-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
421 lines (364 loc) · 18.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import argparse
import json
import os
import numpy as np
import pandas as pd
import torch
from sklearn import metrics as sklearn_metrics
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler
from transformers import BertTokenizerFast, BertTokenizer, ElectraTokenizer, RobertaTokenizer, AutoTokenizer, BertForTokenClassification, ElectraForTokenClassification, RobertaForTokenClassification, AdamW, get_linear_schedule_with_warmup, get_scheduler
from string import punctuation
import seqeval
from seqeval.metrics import classification_report as seqeval_classif_report
def get_tag2idx(df):
"""
Returns tags maps from a given dataframe df
Outputs:
tag2idx: map from tag to idx
idx2tag: map from idx to tag
"""
tag_values = list(df["tag"].unique()) + ['PAD']
tag2idx = {tag:idx for idx, tag in enumerate(tag_values)}
idx2tag = {idx:tag for tag, idx in tag2idx.items()}
return tag2idx, idx2tag
def tokenize_sentence_words(tokenizer, sentence_words, sentence_word_tags):
"""
Tokenizes each word in a sentence using a given tokenizer (eg: BiobertTokenizer)
For each word in the sentence, asociates its tag to the corresponding word tokens
Inputs:
tokenizer: the tokenizer used (eg: BiobertTokenizer)
sentence_words: the sentence split into words, as a list
sentence_word_tags: the tags associated with each of the words in sentence_words
Outputs:
sentence_tokenized: the sentence split into tokens, as a list
sentence_tokenized_tags: the tags associated with each of the tokens in the sentence
"""
sentence_tokenized = []
sentence_tokenized_tags = []
for word_idx, word in enumerate(sentence_words):
word_tokens = tokenizer.tokenize(str(word))
word_tag = sentence_word_tags[word_idx]
num_word_tokens = len(word_tokens)
sentence_tokenized.extend(word_tokens)
sentence_tokenized_tags.extend([word_tag] * num_word_tokens)
return sentence_tokenized, sentence_tokenized_tags
def tokenize_sentences(tokenizer, df, tags_of_interest):
"""
Tokenizes a list of sentences retrieved from a given dataframe df
Inputs:
tokenizer: the tokenizer used (eg: BiobertTokenizer)
df: dataframe containing training data (eg: training_data.csv)
Outputs:
sentences_tokenized: list of tokenized sentences
sentences_tokenized_tags: list of tags associated with each tokenized sentence
"""
sentences_tokenized = []
sentences_tokenized_tags = []
fn1 = lambda x: [word for word in x["word"].values]
fn2 = lambda x: [tag for tag in x["tag"].values]
sentences_words = df.groupby(['pmcid', 'sent_index']).apply(fn1)
sentences_word_tags = df.groupby(['pmcid', 'sent_index']).apply(fn2)
for sent_idx, sentence_words in enumerate(sentences_words):
sentence_word_tags = sentences_word_tags[sent_idx]
for tag in tags_of_interest:
if tag in sentence_word_tags:
sentence_tokenized, sentence_tokenized_tags = tokenize_sentence_words(tokenizer, sentence_words, sentence_word_tags)
sentences_tokenized.append(sentence_tokenized)
sentences_tokenized_tags.append(sentence_tokenized_tags)
break;
return sentences_tokenized, sentences_tokenized_tags
def pad_sequences(sentences_input_ids, maxlen, pad_value):
