-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolorization_main.py
117 lines (100 loc) · 3.61 KB
/
colorization_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import sys,argparse
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from colorization_dataset import MyDataset
from cldm.logger import ImageLogger
from cldm.model import create_model, load_state_dict
import time
import torch
from share import *
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-t",
"--train",
type=str2bool,
const=True,
default=False,
nargs="?",
help="train",
)
parser.add_argument(
"-r",
"--resume",
type=str2bool,
const=True,
default=False,
nargs="?",
help="continue train from resume",
)
parser.add_argument(
"-m",
"--multicolor",
type=str2bool,
const=True,
default=False,
nargs="?",
help="continue train from resume",
)
parser.add_argument(
"-s",
"--usesam",
type=str2bool,
const=True,
default=False,
nargs="?",
help="continue train from resume",
)
return parser.parse_known_args()
if __name__ == "__main__":
args,_ = get_parser()
if args.train:
n_gpu = 2
init_model_path = 'models/init_model.ckpt'
batch_size = 16
logger_freq = 1000
learning_rate = 1e-5 * n_gpu
sd_locked = False #
only_mid_control = False
model = create_model('configs/cldm_v15_ehdecoder.yaml').cpu()
model.load_state_dict(load_state_dict(init_model_path, location='cpu'))
model.learning_rate = learning_rate
model.sd_locked = sd_locked
model.only_mid_control = only_mid_control
dataset = MyDataset(img_dir="/data/cz-data/coco/",caption_dir='resources/coco')
dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=True)
logger = ImageLogger(batch_frequency=logger_freq)
trainer = pl.Trainer(gpus=n_gpu, precision=32, callbacks=[logger])
# Train!
trainer.fit(model, dataloader)
else: # test or val
resume_path='.models/xxxxx.ckpt'
batch_size = 1
model = create_model('configs/cldm_v15_ehdecoder.yaml').cpu()
model.load_state_dict(load_state_dict(resume_path, location='cpu'))
trainer = pl.Trainer(gpus=1, precision=32)
if args.multicolor: # test demo
if args.usesam: # -m -s
model.usesam = True
dataset = MyDataset(img_dir='example', caption_dir='sam_mask', split='test',use_sam=True)
dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=False)
trainer.test(model, dataloader)
else: # -m
model.usesam = False
dataset = MyDataset(img_dir='example', caption_dir='example', split='test')
dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=False)
trainer.test(model, dataloader)
else: # val
model.usesam = False
dataset = MyDataset(img_dir="/data/cz-data/coco/", caption_dir='resources/coco', split='val') #
dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=False)
trainer.test(model, dataloader)