-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoperation.py
492 lines (402 loc) · 16.4 KB
/
operation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
"""Defines base class `Operation` for all Ops."""
from collections import defaultdict
import numpy as np
from .containers import get_default_graph
class Operation(object):
"""Base class for all Ops.
An Operation performs a specific type of computation given >=0 input symbolic
Tensors, and generates >=0 output symbolic Tensors. An Op is always registered
in a `Graph`, and it is identified by a unique ID number within the scope of a
`Graph`. The type of computation is indicated by its `type` attribute (e.g.
"Add", "Conv2D").
The constructor takes as input a list of Tensors, and optionally a list of
dependent Ops (those that must be run prior to this Op). It registers itself
in the parent `Graph`, and generates a list of output symbolic Tensors (See
the method `__init__` below).
Each Op defines a `_run` method which carries out the actual computation at
runtime (See the abstract method `_run` below).
Optionally, an Op may have a `_grad_func` method for backpropagation:
def _grad_func(self, in_grad_tensors):
'''Add Ops to the graph that lead to the gradient Tensors w.r.t. the input
Tensors of this Op.
Args:
in_grad_tensors (List[Tensor]): gradient Tensors w.r.t. the output
Tensors of this Op.
Returns:
out_grad_tensors (List[Tensor]): gradient Tensors w.r.t. the input
Tensors of this Op.
'''
"""
def _run(self, *input_tensor_values):
"""Compute the value of output tensors.
Args:
input_tensor_values (List[nd.array]): input numpy arrays
Returns:
numpy array or list of numpy array
"""
raise NotImplementedError(
"Must be overridden by subclasses (i.e. concrete Ops)",
)
def __init__(self, graph=None, input_list=[], dependent_ops=[], name=None):
"""Constructor.
Args:
graph (Graph): (Optional) the Graph object in which this Operation is
affiliated. If None, a default graph will be created. Defaults to None.
input_list (List[Tensor]): (Optional) list of input tensors. Defaults to
empty list.
dependent_ops (List[Operation]): (Optional) list of Ops that should be
run prior to this Op. Defaults to empty list.
name (str): (Optional) name of this Operation. If None, a name will be
automatically generated. Defaults to None.
"""
self._graph = get_default_graph() if graph is None else graph
self._input_list = input_list
self._dependent_ops = dependent_ops
self._graph.add_op(op=self, name=name)
self._bp_indices = self._get_bp_indices()
self._outputs = self._create_output_tensors()
def _get_bp_indices(self):
"""Returns the indices of input tensors that expect a backpropped gradient
tensor. Can be overridden by subclasses.
If an Op does not have a `_grad_func`, then its output tensors are treated
as "constants", so no gradient will be backpropped to its input tensors.
Returns:
bp_indices (List[int]): list of indices of input tensors that expect
backpropped gradient.
"""
if not hasattr(self, "_grad_func"):
# no backpropped gradient.
bp_indices = []
else:
# assume all input tensors expect backpropped gradient.
bp_indices = list(range(len(self._input_list)))
return bp_indices
def __repr__(self):
name, type_, id_ = self._name, self._type, self._id
repstr = f"<Operation '{name}', type={type_}, id={id_}>"
return repstr
def run(self):
"""Compute the value of the tensors coming out of this op."""
# avoid re-running this op, if the Op is immutable or its value has already
# been computed
if not self.mutable and self.id in self._graph._runtime._values:
return
# prepare the value of the input tensors of this op
input_tensor_values = []
for tensor in self._input_list:
tensor.op.run() # make sure all depending ops have been executed
value = tensor.eval()
input_tensor_values.append(value)
# run dependent ops if any
for op in self._dependent_ops:
op.run()
# run this op using the actual values of input tensors
outputs = self._run(*input_tensor_values)
if self.mutable:
self._graph._runtime._values[self.id] = []
# cache the output tensor values from this op in the runtime
if isinstance(outputs, (list, tuple)):
self._graph._runtime._values[self.id].extend(list(outputs))
elif outputs is not None:
self._graph._runtime._values[self.id].append(outputs)
#print(self)
#print("a", [o.shape if hasattr(o, "shape") else () for o in self._graph._runtime._values[self.id]])
#print("b", [o.shape.raw_shape for o in self._outputs])
#print()
@property
def name(self):
return self._name
@property
def type(self):
return self._type
@property
def id(self):
return self._id
@property
def num_outputs(self):
"""Number of output tensors."""
