forked from NLPrinceton/ALaCarte
-
Notifications
You must be signed in to change notification settings - Fork 0
/
alacarte.py
615 lines (496 loc) · 19 KB
/
alacarte.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import argparse
import os
import sys
from collections import Counter
from collections import OrderedDict
from collections import defaultdict
from gzip import GzipFile
from pathlib import Path
from tempfile import TemporaryFile
from unicodedata import category
import numpy as np
np.seterr(all='raise')
GLOVEFILE = 'glove.840B.300d.txt'
WETPATHSFILE = 'wet.paths'
TIMEOUT = 180
ATTEMPTS = 20
SPACE = ' '
CATEGORIES = {'M', 'P', 'S'}
MINENGPER = 90.0
MAXTOKLEN = 1000
FLOAT = np.float32
INT = np.uint64
def write(msg, comm=None):
'''writes to std out
Args:
msg: string
comm: MPI Communicator (will not write if not root process)
Returns:
length of msg
'''
if comm is None or not comm.rank:
sys.stdout.write(msg)
sys.stdout.flush()
return len(msg)
def ranksize(comm=None):
'''returns rank and size of MPI Communicator
Args:
comm: MPI Communicator
Returns:
int, int
'''
if comm is None:
return 0, 1
return comm.rank, comm.size
def checkpoint(comm=None):
'''waits until all processes have reached this point
Args:
comm: MPI Communicator
'''
if not comm is None:
comm.allgather(0)
def is_punctuation(char):
'''checks if unicode character is punctuation
'''
return category(char)[0] in CATEGORIES
def subtokenize(token, vocab):
'''crude tokenization based on given vocabulary
Args:
token: str with no spaces
vocab: set or dict with str keys
Returns:
subtoken generator, where subtoken is a substring of token contained in vocab or False
'''
if token in vocab:
yield token
elif len(token) == 1 or len(token) > MAXTOKLEN:
yield False
else:
# determines where to split on punctuation based on whether results are in the vocabulary
first = is_punctuation(token[0])
for i, char in zip(range(1, len(token)), token[1:]):
if first ^ is_punctuation(char):
a0 = token[:i]
b0 = token[i:]
a1 = a0 + char
b1 = b0[1:]
recurse = False
if a0 in vocab:
if not b0 in vocab:
if a1 in vocab and b1 in vocab:
a0, b0 = a1, b1
else:
recurse = True
elif a1 in vocab:
a0 = a1
recurse = not b1 in vocab
else:
a0 = False
if not b0 in vocab:
if b1 in vocab:
b0 = b1
else:
recurse = True
yield a0
for substr in subtokenize(b0, vocab):
yield substr
break
else:
yield False
class ALaCarteReader:
'''reads documents and updates context vectors
'''
def __init__(self, w2v, targets, wnd=10, checkpoint=None, interval=[0, float('inf')], comm=None):
'''initializes context vector dict as self.c2v and counts as self.target_counts
Args:
w2v: {word: vector} dict of source word embeddings
targets: iterable of targets to find context embeddings for
wnd: context window size (uses this number of words on each side)
checkpoint: path to HDF5 checkpoint file (both for recovery and dumping)
interval: corpus start and stop positions
comm: MPI Communicator
'''
self.w2v = w2v
self.combined_vocab = self.w2v
gramlens = {len(target.split()) for target in targets if target}
self.max_n = max(gramlens)
if self.max_n > 1:
self.targets = [tuple(target.split()) for target in targets]
self.target_vocab = set(self.targets)
self.combined_vocab = {word for target in targets for word in target.split()}.union(self.combined_vocab)
else:
self.targets = targets
self.target_vocab = set(targets)
self.combined_vocab = self.target_vocab.union(self.combined_vocab)
self.target_counts = Counter()
dimension = next(iter(self.w2v.values())).shape[0]
self.dimension = dimension
self.zero_vector = np.zeros(self.dimension, dtype=FLOAT)
self.c2v = defaultdict(lambda: np.zeros(dimension, dtype=FLOAT))
self.wnd = wnd
self.learn = len(self.combined_vocab) == len(self.target_vocab) and self.max_n == 1
self.datafile = checkpoint
self.comm = comm
self.rank, self.size = ranksize(comm)
position = interval[0]
if self.rank:
self.vector_array = FLOAT(0.0)
self.count_array = INT(0)
elif checkpoint is None or not os.path.isfile(checkpoint):
self.vector_array = np.zeros((len(self.targets), dimension), dtype=FLOAT)
self.count_array = np.zeros(len(self.targets), dtype=INT)
else:
import h5py
f = h5py.File(checkpoint, 'r')
position = f.attrs['position']
assert interval[0] <= position < interval[1], "checkpoint position must be inside corpus interval"
self.vector_array = np.array(f['vectors'])
self.count_array = np.array(f['counts'])
self.position = comm.bcast(position, root=0) if self.size > 1 else position
self.stop = interval[1]
def reduce(self):
'''reduces data to arrays at the root process
'''
comm, rank, size = self.comm, self.rank, self.size
targets = self.targets
c2v = self.c2v
dimension = self.dimension
vector_array = np.vstack(c2v.pop(target, np.zeros(dimension, dtype=FLOAT)) for target in targets)
target_counts = self.target_counts
count_array = np.array([target_counts.pop(target, 0) for target in targets], dtype=INT)
if rank:
comm.Reduce(vector_array, None, root=0)
comm.Reduce(count_array, None, root=0)
elif size > 1:
comm.Reduce(self.vector_array + vector_array, self.vector_array, root=0)
comm.Reduce(self.count_array + count_array, self.count_array, root=0)
else:
self.vector_array += vector_array
self.count_array += count_array
def checkpoint(self, position):
'''dumps data to HDF5 checkpoint
Args:
position: reader position
Returns:
None
'''
datafile = self.datafile
assert not datafile is None, "no checkpoint file specified"
self.reduce()
if not self.rank:
import h5py
f = h5py.File(datafile + '~tmp', 'w')
f.attrs['position'] = position
f.create_dataset('vectors', data=self.vector_array, dtype=FLOAT)
f.create_dataset('counts', data=self.count_array, dtype=INT)
f.close()
if os.path.isfile(datafile):
os.remove(datafile)
os.rename(datafile + '~tmp', datafile)
self.position = position
def target_coverage(self):
'''returns fraction of targets covered (as a string)
Args:
None
Returns:
str (empty on non-root processes)
'''
if self.rank:
return ''
return str(sum(self.count_array > 0)) + '/' + str(len(self.targets))
def read_ngrams(self, tokens):
'''reads tokens and updates context vectors
Args:
tokens: list of strings
Returns:
None
'''
import nltk
# gets location of target n-grams in document
target_vocab = self.target_vocab
max_n = self.max_n
ngrams = dict()
for n in range(1, max_n + 1):
ngrams[n] = list(filter(lambda entry: entry[1] in target_vocab, enumerate(nltk.ngrams(tokens, n))))
for n in range(1, max_n + 1):
if ngrams[n]:
# gets word embedding for each token
w2v = self.w2v
zero_vector = self.zero_vector
wnd = self.wnd
start = max(0, ngrams[n][0][0] - wnd)
vectors = [None] * start + [w2v.get(token, zero_vector) if token else zero_vector for token in
tokens[start:ngrams[n][-1][0] + n + wnd]]
c2v = self.c2v
target_counts = self.target_counts
# computes context vector around each target n-gram
for i, ngram in ngrams[n]:
c2v[ngram] += sum(vectors[max(0, i - wnd):i], zero_vector) + sum(vectors[i + n:i + n + wnd],
zero_vector)
target_counts[ngram] += 1
def read_document(self, document):
'''reads document and updates context vectors
Args:
document: str
Returns:
None
'''
# tokenizes document
combined_vocab = self.combined_vocab
tokens = [subtoken for token in document.split() for subtoken in subtokenize(token, combined_vocab)]
if self.max_n > 1:
return self.read_ngrams(tokens)
# eliminates tokens not within the window of a target word
T = len(tokens)
wnd = self.wnd
learn = self.learn
if learn:
check = bool
else:
target_vocab = self.target_vocab
check = lambda token: token in target_vocab
try:
start = max(0, next(i for i, token in enumerate(tokens) if check(token)) - wnd)
except StopIteration:
return None
stop = next(i for i, token in zip(reversed(range(T)), reversed(tokens)) if check(token)) + 1 + wnd
tokens = tokens[start:stop]
T = len(tokens)
# gets word embedding for each token
w2v = self.w2v
zero_vector = self.zero_vector
vectors = [w2v.get(token, zero_vector) if token else zero_vector for token in tokens]
context_vector = sum(vectors[:wnd + 1])
c2v = self.c2v
target_counts = self.target_counts
# slides window over document
for i, (token, vector) in enumerate(zip(tokens, vectors)):
if token and (learn or token in target_vocab):
c2v[token] += context_vector - vector
target_counts[token] += 1
if i < T - 1:
right_index = wnd + 1 + i
if right_index < T and tokens[right_index]:
context_vector += vectors[right_index]
left_index = i - wnd
if left_index > -1 and tokens[left_index]:
context_vector -= vectors[left_index]
def is_english(document):
'''checks if document is in English
'''
import cld2
reliable, _, details = cld2.detect(document, bestEffort=True)
return reliable and details[0][0] == 'ENGLISH' and details[0][2] >= MINENGPER
def make_printable(string):
'''returns printable version of given string
'''
return ''.join(filter(str.isprintable, string))
def process_documents(func):
'''wraps document generator function to handle English-checking and lower-casing and to return data arrays
'''
def wrapper(string, reader, verbose=False, comm=None, english=False, lower=False):
generator = (make_printable(document) for document in func(string, reader, verbose=verbose, comm=comm))
if english:
generator = (document for document in generator if is_english(document))
if lower:
