forked from Ramaguru-Forks/ssdeep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fuzzy.c
970 lines (888 loc) · 26.3 KB
/
fuzzy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
/* ssdeep
* Copyright (C) 2002 Andrew Tridgell <[email protected]>
* Copyright (C) 2006 ManTech International Corporation
* Copyright (C) 2013 Helmut Grohne <[email protected]>
* Copyright (C) 2017 Tsukasa OI <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Earlier versions of this code were named fuzzy.c and can be found at:
* http://www.samba.org/ftp/unpacked/junkcode/spamsum/
* http://ssdeep.sf.net/
*/
#ifndef MIN
#define MIN(a,b) ((a)<(b)?(a):(b))
#endif
#ifndef MAX
#define MAX(a,b) ((a)>(b)?(a):(b))
#endif
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include "fuzzy.h"
#include "edit_dist.h"
#if defined(__GNUC__) && __GNUC__ >= 3
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else
#define likely(x) x
#define unlikely(x) x
#endif
#define ROLLING_WINDOW 7
#define MIN_BLOCKSIZE 3
#define HASH_INIT 0x27
#define NUM_BLOCKHASHES 31
// Enable bit-parallel string processing only if bit-parallel algorithms
// are enabled and considered to be efficient.
#if !defined(SSDEEP_DISABLE_POSITION_ARRAY) || !SSDEEP_DISABLE_POSITION_ARRAY
#if SPAMSUM_LENGTH <= 64 && CHAR_MIN >= -256 && CHAR_MAX <= 256 && (CHAR_MAX - CHAR_MIN + 1) <= 256
#define SSDEEP_ENABLE_POSITION_ARRAY
#endif
#endif
struct roll_state
{
unsigned char window[ROLLING_WINDOW];
uint32_t h1, h2, h3;
uint32_t n;
};
static void roll_init(/*@out@*/ struct roll_state *self)
{
memset(self, 0, sizeof(struct roll_state));
}
/*
* a rolling hash, based on the Adler checksum. By using a rolling hash
* we can perform auto resynchronisation after inserts/deletes
* internally, h1 is the sum of the bytes in the window and h2
* is the sum of the bytes times the index
* h3 is a shift/xor based rolling hash, and is mostly needed to ensure that
* we can cope with large blocksize values
*/
static void roll_hash(struct roll_state *self, unsigned char c)
{
self->h2 -= self->h1;
self->h2 += ROLLING_WINDOW * (uint32_t)c;
self->h1 += (uint32_t)c;
self->h1 -= (uint32_t)self->window[self->n];
self->window[self->n] = c;
self->n++;
if (self->n == ROLLING_WINDOW)
self->n = 0;
/* The original spamsum AND'ed this value with 0xFFFFFFFF which
* in theory should have no effect. This AND has been removed
* for performance (jk) */
self->h3 <<= 5;
self->h3 ^= c;
}
static uint32_t roll_sum(const struct roll_state *self)
{
return self->h1 + self->h2 + self->h3;
}
/* A simple non-rolling hash, based on the FNV hash. */
#include "sum_table.h"
static unsigned char sum_hash(unsigned char c, unsigned char h)
{
return sum_table[h][c & 0x3f];
}
/* A blockhash contains a signature state for a specific (implicit) blocksize.