return 1
@property
def mutable(self):
return False
@property
def graph(self):
return self._graph
def _create_output_tensors(self):
"""Set attribute `self._outputs` as the created tensors and return them.
Returns:
outputs (List[Tensor]): the created Tensor instances.
"""
from .tensor import Placeholder, Tensor
if not hasattr(self, "_outputs"):
shapes = self._compute_shapes()
if shapes is None:
# For Ops with no output tensors, set `self._outputs` to empty list.
self._outputs = []
else:
if self.type != "Placeholder":
# Assign tensor index and shape to each Tensor.
self._outputs = [
Tensor(self, i, shape)
for i, shape in zip(range(self.num_outputs), shapes)
]
else:
self._outputs = [Placeholder(self, 0, shapes[0])]
return self._outputs
def output(self, index=0):
"""Get one output tensor.
Args:
index (int): (Optional) output index of the tensor. Defaults to 0.
Returns:
output_tensor (Tensor): the tensor with the provided output index.
"""
output_tensor = self._create_output_tensors()[index]
return output_tensor
def _get_dependent_tensor(self, op, name, dic, tensor_index):
"""Retrieve or create a "dependent" tensor.
Dependent tensors are those that depend on this Op (e.g. Shape, Rank). This
is to avoid creating multiple `Shape` (or other) tensors of the same Op.
"""
tensor = self.output(tensor_index)
if tensor not in dic:
dependent_tensor = op(input_list=[tensor], name=name).output(0)
dic[tensor] = dependent_tensor
return dic[tensor]
def get_shape_tensor(self, tensor_index=0):
"""Create the Shape tensor for one of the output tensor of this op.
Args:
tensor_index (int): (Optional) index of the output tensor whose `Shape` op
is to be created. Defaults to 0.
Returns:
shape_tensor (Tensor): a Shape tensor.
"""
from .generic_ops import Shape
return self._get_dependent_tensor(
Shape,
self.name + "_Shape",
self._graph._shape_tensors,
tensor_index,
)
def get_size_tensor(self, tensor_index=0):
"""Create the Size tensor for one of the output tensor of this op.
Args:
tensor_index (int): (Optional) index of the output tensor whose `Shape` op
is to be created. Defaults to 0.
Returns:
size_tensor (Tensor): a Size tensor.
"""
from .generic_ops import Size
return self._get_dependent_tensor(
Size,
self.name + "_Size",
self._graph._size_tensors,
tensor_index,
)
def get_rank_tensor(self, tensor_index=0):
"""Create the Rank tensor for one of the output tensor of this op.
Args:
tensor_index (int): (Optional) index of the output tensor whose `Shape` op
is to be created. Defaults to 0.
Returns:
rank_tensor (Tensor): a Rank tensor.
"""
from .generic_ops import Rank
return self._get_dependent_tensor(
Rank,
self.name + "_Rank",
self._graph._rank_tensors,
tensor_index,
)
def get_zeros_tensor(self, tensor_index=0):
"""Create the ZerosLike tensor for one of the output tensor of this op.
Args:
tensor_index (int): (Optional) index of the output tensor whose `Shape` op
is to be created. Defaults to 0.
Returns:
zeros_like_tensor (Tensor): a ZerosLike tensor.
"""
from .generic_ops import ZerosLike
return self._get_dependent_tensor(
ZerosLike,
self.name + "_ZerosLike",
self._graph._zeroslike_tensors,
tensor_index,
)
def get_ones_tensor(self, tensor_index=0):
"""Create the OnesLike tensor for one of the output tensor of this op.
