Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Shape error #186

Open
showaker opened this issue Jul 19, 2024 · 0 comments
Open

Shape error #186

showaker opened this issue Jul 19, 2024 · 0 comments

Comments

@showaker
Copy link

Hello, thanks for your great work!
I came up with this problem while run "demo.py":

before pool fea: torch.Size([1, 512, 17, 50])
torch.Size([1, 8, 17, 50])
Traceback (most recent call last):
File "demo.py", line 116, in
pred = net(imgs)
File "/root/miniconda3/envs/lane-det/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, **kwargs)
File "/root/autodl-tmp/Ultra-Fast-Lane-Detection-V2/model/model_culane.py", line 58, in forward
fea = fea.view(-1, self.input_dim)
RuntimeError: shape '[-1, 4000]' is invalid for input of size 6800

I modified "demo.py" for predict imgs, but maybe it isn't the question. Could u give me some advice? Here is my modified "demo.py"

if __name__ == "__main__":
    torch.backends.cudnn.benchmark = True

    args, cfg = merge_config()
    cfg.batch_size = 1
    print('setting batch_size to 1 for demo generation')

    dist_print('start testing...')
    assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide']

    if cfg.dataset == 'CULane':
        cls_num_per_lane = 18
    elif cfg.dataset == 'Tusimple':
        cls_num_per_lane = 56
    else:
        raise NotImplementedError
    net = get_model(cfg)
    state_dict = torch.load(cfg.test_model, map_location='cpu')['model']
    compatible_state_dict = {}
    for k, v in state_dict.items():
        if 'module.' in k:
            compatible_state_dict[k[7:]] = v
        else:
            compatible_state_dict[k] = v

    net.load_state_dict(compatible_state_dict, strict=False)
    net.eval()

    img_transforms = transforms.Compose([
        transforms.Resize((int(cfg.train_height / cfg.crop_ratio), cfg.train_width)),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])
    # 只考虑CULane数据集 
    if cfg.dataset == 'CULane':
        img_w, img_h = 1640, 590
    else:
        raise NotImplementedError
    single_image_path = './test_pic/00420.jpg' # culane自己的数据集
    vis = cv2.imread(single_image_path)
    # vis = cv2.resize(vis,(1640, 590))
    vis_pil = Image.fromarray(cv2.cvtColor(vis, cv2.COLOR_BGR2RGB))
    imgs = img_transforms(vis_pil).unsqueeze(0).cuda()  # 确保图像是批处理形式,并移动到CUDA设备
    
    start_time = time.time()

    with torch.no_grad():
        pred = net(imgs)
    
    end_time_model = time.time()
    
    coords = pred2coords(pred, cfg.row_anchor, cfg.col_anchor, original_image_width = img_w, original_image_height = img_h)
    for lane in coords:
        for coord in lane:
            cv2.circle(vis, coord, 5, (0, 255, 0), -1)
    
    output_name = "out"  # 文件名前缀
    file_extension = ".jpg"  # 文件扩展名
    output_folder = "./out_pic/"  # 输出文件夹路径
    file_index = 1  # 文件序号或索引
    output_file_path = f"{output_folder}{output_name}_{single_image_path.split('/')[-1]}"
    cv2.imwrite(output_file_path, vis)

Thanks a lot!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant