forked from zhaoymn/cubelearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
99 lines (84 loc) · 3.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import torch
import torch.nn as nn
from dataset import *
import torch.optim as optim
from network import *
import os
if __name__ == '__main__':
learning_rate = 0.0003
LPP_lr = 0#.001
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
batch_size = 32
train_set = Gesture_Dataset(0)
validation_set = Gesture_Dataset(1)
trainloader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle = True, num_workers=4, pin_memory = True)
validationloader = torch.utils.data.DataLoader(validation_set, batch_size=batch_size, shuffle = False, num_workers=4, pin_memory = True)
net = RT_2DCNN()
net = net.to(device)
range_nn_params = list(map(id, net.range_net.range_nn.parameters()))
#doppler_nn_params = list(map(id, net.doppler_net.doppler_nn.parameters()))
#base_params = filter(lambda p:id(p) not in range_nn_params + doppler_nn_params, net.parameters())
base_params = filter(lambda p:id(p) not in range_nn_params, net.parameters())
optimizer = optim.Adam([
{'params': base_params},
{'params': net.range_net.parameters(), 'lr': LPP_lr},
#{'params': net.doppler_net.parameters(), 'lr': LPP_lr},
], lr=learning_rate)
criterion = nn.CrossEntropyLoss()
start_epoch = 0
previous_acc = 0
previous_loss = 1000000
model_name = 'test.pth'
for epoch in range(start_epoch, 30): # loop over the dataset multiple times
#train
net.train()
running_loss = 0.0
all_sample = 0.0
correct_sample = 0.0
for i, (data, label) in enumerate(trainloader):
data = data.to(device)
label = label.to(device)
optimizer.zero_grad()
output = net(data)
loss = criterion(output, label)
loss.backward()
optimizer.step()
running_loss += loss.item()*len(label)
#calculation of accuracy
all_sample = all_sample + len(label)
prediction = torch.argmax(output, 1)
correct_sample += (prediction == label).sum().float().item()
if i % 5 == 4: # print every 5 mini-batches
print('[%d, %5d] loss: %.3f, accuracy: %.5f' % (epoch + 1, i + 1, running_loss / all_sample , correct_sample/all_sample))
print('[%d, %5d] loss: %.5f, accuracy: %.5f' % (epoch + 1, i + 1, running_loss/all_sample, correct_sample/all_sample))
#validation and save model
net.eval()
validation_loss = 0
val_all_sample = 0.0
val_correct_sample = 0.0
with torch.no_grad():
for i, (data, label) in enumerate(validationloader):
data = data.to(device)
label = label.to(device)
output = net(data)
loss = criterion(output, label)
validation_loss += loss.item()*len(label)
val_all_sample = val_all_sample + len(label)
prediction = torch.argmax(output, 1)
val_correct_sample += (prediction == label).sum().float().item()
val_acc = val_correct_sample / val_all_sample
val_loss = validation_loss / val_all_sample
if val_acc > previous_acc or (val_acc == previous_acc and val_loss < previous_loss):
torch.save({
'epoch': epoch,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': val_loss
}, model_name)
previous_acc = val_acc
previous_loss = val_loss
print('saved')
print('all validation: %.5f, correct validation: %.5f' % (val_all_sample, val_correct_sample))
print('[%d, %5d] val loss: %.5f, accuracy: %.5f' % (epoch + 1, i + 1, val_loss, val_acc))