* The blocksize is given by SSDEEP_BS(index). The h and halfh members are the
* partial FNV hashes, where halfh stops to be reset after digest is
* SPAMSUM_LENGTH/2 long. The halfh hash is needed be able to truncate digest
* for the second output hash to stay compatible with ssdeep output. */
struct blockhash_context
{
unsigned int dindex;
char digest[SPAMSUM_LENGTH];
char halfdigest;
unsigned char h, halfh;
};
struct fuzzy_state
{
uint_least64_t total_size;
uint_least64_t fixed_size;
uint_least64_t reduce_border;
unsigned int bhstart, bhend, bhendlimit;
unsigned int flags;
uint32_t rollmask;
struct blockhash_context bh[NUM_BLOCKHASHES];
struct roll_state roll;
unsigned char lasth;
};
#define FUZZY_STATE_NEED_LASTHASH 1u
#define FUZZY_STATE_SIZE_FIXED 2u
#define SSDEEP_BS(index) (((uint32_t)MIN_BLOCKSIZE) << (index))
#define SSDEEP_TOTAL_SIZE_MAX \
((uint_least64_t)SSDEEP_BS(NUM_BLOCKHASHES-1) * SPAMSUM_LENGTH)
/*@only@*/ /*@null@*/ struct fuzzy_state *fuzzy_new(void)
{
struct fuzzy_state *self;
if(NULL == (self = malloc(sizeof(struct fuzzy_state))))
/* malloc sets ENOMEM */
return NULL;
self->bhstart = 0;
self->bhend = 1;
self->bhendlimit = NUM_BLOCKHASHES - 1;
self->bh[0].h = HASH_INIT;
self->bh[0].halfh = HASH_INIT;
self->bh[0].digest[0] = '\0';
self->bh[0].halfdigest = '\0';
self->bh[0].dindex = 0;
self->total_size = 0;
self->reduce_border = (uint_least64_t)MIN_BLOCKSIZE * SPAMSUM_LENGTH;
self->flags = 0;
self->rollmask = 0;
roll_init(&self->roll);
return self;
}
/*@only@*/ /*@null@*/ struct fuzzy_state *fuzzy_clone(const struct fuzzy_state *state)
{
struct fuzzy_state *newstate;
if (NULL == (newstate = malloc(sizeof(struct fuzzy_state))))
/* malloc sets ENOMEM */
return NULL;
memcpy(newstate, state, sizeof(struct fuzzy_state));
return newstate;
}
#ifdef S_SPLINT_S
extern const int EOVERFLOW;
#endif
int fuzzy_set_total_input_length(struct fuzzy_state *state, uint_least64_t total_fixed_length)
{
unsigned int bi = 0;
if (total_fixed_length > SSDEEP_TOTAL_SIZE_MAX)
{
errno = EOVERFLOW;
return -1;
}
if ((state->flags & FUZZY_STATE_SIZE_FIXED) &&
state->fixed_size != total_fixed_length)
{
errno = EINVAL;
return -1;
}
state->flags |= FUZZY_STATE_SIZE_FIXED;
state->fixed_size = total_fixed_length;
while ((uint_least64_t)SSDEEP_BS(bi) * SPAMSUM_LENGTH < total_fixed_length)
{
++bi;
if (bi == NUM_BLOCKHASHES - 2)
break;
}
++bi;
state->bhendlimit = bi;
return 0;
}
static void fuzzy_try_fork_blockhash(struct fuzzy_state *self)
{
struct blockhash_context *obh, *nbh;
assert(self->bhend > 0);
obh = self->bh + (self->bhend - 1);
if (self->bhend <= self->bhendlimit)
{
nbh = obh + 1;
nbh->h = obh->h;
nbh->halfh = obh->halfh;
nbh->digest[0] = '\0';
nbh->halfdigest = '\0';
nbh->dindex = 0;
++self->bhend;
}
else if (self->bhend == NUM_BLOCKHASHES &&
!(self->flags & FUZZY_STATE_NEED_LASTHASH))
{
self->flags |= FUZZY_STATE_NEED_LASTHASH;
self->lasth = obh->h;
}
}
static void fuzzy_try_reduce_blockhash(struct fuzzy_state *self)
{
assert(self->bhstart < self->bhend);
if (self->bhend - self->bhstart < 2)
/* Need at least two working hashes. */
return;
if (self->reduce_border >= ((self->flags & FUZZY_STATE_SIZE_FIXED) ? self->fixed_size : self->total_size))
/* Initial blocksize estimate would select this or a smaller
* blocksize. */
return;
if (self->bh[self->bhstart + 1].dindex < SPAMSUM_LENGTH / 2)
/* Estimate adjustment would select this blocksize. */
return;
/* At this point we are clearly no longer interested in the
* start_blocksize. Get rid of it. */
++self->bhstart;
self->reduce_border *= 2;
self->rollmask = self->rollmask * 2 + 1;
}
static const char *b64 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static void fuzzy_engine_step(struct fuzzy_state *self, unsigned char c)
{
uint32_t horg, h;
unsigned int i;
/* At each character we update the rolling hash and the normal hashes.