generator = (document.lower() for document in generator)
for i, document in enumerate(generator):
reader.read_document(document)
reader.reduce()
write('\rFinished Processing Corpus; Targets Covered: ' + reader.target_coverage() + ' \n', comm)
return reader.vector_array, reader.count_array
return wrapper
@process_documents
def wet_documents(pathsfile, reader, verbose=False, comm=None):
'''iterates over Common Crawl WET files
Args:
pathsfile: file with a Common Crawl filepath on each line
reader: ALaCarteReader object
verbose: display progress
comm: MPI Communicator
Returns:
str generator distributing documents across processes
'''
import boto3
import botocore
position = reader.position
if position == -1:
return
rank, size = ranksize(comm)
client = boto3.client('s3', config=botocore.client.Config(signature_version=botocore.UNSIGNED, read_timeout=TIMEOUT, retries={'max_attempts': ATTEMPTS}))
with open(pathsfile, 'r') as f:
paths = [line for line in f]
for i, path in enumerate(paths):
if i < position:
continue
if i > position and not i % 1000:
reader.reduce()
if verbose and not rank:
write('\rProcessed ' + str(i) + '/' + str(len(paths)) +
' Paths; Target Coverage: ' + reader.target_coverage(), comm)
if not reader.datafile is None:
reader.checkpoint(i)
if i >= reader.stop:
break
if i % size == rank:
temp = TemporaryFile('w+b')
client.download_fileobj('commoncrawl', path.strip(), temp)
temp.seek(0)
for document in GzipFile(fileobj=temp).read().decode('utf-8').split('WARC/1.0')[2:]:
try:
yield document[document.index('\n', document.index('Content-Length')):].strip()
except ValueError:
pass
@process_documents
def corpus_documents(corpusfile, reader, verbose=False, comm=None):
'''iterates of text document
Args:
corpusfile: text file with a document on each line
reader: ALaCarteReader object
verbose: display progress
comm: MPI Communicator
Returns:
str generator distributing documents across processes
'''
position = reader.position
rank, size = ranksize(comm)
with open(corpusfile, 'r') as f:
f.seek(position)
line = f.readline()
i = 0
while line:
if i and not i % 1000000:
reader.reduce()
if verbose and not rank:
write('\rProcessed ' + str(i) + ' Lines; Target Coverage: ' + reader.target_coverage(), comm)
if not reader.datafile is None:
reader.checkpoint(f.tell())
if i >= reader.stop:
break
if i % size == rank:
yield line.strip()
line = f.readline()
i += 1
def load_vectors(vectorfile):
'''loads word embeddings from .txt
Args:
vectorfile: .txt file in "word float ... " format
Returns:
(word, vector) generator
'''
words = set()
with open(vectorfile, 'r') as f:
for line in f:
index = line.index(SPACE)
word = make_printable(line[:index])
if not word in words:
words.add(word)
yield word, np.fromstring(line[index + 1:], dtype=FLOAT, sep=SPACE)
def dump_vectors(generator, vectorfile):
'''dumps embeddings to .txt
Args:
generator: (gram, vector) generator; vector can also be a scalar
vectorfile: .txt file
Returns:
None
'''
with open(vectorfile, 'w') as f:
for gram, vector in generator:
numstr = ' '.join(map(str, vector.tolist())) if vector.shape else str(vector)
f.write(gram + ' ' + numstr + '\n')
def dump_targets(generator, targetfile):
with open(targetfile, 'w') as f:
f.writelines([f'{target}\n' for target in generator])
def parse():
'''parses command-line arguments
'''
parser = argparse.ArgumentParser(prog='python alacarte.py')
parser.add_argument('dumproot', help='root of file names for intermediate and output dumps', type=str)
parser.add_argument('-m', '--matrix', help='binary file for a la carte transform matrix', type=str)
parser.add_argument('-v', '--verbose', action='store_true', help='display progess')
parser.add_argument('-r', '--restart', help='HDF5 checkpoint file for restarting', type=str)
parser.add_argument('-i', '--interval', nargs=2, default=['0', 'inf'], help='corpus position interval')
parser.add_argument('-s', '--source', default=GLOVEFILE, help='source word embedding file', type=str)
parser.add_argument('-p', '--paths', default=WETPATHSFILE, help='location of WET paths file', type=str)
parser.add_argument('-c', '--corpus', nargs='*', help='list of text corpus files')
parser.add_argument('-t', '--targets', help='target word file', type=str)
parser.add_argument('-w', '--window', default=10, help='size of context window', type=int)
parser.add_argument('-e', '--english', action='store_true', help='check documents for English')
parser.add_argument('-l', '--lower', action='store_true', help='lower-case documents')
parser.add_argument('--create-new', action='store_true', help='Also create embeddings for words that are already in'
'the original embeddings.')
