(i)
if args.prof >= 0: torch.cuda.nvtx.range_pop()
if args.prof >= 0 and i == args.prof + 10:
print("Profiling ended at iteration {}".format(i))
torch.cuda.cudart().cudaProfilerStop()
quit()
return batch_time.avg
@torch.no_grad()
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, data in enumerate(val_loader):
input = data[0]["data"]
target = data[0]["label"].squeeze().cuda().long()
val_loader_len = int(val_loader._size / args.batch_size)
# compute output
with torch.no_grad():
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
if args.distributed:
reduced_loss = reduce_tensor(loss.data)
prec1 = reduce_tensor(prec1)
prec5 = reduce_tensor(prec5)
else:
reduced_loss = loss.data
losses.update(to_python_float(reduced_loss), input.size(0))
top1.update(to_python_float(prec1), input.size(0))
top5.update(to_python_float(prec5), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# TODO: Change timings to mirror train().
if args.local_rank == 0 and i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Speed {2:.3f} ({3:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, val_loader_len,
args.world_size * args.batch_size / batch_time.val,
args.world_size * args.batch_size / batch_time.avg,
batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
dist_print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return [top1.avg, top5.avg]
def save_checkpoint(state, is_best, work_dir = './', filename='checkpoint.pth.tar'):
torch.save(state, os.path.join(work_dir, filename))
if is_best:
shutil.copyfile(os.path.join(work_dir, filename), os.path.join(work_dir, 'model_best.pth.tar'))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
"""LR schedule that should yield 76% converged accuracy with batch size 256"""
factor = epoch // 30
if epoch >= 80:
factor = factor + 1
lr = args.lr*(0.1**factor)
# """Warmup"""
if epoch < 5:
lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# scheduler.step()
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= args.world_size
return rt
if __name__ == '__main__':
main()