* When the rolling hash hits a reset value then we emit a normal hash
* as a element of the signature and reset the normal hash. */
roll_hash(&self->roll, c);
horg = roll_sum(&self->roll) + 1;
h = horg / (uint32_t)MIN_BLOCKSIZE;
for (i = self->bhstart; i < self->bhend; ++i)
{
self->bh[i].h = sum_hash(c, self->bh[i].h);
self->bh[i].halfh = sum_hash(c, self->bh[i].halfh);
}
if (self->flags & FUZZY_STATE_NEED_LASTHASH)
self->lasth = sum_hash(c, self->lasth);
/* 0xffffffff !== -1 (mod 3) */
if (!horg)
return;
/* With growing blocksize almost no runs fail the next test. */
if (likely(h & self->rollmask))
return;
/* Delay computation of modulo as possible. */
if (horg % (uint32_t)MIN_BLOCKSIZE)
return;
h >>= self->bhstart;
i = self->bhstart;
do
{
/* We have hit a reset point. We now emit hashes which are
* based on all characters in the piece of the message between
* the last reset point and this one */
if (unlikely(0 == self->bh[i].dindex)) {
/* Can only happen 30 times. */
/* First step for this blocksize. Clone next. */
fuzzy_try_fork_blockhash(self);
}
self->bh[i].digest[self->bh[i].dindex] =
b64[self->bh[i].h];
self->bh[i].halfdigest = b64[self->bh[i].halfh];
if (self->bh[i].dindex < SPAMSUM_LENGTH - 1) {
/* We can have a problem with the tail overflowing. The
* easiest way to cope with this is to only reset the
* normal hash if we have room for more characters in
* our signature. This has the effect of combining the
* last few pieces of the message into a single piece
* */
self->bh[i].digest[++(self->bh[i].dindex)] = '\0';
self->bh[i].h = HASH_INIT;
if (self->bh[i].dindex < SPAMSUM_LENGTH / 2) {
self->bh[i].halfh = HASH_INIT;
self->bh[i].halfdigest = '\0';
}
}
else
fuzzy_try_reduce_blockhash(self);
if (h & 1)
break;
h >>= 1;
} while (++i < self->bhend);
}
int fuzzy_update(struct fuzzy_state *self,
const unsigned char *buffer,
size_t buffer_size)
{
if (unlikely(buffer_size > SSDEEP_TOTAL_SIZE_MAX ||
SSDEEP_TOTAL_SIZE_MAX - buffer_size < self->total_size )) {
self->total_size = SSDEEP_TOTAL_SIZE_MAX + 1;
}
else
self->total_size += buffer_size;
for ( ;buffer_size > 0; ++buffer, --buffer_size)
fuzzy_engine_step(self, *buffer);
return 0;
}
static int memcpy_eliminate_sequences(char *dst,
const char *src,
int n)
{
const char *srcend = src + n;
assert(n >= 0);
if (src < srcend) *dst++ = *src++;
if (src < srcend) *dst++ = *src++;
if (src < srcend) *dst++ = *src++;
while (src < srcend)
{
if (*src == dst[-1] && *src == dst[-2] && *src == dst[-3])
{
++src;
--n;
}
else
*dst++ = *src++;
}
return n;
}
int fuzzy_digest(const struct fuzzy_state *self,