Args:
tensor_index (int): (Optional) index of the output tensor whose `Shape` op
is to be created. Defaults to 0.
Returns:
zeros_like_tensor (Tensor): a OnesLike tensor.
"""
from .generic_ops import OnesLike
return self._get_dependent_tensor(
OnesLike,
self.name + "_OnesLike",
self._graph._oneslike_tensors,
tensor_index,
)
def _compute_expected_backprops(op):
"""Traverse the graph from the input Op in the order of BFS, and count the
number of expected backpropagations for each Tensor.
Args:
op (Operation): the BFS traversal starts from this Op.
Returns:
expected_backprops (Dict[int, int] -> set): dict mapping the ID of a
Tensor (combination of `tensor.op.id` and `tensor.tensor_index`) to the
set of downstream Ops that will backprop gradients.
"""
queue = [op]
expected_backprops = dict()
while len(queue):
op = queue.pop(0)
for bp_index in op._bp_indices:
# `tensor` is an input of `op` that expects a backpropped gradient
tensor = op._input_list[bp_index]
if tensor.op.id not in expected_backprops:
expected_backprops[tensor.op.id] = defaultdict(set)
# record the set of IDs of Ops that will backprop gradients to `tensor`
# (can be uniquely identified by `op.id` and `tensor_index`)
expected_backprops[tensor.op.id][tensor.tensor_index].add(op.id)
queue.append(tensor.op)
return expected_backprops
def backprop(y_tensors, x_tensors, dy_tensors=None):
"""Inject gradient from each tensor in `y_tensors`, and compute the gradients
backpropped to each tensor in `x_tensors`.
Args:
y_tensors (List[Tensor]): list of tensors from which gradients will be
backpropped.
x_tensors (List[Tensor]): list of tensors whose gradients are to be
computed.
dy_tensors (List[Tensor]): (Optional) list of gradient tensors w.r.t.
tensors in `y_tensors`. If None, defaults to tensors filled with ones.
Returns:
dx_tensors (List[Tensor]): list of gradient tensors backpropped to each
tensor in `x_tensors`.
"""
from .generic_ops import OnesLike
from .math_ops import AddN
from .tensor import Tensor
# make sure `dy_tensors` matches `y_tensors`
if dy_tensors is not None:
assert len(y_tensors) == len(dy_tensors)
for y_tensor, dy_tensor in zip(y_tensors, dy_tensors):
assert (
isinstance(y_tensor, Tensor) and isinstance(dy_tensor, Tensor) and
y_tensor.shape._compatible_with(dy_tensor.shape)
)
# or initialize `dy_tensors` with a list of Nones
else:
dy_tensors = [None] * len(y_tensors)
# `ops`: the list of parent Ops of tensors in `y_tensors`
ops = list(set([y_tensor.op for y_tensor in y_tensors]))
dy_tensor_map = defaultdict(dict)
for y_tensor, dy_tensor in zip(y_tensors, dy_tensors):
dy_tensor_map[y_tensor.op.id][y_tensor.tensor_index] = dy_tensor
# prepare grad tensors: length of `grad_tensors` equals the sum of the number
# of output tensors over all Ops in `ops`
grad_tensors = []
for op in ops:
for i, out_tensor in enumerate(op._outputs):
# if an output tensor of `op` is not in `y_tensors` (i.e. keys of
# `dy_tensor_map`), or the corresponding gradient tensor is None, create
# an all-one Tensor:
if i not in dy_tensor_map[op.id] or dy_tensor_map[op.id][i] is None:
grad_tensors.append(
OnesLike(
input_list=[out_tensor],
graph=y_tensors[0].op._graph,
).output(0),
)
# use the provided gradient tensor
else:
grad_tensors.append(dy_tensor_map[op.id][i])
# case1: gradients are backpropped from more than one Ops
if len(ops) > 1:
# create a virtual Op that lumps all Ops in `ops` for backpropagation
input_list = []
for op in ops:
input_list.extend(op._outputs)
op = _VirtualBackprop(input_list=input_list, graph=y_tensors[0].op._graph)