return parser.parse_args()
def main(args, comm=None):
'''a la carte embedding induction
'''
rank, size = ranksize(comm)
root = args.dumproot
matrixfile = root + '_transform.bin' if args.matrix is None else args.matrix
write('Source Embeddings: ' + args.source + '\n', comm)
w2v = OrderedDict(load_vectors(args.source))
if args.targets is None:
write('No Targets Given; Will Learn Induction Matrix and Dump to ' + matrixfile + '\n', comm)
targets = w2v.keys()
M = None
else:
write('Loading Targets from ' + args.targets + '\n', comm)
with open(args.targets, 'r') as f:
if args.create_new:
targets = [target for target in (line.strip() for line in f)]
else:
targets = [target for target in (line.strip() for line in f) if not target in w2v]
assert len(targets), "no uncovered targets found"
write('Induction Matrix: ' + matrixfile + '\n', comm)
assert os.path.isfile(matrixfile), "induction matrix must be given if targets given"
M = np.fromfile(matrixfile, dtype=FLOAT)
d = int(np.sqrt(M.shape[0]))
assert d == next(iter(w2v.values())).shape[0], "induction matrix dimension and word embedding dimension must be the same"
M = M.reshape(d, d)
if args.restart:
write('Checkpoint: ' + args.restart + '\n', comm)
interval = [int(args.interval[0]), int(args.interval[1])] if args.interval[1].isdigit() else [int(args.interval[0]), float( args.interval[1])]
alc = ALaCarteReader(w2v, targets, wnd=args.window, checkpoint=args.restart, interval=interval, comm=comm)
write('Building Context Vectors\n', comm)
if args.corpus:
context_vectors = FLOAT(0.0)
target_counts = INT(0)
for corpus in args.corpus:
write('Source Corpus: ' + corpus + '\n', comm)
context_vectors, target_counts = corpus_documents(corpus, alc, verbose=args.verbose, comm=comm, english=args.english, lower=args.lower)
if args.restart:
alc.checkpoint(0)
else:
write('Source Corpus: WET Files in ' + args.paths + '\n', comm)
context_vectors, target_counts = wet_documents(args.paths, alc, verbose=args.verbose, comm=comm, english=args.english, lower=args.lower)
if args.restart:
alc.checkpoint(-1)
if rank:
sys.exit()
nz = target_counts > 0
if M is None:
from sklearn.linear_model import LinearRegression as LR
from sklearn.preprocessing import normalize
write('Learning Induction Matrix\n', comm)
X = np.true_divide(context_vectors[nz], target_counts[nz, None], dtype=FLOAT)
Y = np.vstack(vector for vector, count in zip(w2v.values(), target_counts) if count)
M = LR(fit_intercept=False).fit(X, Y).coef_.astype(FLOAT)
write('Finished Learning Transform; Average Cosine Similarity: ' + str(np.mean(np.sum(normalize(X.dot(M.T)) * normalize(Y), axis=1))) + '\n', comm)
write('Dumping Induction Transform to ' + matrixfile + '\n', comm)
dump_vectors(zip(targets, target_counts), root + '_source_vocab_counts.txt')
context_vectors.tofile(root + '_source_context_vectors.bin')
M.tofile(matrixfile)
else:
Path(root).parent.mkdir(exist_ok=True)
write('Dumping Induced Vectors to ' + root + '_alacarte.txt\n', comm)
dump_vectors(zip(targets, target_counts), root + '_target_vocab_counts.txt')
context_vectors.tofile(root + '_target_context_vectors.bin')
context_vectors[nz] = np.true_divide(context_vectors[nz], target_counts[nz, None], dtype=FLOAT)
dump_vectors(zip(targets, context_vectors.dot(M.T)), root + '_alacarte.txt')
dump_targets(np.asarray(targets)[np.invert(nz)], root + '_not_found.txt')
if __name__ == '__main__':
try:
from mpi4py import MPI
comm = MPI.COMM_WORLD
except ImportError:
comm = None
main(parse(), comm=comm)