/*@out@*/ char *result,
unsigned int flags)
{
unsigned int bi = self->bhstart;
uint32_t h = roll_sum(&self->roll);
int i, remain = FUZZY_MAX_RESULT - 1; /* Exclude terminating '\0'. */
/* Verify that our elimination was not overeager. */
assert(bi == 0 || (uint_least64_t)SSDEEP_BS(bi) / 2 * SPAMSUM_LENGTH <
self->total_size);
if (self->total_size > SSDEEP_TOTAL_SIZE_MAX) {
/* The input exceeds data types. */
errno = EOVERFLOW;
return -1;
}
/* Fixed size optimization. */
if ((self->flags & FUZZY_STATE_SIZE_FIXED) &&
self->fixed_size != self->total_size) {
errno = EINVAL;
return -1;
}
/* Initial blocksize guess. */
while ((uint_least64_t)SSDEEP_BS(bi) * SPAMSUM_LENGTH < self->total_size)
++bi;
/* Adapt blocksize guess to actual digest length. */
if (bi >= self->bhend)
bi = self->bhend - 1;
while (bi > self->bhstart && self->bh[bi].dindex < SPAMSUM_LENGTH / 2)
--bi;
assert (!(bi > 0 && self->bh[bi].dindex < SPAMSUM_LENGTH / 2));
i = snprintf(result, (size_t)remain, "%lu:", (unsigned long)SSDEEP_BS(bi));
if (i <= 0)
/* Maybe snprintf has set errno here? */
return -1;
assert(i < remain);
remain -= i;
result += i;
i = (int)self->bh[bi].dindex;
assert(i <= remain);
if ((flags & FUZZY_FLAG_ELIMSEQ) != 0)
i = memcpy_eliminate_sequences(result, self->bh[bi].digest, i);
else
memcpy(result, self->bh[bi].digest, (size_t)i);
result += i;
remain -= i;
if (h != 0)
{
assert(remain > 0);
*result = b64[self->bh[bi].h];
if((flags & FUZZY_FLAG_ELIMSEQ) == 0 || i < 3 ||
*result != result[-1] ||
*result != result[-2] ||
*result != result[-3]) {
++result;
--remain;
}
}
else if (self->bh[bi].digest[self->bh[bi].dindex] != '\0') {
assert(remain > 0);
*result = self->bh[bi].digest[self->bh[bi].dindex];
if((flags & FUZZY_FLAG_ELIMSEQ) == 0 || i < 3 ||
*result != result[-1] ||
*result != result[-2] ||
*result != result[-3]) {
++result;
--remain;
}
}
assert(remain > 0);
*result++ = ':';
--remain;
if (bi < self->bhend - 1)
{
++bi;
i = (int)self->bh[bi].dindex;
if ((flags & FUZZY_FLAG_NOTRUNC) == 0 &&
i > SPAMSUM_LENGTH / 2 - 1)
i = SPAMSUM_LENGTH / 2 - 1;
assert(i <= remain);
if ((flags & FUZZY_FLAG_ELIMSEQ) != 0)
i = memcpy_eliminate_sequences(result,
self->bh[bi].digest, i);
else
memcpy(result, self->bh[bi].digest, (size_t)i);
result += i;
remain -= i;
if (h != 0) {
assert(remain > 0);
h = (flags & FUZZY_FLAG_NOTRUNC) != 0 ? self->bh[bi].h :
self->bh[bi].halfh;
*result = b64[h];
if ((flags & FUZZY_FLAG_ELIMSEQ) == 0 || i < 3 ||
*result != result[-1] ||
*result != result[-2] ||
*result != result[-3])
{
++result;
--remain;
}
}
else {
i = (flags & FUZZY_FLAG_NOTRUNC) != 0 ?