return np.array([np.pad(a[:maxlen], (0, max(0, maxlen - len(a))), constant_values=(pad_value)) for a in sentences_input_ids])
def get_train_data(sentences_tokens, tokenizer, max_len):
encoded_input_ids_all = []
attention_masks_all = []
for sentence_tokens in sentences_tokens:
sentence_tokens_ids = tokenizer.convert_tokens_to_ids(sentence_tokens)
inputs = tokenizer.prepare_for_model(sentence_tokens_ids, padding = 'max_length', \
truncation = True, max_length = max_len, add_special_tokens=False)
encoded_input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
encoded_input_ids_all.append(encoded_input_ids)
attention_masks_all.append(attention_mask)
return encoded_input_ids_all, attention_masks_all
def get_train_tags(sentences_tags, max_len, token_to_idx = None, pad_value = 0):
sentence_tags_all = []
for sentence_tags in sentences_tags:
O_tag_idx = token_to_idx['O']
sentence_tags_all.append([token_to_idx[token] for token in sentence_tags])
sentence_tags = pad_sequences(sentence_tags_all, max_len, pad_value)
return sentence_tags
def get_dataloader(inputs, masks, tags):
"""
Returns a DataLoader instance that contains inputs, masks and tags
The DataLoader is used for batching during training
"""
inputs = torch.tensor(inputs)
masks = torch.tensor(masks)
tags = torch.tensor(tags)
dataset = TensorDataset(inputs, masks, tags)
sampler = SequentialSampler(dataset)
dataloader = DataLoader(dataset, sampler=sampler, batch_size=args.batch_size)
return dataloader
def print_metrics_resource_type(classif_report, phase, resource_type):
"""
Prints metrics (precision, recall) for one resource type
Resource type can be one of: 'B-MET', 'I-MET', 'B-DAT', 'O'
"""
resource_stats = classif_report[resource_type]
precision = round(resource_stats['precision'], 3)
recall = round(resource_stats['recall'], 3)
if (recall + precision) != 0:
f1 = round(2 * recall * precision / (recall + precision), 3)
else:
f1 = 0
if resource_type == 'O':
print(phase + ':', resource_type, 'Precision: ', precision, resource_type, 'Recall: ', recall, 'F1: ', f1)
else:
print(phase + ':', resource_type, 'Precision:', precision, resource_type, 'Recall:', recall, 'F1:', f1)
return f1
def print_metrics_token_level(classif_report, phase, tags):
"""
Prints metrics (precision, recall) for each of the resouce type in a given phase
Phase can be either 'Train' or 'Val'
"""
f1s = []
for tag in tags:
f1_tag = print_metrics_resource_type(classif_report, phase, tag)
f1s.append(f1_tag)
return np.array(f1s).mean()
def print_metrics_entity_level(classif_report, loss, phase):
"""
Prints metrics (precision, recall) for each of the resouce type in a given phase at the entity level
Phase can be either 'Train' or 'Val'
"""
f1_scores = []
for res_type in ['MET', 'DAT']:
resource_stats = classif_report[res_type]
precision = round(resource_stats['precision'], 3)
recall = round(resource_stats['recall'], 3)
f1_score = round(resource_stats['f1-score'], 3)
f1_scores.append(f1_score)
print(phase + ':', res_type, 'Precision:', precision, 'Recall:', recall, 'F1:', f1_score)
return np.mean(f1_scores)
def evaluate_entity_level(pred_numeric_tags, true_numeric_tags, idx2tag, loss, phase):
"""
Evaluates metrics on mentions on a given batch at the entity level
Inputs:
pred_numeric_tags: predicted labels for a given batch
true_numeric_tags: true labels for a given batch
idx2tag: tag index to tag mapping
phase: 'Train' or 'Val' - for printing purposes only
"""
pred_tags = [[idx2tag[pred_numeric_tag] for pred_numeric_tag in pred_numeric_tags]]
true_tags = [[idx2tag[true_numeric_tag] for true_numeric_tag in true_numeric_tags]]
classif_report_relaxed = seqeval_classif_report(true_tags, pred_tags, digits=3, output_dict = True)
f1_relaxed = print_metrics_entity_level(classif_report_relaxed, loss, phase)
return classif_report_relaxed, f1_relaxed
def train_epoch(model, optimizer, lr_scheduler, dataloader, idx2tag, tags_of_interest, tokens, phase):
"""
Handles training of the model for one epoch
"""
running_loss = 0
num_batches = len(dataloader)
pred_tags = []
true_tags = []
pad_token_id = tokens['PAD']
cls_token_id = tokens['CLS']
sep_token_id = tokens['SEP']
for num_batch, batch in enumerate(dataloader):
inputs, masks, tags = batch
inputs = inputs.to(device)
masks = masks.to(device)
tags = tags.to(device)
if phase == 'Train':
model.zero_grad()
outputs = model(inputs, attention_mask=masks, labels=tags)
loss = outputs[0]
loss.backward()
optimizer.step()
if lr_scheduler:
lr_scheduler.step()
optimizer.zero_grad()
else:
with torch.no_grad():
outputs = model(inputs, attention_mask=masks, labels=tags)
mask_no_pad_tokens = ((inputs != cls_token_id) & (inputs != pad_token_id) & (inputs != sep_token_id))
tags_no_pad_tokens = tags[mask_no_pad_tokens]
logits = outputs[1]
predictions_no_pad_tokens = torch.argmax(logits, axis = 2)[mask_no_pad_tokens]
predictions_cpu = predictions_no_pad_tokens.to('cpu').numpy()
tags_cpu = tags_no_pad_tokens.to('cpu').numpy()
loss = outputs[0].item()
running_loss += loss
true_tags.extend(tags_cpu)
pred_tags.extend(predictions_cpu)
classif_report_entity, f1_entity = evaluate_entity_level(pred_tags, true_tags, idx2tag, running_loss, phase)
return running_loss / num_batches, classif_report_entity, f1_entity
def train_model(model, optimizer, lr_scheduler, num_epochs, train_dataloader, val_dataloader, idx2tag, tags, tokens, model_name, checkpt_dir):
"""
Handles training of the model for num_epochs
"""
max_f1_val = 0
train_losses, val_losses = [], []
for num_epoch in range(num_epochs):
print('Epoch: ', (num_epoch + 1))
print('*' * 20)
# training mode
model.train()
train_loss, classif_report_train, f1_train = train_epoch(model, optimizer, lr_scheduler, train_dataloader, idx2tag, tags, tokens, 'Train')
train_losses.append(train_loss)
# evaluation mode
model.eval()
val_loss, classif_report_val, f1_val = train_epoch(model, None, lr_scheduler, val_dataloader, idx2tag, tags, tokens, 'Val')
val_losses.append(val_loss)
print('Train Loss: ', round(train_loss, 5), 'Val Loss: ', round(val_loss, 5))
if f1_val >= max_f1_val:
max_f1_val = f1_val
best_epoch = num_epoch
best_model = model
torch.save({
'model_state_dict': best_model.state_dict(),
'epoch' : best_epoch,
'f1_val' : max_f1_val,
}, os.path.join(checkpt_dir, '/checkpt_' + model_name + '_' + str(best_epoch + 1) + '_epochs'))
return train_losses, val_losses, best_model
def save_idx2tag(idx2tag, output_data_dir):
"""
Save idx2tag dict to json file to dir specified via `--output_data_dir` option. This dict data is used during
prediction to interpret model output.