# case2: gradients are backpropped from a single Op
else:
op = ops[0]
expected_backprops = _compute_expected_backprops(op)
# `queue` maintains tuples of an Op `op` and a list of gradient tensors that
# are supposed to be backpropped from `op`
queue = [(op, grad_tensors)]
cum_grad = dict() # cumulative gradients
while len(queue):
op, dy_tensors = queue.pop(0)
# Ops without grad functions are treated as constants and hence ignored
if not hasattr(op, "_grad_func"):
continue
# make sure `dy_tensors` matches the output tensors of `op`
assert len(op._outputs) == len(dy_tensors)
for y_tensor, dy_tensor in zip(op._outputs, dy_tensors):
assert y_tensor.shape._compatible_with(dy_tensor.shape)
# list of input tensors to `op` that expect backpropped gradient
tensors = [op._input_list[bp_index] for bp_index in op._bp_indices]
# list of computed gradient tensors w.r.t. input tensors to `op`
grad_tensors = op._grad_func(dy_tensors)
assert len(tensors) == len(grad_tensors)
for tensor, grad_tensor in zip(tensors, grad_tensors):
assert tensor.shape._compatible_with(grad_tensor.shape)
if tensor.op.id not in cum_grad:
cum_grad[tensor.op.id] = defaultdict(list)
# update the list of cumulative gradients for Tensor `tensor`
cum_grad[tensor.op.id][tensor.tensor_index].append(grad_tensor)
# when each tensor of an Op has received the expected number of
# backpropped gradients, compute the full gradient by adding them up,
# and enqueue the tuple (op, dy_tensors).
if all((
len(expected_backprops[tensor.op.id][tensor_index]) ==
len(cum_grad[tensor.op.id][tensor_index])
) for tensor_index in expected_backprops[tensor.op.id].keys()):
dy_tensors = []
for tensor_index in range(tensor.op.num_outputs):
if tensor_index in cum_grad[tensor.op.id].keys():
if len(cum_grad[tensor.op.id][tensor_index]) > 1:
grad_tensor = AddN(
input_list=cum_grad[tensor.op.id][tensor_index],
graph=tensor.op._graph,
).output(0)
else:
grad_tensor = cum_grad[tensor.op.id][tensor_index][0]
dy_tensors.append(grad_tensor)
cum_grad[tensor.op.id][tensor_index] = [grad_tensor]
else:
dy_tensors.append(tensor.op.get_zeros_tensor(tensor_index))
queue.append((tensor.op, dy_tensors))
dx_tensors = []
for x_tensor in x_tensors:
dx_tensors.append(cum_grad[x_tensor.op.id][x_tensor.tensor_index][0])
y_tensors[0].op.graph.cum_grad = cum_grad
return dx_tensors
class _VirtualBackprop(Operation):
"""Virtual Op for grouping multiple Ops for backpropagation.
Sometimes we need to backprop gradients from multiple Ops (e.g. a main loss
from `Tensor` A and an auxiliary loss from `Tensor` B). In this case, we must
guarantee that we do not backprop gradient from downstream `Tensor` (e.g. C)
until its "full gradient" is computed (i.e. we must wait until gradients
backpropped from A *and* B have "arrived at" C.)
A virtual op `_VirtualBackprop` lumps those Ops by making `Tensor` A and B
(and their sibling Tensors) as input Tensors to the virtual op, so that we
need to "fire" the backpropagation only once.
At the time of backpropagation, the virtual op (with `n` input tensors)
receives `n` gradient tensors and routes them to each of the `n` input
tensors, respectively (See `_grad_func` below).
"""
def _grad_func(self, in_grad_tensors):
out_grad_tensors = list(in_grad_tensors)
return out_grad_tensors
def _compute_shapes(self):
from .tensor_shape import TensorShape
return [
TensorShape(input_tensor.shape.raw_shape)
for input_tensor in self._input_list
]
@property
def num_outputs(self):
return len(self._input_list)