self->bh[bi].digest[self->bh[bi].dindex] : self->bh[bi].halfdigest;
if (i != '\0') {
assert(remain > 0);
*result = i;
if ((flags & FUZZY_FLAG_ELIMSEQ) == 0 || i < 3 ||
*result != result[-1] ||
*result != result[-2] ||
*result != result[-3])
{
++result;
--remain;
}
}
}
}
else if (h != 0)
{
assert(bi == 0 || bi == NUM_BLOCKHASHES - 1);
assert(remain > 0);
if (bi == 0)
*result++ = b64[self->bh[bi].h];
else
*result++ = b64[self->lasth];
/* No need to bother with FUZZY_FLAG_ELIMSEQ, because this
* digest has length 1. */
--remain;
}
*result = '\0';
return 0;
}
void fuzzy_free(/*@only@*/ struct fuzzy_state *self)
{
free(self);
}
int fuzzy_hash_buf(const unsigned char *buf,
uint32_t buf_len,
/*@out@*/ char *result)
{
struct fuzzy_state *ctx;
int ret = -1;
if (NULL == (ctx = fuzzy_new()))
return -1;
if (fuzzy_set_total_input_length(ctx, buf_len) < 0)
goto out;
if (fuzzy_update(ctx, buf, buf_len) < 0)
goto out;
if (fuzzy_digest(ctx, result, 0) < 0)
goto out;
ret = 0;
out:
fuzzy_free(ctx);
return ret;
}
static int fuzzy_update_stream(struct fuzzy_state *state,
FILE *handle)
{
unsigned char buffer[4096];
size_t n;
for(;;)
{
n = fread(buffer, 1, 4096, handle);
if (0 == n)
break;
if (fuzzy_update(state, buffer, n) < 0)
return -1;
}
if (ferror(handle) != 0)
return -1;
return 0;
}
int fuzzy_hash_stream(FILE *handle, /*@out@*/ char *result)
{
struct fuzzy_state *ctx;
int ret = -1;
if (NULL == (ctx = fuzzy_new()))
return -1;
if (fuzzy_update_stream(ctx, handle) < 0)
goto out;
if (fuzzy_digest(ctx, result, 0) < 0)
goto out;
ret = 0;
out:
fuzzy_free(ctx);
return ret;
}
#ifdef S_SPLINT_S
typedef size_t off_t;
int fseeko(FILE *, off_t, int);
off_t ftello(FILE *);
#endif
int fuzzy_hash_file(FILE *handle, /*@out@*/ char *result)
{
off_t fpos, fposend;
int status = -1;
struct fuzzy_state *ctx;
fpos = ftello(handle);
if (fpos < 0)
return -1;
if (fseeko(handle, 0, SEEK_END) < 0)
return -1;
fposend = ftello(handle);
if (fposend < 0)
return -1;
if (fseeko(handle, 0, SEEK_SET) < 0)
return -1;
if (NULL == (ctx = fuzzy_new()))
return -1;
if (fuzzy_set_total_input_length(ctx, (uint_least64_t)fposend) < 0)
goto out;
if (fuzzy_update_stream(ctx, handle) < 0)
goto out;
status = fuzzy_digest(ctx, result, 0);
out:
if (status == 0)
{
if (fseeko(handle, fpos, SEEK_SET) < 0)
status = -1;
}
fuzzy_free(ctx);
return status;
}
int fuzzy_hash_filename(const char *filename, /*@out@*/ char *result)
{
int status;
FILE *handle = fopen(filename, "rb");
if (NULL == handle)
return -1;
status = fuzzy_hash_stream(handle, result);
/* We cannot do anything about an fclose failure. */
(void)fclose(handle);
return status;
}
//
// We only accept a match if we have at least one common substring in
// the signature of length ROLLING_WINDOW. This dramatically drops the
// false positive rate for low score thresholds while having
// negligable affect on the rate of spam detection.
