You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello, thanks for your great work!
I came up with this problem while run "demo.py":
before pool fea: torch.Size([1, 512, 17, 50])
torch.Size([1, 8, 17, 50])
Traceback (most recent call last):
File "demo.py", line 116, in
pred = net(imgs)
File "/root/miniconda3/envs/lane-det/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/root/autodl-tmp/Ultra-Fast-Lane-Detection-V2/model/model_culane.py", line 58, in forward
fea = fea.view(-1, self.input_dim)
RuntimeError: shape '[-1, 4000]' is invalid for input of size 6800
I modified "demo.py" for predict imgs, but maybe it isn't the question. Could u give me some advice? Here is my modified "demo.py"
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
args, cfg = merge_config()
cfg.batch_size = 1
print('setting batch_size to 1 for demo generation')
dist_print('start testing...')
assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide']
if cfg.dataset == 'CULane':
cls_num_per_lane = 18
elif cfg.dataset == 'Tusimple':
cls_num_per_lane = 56
else:
raise NotImplementedError
net = get_model(cfg)
state_dict = torch.load(cfg.test_model, map_location='cpu')['model']
compatible_state_dict = {}
for k, v in state_dict.items():
if 'module.' in k:
compatible_state_dict[k[7:]] = v
else:
compatible_state_dict[k] = v
net.load_state_dict(compatible_state_dict, strict=False)
net.eval()
img_transforms = transforms.Compose([
transforms.Resize((int(cfg.train_height / cfg.crop_ratio), cfg.train_width)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
# 只考虑CULane数据集
if cfg.dataset == 'CULane':
img_w, img_h = 1640, 590
else:
raise NotImplementedError
single_image_path = './test_pic/00420.jpg' # culane自己的数据集
vis = cv2.imread(single_image_path)
# vis = cv2.resize(vis,(1640, 590))
vis_pil = Image.fromarray(cv2.cvtColor(vis, cv2.COLOR_BGR2RGB))
imgs = img_transforms(vis_pil).unsqueeze(0).cuda() # 确保图像是批处理形式,并移动到CUDA设备
start_time = time.time()
with torch.no_grad():
pred = net(imgs)
end_time_model = time.time()
coords = pred2coords(pred, cfg.row_anchor, cfg.col_anchor, original_image_width = img_w, original_image_height = img_h)
for lane in coords:
for coord in lane:
cv2.circle(vis, coord, 5, (0, 255, 0), -1)
output_name = "out" # 文件名前缀
file_extension = ".jpg" # 文件扩展名
output_folder = "./out_pic/" # 输出文件夹路径
file_index = 1 # 文件序号或索引
output_file_path = f"{output_folder}{output_name}_{single_image_path.split('/')[-1]}"
cv2.imwrite(output_file_path, vis)
Thanks a lot!
The text was updated successfully, but these errors were encountered:
Hello, thanks for your great work!
I came up with this problem while run "demo.py":
I modified "demo.py" for predict imgs, but maybe it isn't the question. Could u give me some advice? Here is my modified "demo.py"
Thanks a lot!
The text was updated successfully, but these errors were encountered: