forked from eveningdong/DenseNet-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensenet.py
226 lines (197 loc) · 8.65 KB
/
densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import tensorflow as tf
import densenet_utils
slim = tf.contrib.slim
dense_arg_scope = densenet_utils.dense_arg_scope
@slim.add_arg_scope
def unit(inputs, depth, kernel, stride=1, rate=1, drop=0):
"""Basic unit. BN -> RELU -> CONV
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The growth rate of the composite function layer.
The num_outputs of bottleneck and transition layer.
kernel: Kernel size.
stride: The DenseNet unit's stride.
rate: An integer, rate for atrous convolution.
drop: The dropout rate of the DenseNet unit.
Returns:
The basic unit's output.
"""
net = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
net = slim.conv2d(net, num_outputs=depth, kernel_size=kernel,
stride=stride, rate=rate, scope='conv1')
if drop > 0:
net = slim.dropout(net, keep_prob=1-drop, scope='dropout')
return net
@slim.add_arg_scope
def dense(inputs, growth, bottleneck=True, stride=1, rate=1, drop=0,
outputs_collections=None, scope=None):
"""Dense layer.
Args:
inputs: A tensor of size [batch, height, width, channels].
growth: The growth rate of the dense layer.
bottleneck: Whether to use bottleneck.
stride: The DenseNet unit's stride. Determines the amount of downsampling
of the units output compared to its input.
rate: An integer, rate for atrous convolution.
drop: The dropout rate of the dense layer.
outputs_collections: Collection to add the dense layer output.
scope: Optional variable_scope.
Returns:
The dense layer's output.
"""
net = inputs
if bottleneck:
with tf.variable_scope('bottleneck', values=[net]):
net = unit(net, depth=4*growth, kernel=[1,1], stride=stride,
rate=rate, drop=drop)
with tf.variable_scope('composite', values=[net]):
net = unit(net, depth=growth, kernel=[3,3], stride=stride, rate=rate,
drop=drop)
return net
@slim.add_arg_scope
def transition(inputs, bottleneck=True, compress=0.5, stride=1, rate=1, drop=0,
outputs_collections=None, scope=None):
"""Transition layer.
Args:
inputs: A tensor of size [batch, height, width, channels].
bottleneck: Whether to use bottleneck.
compress: The compression ratio of the transition layer.
stride: The transition layer's stride. Determines the amount of downsampling of the units output compared to its input.
rate: An integer, rate for atrous convolution.
drop: The dropout rate of the transition layer.
outputs_collections: Collection to add the transition layer output.
scope: Optional variable_scope.
Returns:
The transition layer's output.
"""
net = inputs
if compress < 1:
num_outputs = math.floor(inputs.get_shape().as_list()[3] * compress)
else:
num_outputs = inputs.get_shape().as_list()[3]
net = unit(net, depth=num_outputs, kernel=[1,1], stride=stride,
rate=rate)
net = slim.avg_pool2d(net, kernel_size=[2,2], stride=2, scope='avg_pool')
if drop > 0:
net = slim.dropout(net, keep_prob=1-drop, scope='dropout')
return net
@slim.add_arg_scope
def stack_dense_blocks(inputs, blocks, growth, bottleneck=True, compress=0.5,
stride=1, rate=1, drop=0, outputs_collections=None, scope=None):
"""Dense block.
Args:
inputs: A tensor of size [batch, height, width, channels].
blocks: List of number of layers in each block.
growth: The growth rate of the dense layer.
bottleneck: Whether to use bottleneck.
compress: The compression ratio of the transition layer.
stride: The dense layer's stride. Determines the amount of downsampling of the units output compared to its input.
rate: An integer, rate for atrous convolution.
drop: The dropout rate of the transition layer.
outputs_collections: Collection to add the dense layer output.
scope: Optional variable_scope.
Returns:
The dense block's output.
"""
net = inputs
for i, num_layer in enumerate(blocks):
with tf.variable_scope('block%d' %(i+1), [net]) as sc_block:
for j in range(num_layer):
with tf.variable_scope('dense%d' %(j+1), values=[net]) as sc_layer:
identity = tf.identity(net)
dense_output= dense(net, growth, bottleneck, stride, rate, drop)
net = tf.concat([identity, dense_output], axis=3,
name='concat%d' %(j+1))
net = slim.utils.collect_named_outputs(outputs_collections,
sc_block.name, net)
if i < len(blocks) - 1:
with tf.variable_scope('trans%d' %(i+1), values=[net]) as sc_trans:
net = transition(net, bottleneck, compress, stride, rate, drop)
net = slim.utils.collect_named_outputs(outputs_collections,
sc_trans.name, net)
return net
def densenet(inputs,
blocks,
growth=32,
bottleneck=True,
compress=0.5,
stride=1,
rate=1,
drop=0,
num_classes=None,
is_training=True,
data_name='imagenet',
reuse=None,
scope=None):
"""Generator for DenseNet models.
Args:
inputs: A tensor of size [batch, height_in, width_in, channels].
blocks: A list of length equal to the number of DenseNet blocks. Each
element is a densenet_utils.DenseBlock object describing the units in the
block.
growth: The growth rate of the DenseNet unit.
bottleneck: Whether to use bottleneck.
compress: The compression ratio of the transition layer.
stride: The dense layer's stride. Determines the amount of downsampling of the units output compared to its input.
drop: The dropout rate of the transition layer.
num_classes: Number of predicted classes for classification tasks.
If 0 or None, we return the features before the logit layer.
is_training: Whether batch_norm and drop_out layers are in training mode.
data_name: Which type of model to use.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
scope: Optional variable_scope.
Returns:
net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
If num_classes is 0 or None, then net is the output of the last DenseNet
block, potentially after global average pooling. If num_classes is a
non-zero integer, net contains the pre-softmax activations.
end_points: A dictionary from components of the network to the
corresponding activation.
"""
with tf.variable_scope(scope, 'densenet', [inputs], reuse=reuse) as sc:
end_points_collection = sc.original_name_scope + '_end_points'
with slim.arg_scope([slim.conv2d, slim.batch_norm, stack_dense_blocks],
outputs_collections=end_points_collection):
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
net = inputs
if data_name is 'imagenet':
net = slim.conv2d(net, growth*2, kernel_size=[7, 7], stride=2,
scope='conv1')
net = slim.max_pool2d(net, [3, 3], padding='SAME', stride=2, scope='pool1')
else:
net = slim.conv2d(net, growth*2, kernel_size=[3, 3], stride=2,
scope='conv1')
net = stack_dense_blocks(net, blocks, growth, bottleneck, compress,
stride, rate, drop)
net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm')
# Convert end_points_collection into a dictionary of end_points.
end_points = slim.utils.convert_collection_to_dict(
end_points_collection)
# Global Avg Pooling
net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
end_points['global_pool'] = net
if num_classes is not None and num_classes > 0:
net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
normalizer_fn=None, scope='logits')
end_points[sc.name + '/logits'] = net
end_points['predictions'] = slim.softmax(net, scope='predictions')
return net, end_points
def densenet_121(inputs):
return densenet(inputs, blocks=densenet_utils.networks['densenet_121'])
def densenet_169(inputs):
return densenet(inputs, blocks=densenet_utils.networks['densenet_169'])
def densenet_201(inputs):
return densenet(inputs, blocks=densenet_utils.networks['densenet_201'])
def densenet_265(inputs):
return densenet(inputs, blocks=densenet_utils.networks['densenet_265'])
if __name__ == "__main__":
x = tf.placeholder(tf.float32, [None, 224, 224, 3])
net, end_points = densenet_121(x)
for i in end_points:
print(end_points[i])