:param idx2tag: The dict
:return: the file name written
"""
print(f'idx2tag={idx2tag}')
csv_file_name = os.path.join(output_data_dir, 'idx2tag-925.json')
with open(csv_file_name, 'w') as f:
f.write(json.dumps(idx2tag))
return csv_file_name
def get_dataloaders(tokenizer, train_df, val_df, test_df, tags, tag2idx, max_len):
"""
Returns train, val and test dataloaders from the corresponding dfs
"""
train_sentences_tokenized, train_sentences_tokenized_tags = tokenize_sentences(tokenizer, train_df, tags)
train_input_ids, train_attention_masks = get_train_data(train_sentences_tokenized, tokenizer, max_len)
train_tags = get_train_tags(train_sentences_tokenized_tags, max_len, tag2idx, tag2idx['PAD'])
val_sentences_tokenized, val_sentences_tokenized_tags = tokenize_sentences(tokenizer, val_df, tags)
val_input_ids, val_attention_masks = get_train_data(val_sentences_tokenized, tokenizer, max_len)
val_tags = get_train_tags(val_sentences_tokenized_tags, max_len, tag2idx, tag2idx['PAD'])
test_sentences_tokenized, test_sentences_tokenized_tags = tokenize_sentences(tokenizer, test_df, tags)
test_input_ids, test_attention_masks = get_train_data(test_sentences_tokenized, tokenizer, max_len)
test_tags = get_train_tags(test_sentences_tokenized_tags, max_len, tag2idx, tag2idx['PAD'])
train_dataloader = get_dataloader(train_input_ids, train_attention_masks, train_tags)
val_dataloader = get_dataloader(val_input_ids, val_attention_masks, val_tags)
test_dataloader = get_dataloader(test_input_ids, test_attention_masks, test_tags)
return train_dataloader, val_dataloader, test_dataloader
def create_dir(dir_path):
if not os.path.exists(dir_path):
os.mkdir(dir_path)
print("Directory '% s' created" % dir_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# hyperparameters sent by the client are passed as command-line arguments to the script.
parser.add_argument('--epochs', help = 'number of epochs for training', type=int, default=10)
parser.add_argument('--batch-size', help = 'batch_size for training', type=int, default=32)
parser.add_argument('--max_len', help = 'maximum length of sequences in batch', type=int, default=256)
parser.add_argument('--learning-rate', help = 'learning Rate for training', type=float, default=3e-5)
parser.add_argument('--weight_decay', help = 'weight decay for learning rate', type=float, default=0.0)
parser.add_argument('--use-cuda', help = 'if to use cuda for training or not', type=bool, default=True)
parser.add_argument('--tags', type=str, help = 'tags present in the dataset', default=['B-DAT', 'B-MET', 'I-MET'])
parser.add_argument('--data-dir', help = 'directory where the data is being read from', type=str, default='data')
parser.add_argument('--checkpt_dir', help = 'output directory where checkpoints will be saved', type=str, default='checkpts')
parser.add_argument('--intermediate-files-dir', help = 'output directory where intermediate files like idx2tag.json will be saved', type=str, default='model_artifacts')
parser.add_argument('--model_name', help = 'name of model that will be instantiated during training; code currently supports: biobert, scibert, pubmedbert, pubmedbert_pmc, bluebert, bluebert_mimic3, sapbert, \
sapbert_mean_token, bioelectra, bioelectra_pmc, electra_med, biomed_roberta, biomed_robera_chemprot, biomed_roberta_rct500', type=str, default='scibert')
parser.add_argument('--model_version', help = 'Huggingface version of model; for instance, for scibert it could be allenai/scibert_scivocab_uncased', type=str, default = 'allenai/scibert_scivocab_uncased')
parser.add_argument('--train_file', help = 'location of training file', type=str, default='train_v0.csv')
parser.add_argument('--val_file', help = 'location of val file', type=str, default='val_v0.csv')
parser.add_argument('--test_file', help = 'location of test file', type=str, default='test_v0.csv')
parser.add_argument('--sanity_check', help = 'true for sanity checking that the pipeline works well; will only train on 100 entries from the training file', default = False, action = 'store_true', required = False)
args, _ = parser.parse_known_args()
data_dir = args.data_dir
train_df = pd.read_csv(os.path.join(data_dir, args.train_file))
test_df = pd.read_csv(os.path.join(data_dir, args.test_file))
val_df = pd.read_csv(os.path.join(data_dir, args.val_file))
create_dir(args.checkpt_dir)
create_dir(args.intermediate_files_dir)
if args.sanity_check:
train_df = train_df[:10000]
model_mappings = {
'biobert' : 'dmis-lab/biobert-v1.1',
'scibert' : 'allenai/scibert_scivocab_uncased',
'pubmedbert' : 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract',
'pubmedbert_pmc' : 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext',
'bluebert' : 'bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12',
'bluebert_mimic3' : 'bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12',
'sapbert' : 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
'sapbert_mean_token' : 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token',
'bioelectra' : 'kamalkraj/bioelectra-base-discriminator-pubmed',
'bioelectra_pmc' : 'kamalkraj/bioelectra-base-discriminator-pubmed-pmc',
'electramed' : 'giacomomiolo/electramed_base_scivocab_1M',
'biomed_roberta' : 'allenai/biomed_roberta_base',
'biomed_robera_chemprot' : 'allenai/dsp_roberta_base_dapt_biomed_tapt_chemprot_4169',
'biomed_roberta_rct500' : 'allenai/dsp_roberta_base_dapt_biomed_tapt_rct_500'
}
model_name = args.model_name
model_version = model_mappings[model_name]
print(f'args={args}')
print('Loading training data ...')
print('=' * 30)
device = torch.device("cuda" if args.use_cuda and torch.cuda.is_available() else "cpu")
tag2idx, idx2tag = get_tag2idx(train_df)
save_idx2tag(idx2tag, args.intermediate_files_dir)
print('Loading BertTokenizer and model ...', model_version)
print('=' * 30)
if 'electra' in model_name:
# Example for a BERT-based model. All possible variations are available in the README
tokenizer = ElectraTokenizer.from_pretrained(model_version)
model = ElectraForTokenClassification.from_pretrained(model_version,
num_labels=len(tag2idx),
output_attentions=False, output_hidden_states=False)
elif 'roberta' in model_name:
# Example for an ELECTRA-based model. All possible variations are available in the README
tokenizer = AutoTokenizer.from_pretrained(model_version)
model = RobertaForTokenClassification.from_pretrained(model_version,
num_labels=len(tag2idx),
output_attentions=False,
output_hidden_states=False)
elif 'bert' in model_name:
# Example for an Roberta-based model. All possible variations are available in the README
tokenizer = AutoTokenizer.from_pretrained(model_version)
model = BertForTokenClassification.from_pretrained(model_version,
num_labels=len(tag2idx),
output_attentions=False,
output_hidden_states=False)
model.to(device)
print('Finished loading BertTokenizer and model!')
print()
train_dataloader, val_dataloader, test_dataloader = get_dataloaders(tokenizer, train_df, val_df, test_df, args.tags, tag2idx, args.max_len)
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
num_epochs = args.epochs
num_training_steps = num_epochs * len(train_dataloader)
use_lr_scheduler = False
if use_lr_scheduler:
lr_scheduler = get_scheduler(
"linear",
optimizer = optimizer,
num_warmup_steps = int(0.06 * len(train_dataloader)),
num_training_steps = num_training_steps
)
else:
lr_scheduler = None
if 'roberta' in model_name:
tokens = {'PAD' : tokenizer.vocab["<pad>"],
'SEP' : tokenizer.vocab["</s>"],
'CLS' : tokenizer.vocab["<s>"]}
elif 'electra' in model_name or 'bert' in model_name:
tokens = {'PAD' : tokenizer.vocab["[PAD]"],
'SEP' : tokenizer.vocab["[SEP]"],
'CLS' : tokenizer.vocab["[CLS]"]}
print('Starting model training ...')
print('=' * 30)
train_losses, val_losses, best_model = train_model(model, optimizer, lr_scheduler, 10, train_dataloader, val_dataloader, idx2tag, args.tags, tokens, model_name, args.checkpt_dir)
print('Finished model training!')
test_loss, classif_report_test, f1_test = train_epoch(best_model, None, None, test_dataloader, idx2tag, args.tags, tokens, 'Test')