//
// return 1 if the two strings do have a common substring, 0 otherwise
//
#ifndef SSDEEP_ENABLE_POSITION_ARRAY
static int has_common_substring(const char *s1, size_t s1len, const char *s2, size_t s2len)
{
size_t i, j;
uint32_t hashes[SPAMSUM_LENGTH - (ROLLING_WINDOW - 1)];
if (s1len < ROLLING_WINDOW)
return 0;
if (s2len < ROLLING_WINDOW)
return 0;
// there are many possible algorithms for common substring
// detection. In this case I am re-using the rolling hash code
// to act as a filter for possible substring matches
memset(hashes, 0, sizeof(hashes));
// first compute the windowed rolling hash at each offset in
// the first string
struct roll_state state;
roll_init (&state);
for (i = 0; i < ROLLING_WINDOW - 1; i++)
roll_hash(&state, (unsigned char)s1[i]);
for (i = ROLLING_WINDOW - 1; i < s1len; i++)
{
roll_hash(&state, (unsigned char)s1[i]);
hashes[i - (ROLLING_WINDOW - 1)] = roll_sum(&state);
}
s1len -= (ROLLING_WINDOW - 1);
roll_init(&state);
// now for each offset in the second string compute the
// rolling hash and compare it to all of the rolling hashes
// for the first string. If one matches then we have a
// candidate substring match. We then confirm that match with
// a direct string comparison */
for (j = 0; j < ROLLING_WINDOW - 1; j++)
roll_hash(&state, (unsigned char)s2[j]);
for (j = 0; j < s2len - (ROLLING_WINDOW - 1); j++)
{
roll_hash(&state, (unsigned char)s2[j + (ROLLING_WINDOW - 1)]);
uint32_t h = roll_sum(&state);
for (i = 0; i < s1len; i++)
{
// confirm the match after checking potential match
if (hashes[i] == h && !memcmp(s1 + i, s2 + j, ROLLING_WINDOW))
return 1;
}
}
return 0;
}
#endif
#ifdef SSDEEP_ENABLE_POSITION_ARRAY
// position array-based version of has_common_substring
static int has_common_substring_pa(const unsigned long long *parray, const char *s2, size_t s2len)
{
unsigned long long D;
// ROLLING_WINDOW <= s2len <= 64
size_t r = ROLLING_WINDOW - 1;
size_t l;
const char *ch;
while (r < s2len)
{
// because we want to reuse position array for s1,
// both s1 and s2 (in the original pseudocode) are reversed.
l = r - (ROLLING_WINDOW - 1);
ch = &s2[s2len - 1 - r];
D = parray[*ch - CHAR_MIN];
while (D)
{
r--;
D = (D << 1) & parray[*++ch - CHAR_MIN];
if (r == l && D)
return 1;
}
// Boyer-Moore-like skipping
r += ROLLING_WINDOW;
}
return 0;
}
// position array-based version of edit_distn
static int edit_distn_pa(const unsigned long long *parray, size_t s1len, const char *s2, size_t s2len)
{
unsigned long long pv, nv, ph, nh, zd, mt, x, y;
unsigned long long msb;
size_t i;
// 0 < s1len <= 64
int cur = s1len;
msb = 1ull << (s1len - 1);
pv = -1;
nv = 0;
for (i = 0; i < s2len; i++)
{
mt = parray[s2[i] - CHAR_MIN];
zd = (((mt & pv) + pv) ^ pv) | mt | nv;
nh = pv & zd;
if (nh & msb)
--cur;
x = nv | ~(pv | zd) | (pv & ~mt & 1ull);
y = (pv - nh) >> 1;
ph = (x + y) ^ y;
if (ph & msb)
++cur;
x = (ph << 1) | 1ull;
nv = x & zd;
pv = (nh << 1) | ~(x | zd) | (x & (pv - nh));
}
return cur;
}
#endif
// eliminate sequences of longer than 3 identical characters. These
// sequences contain very little information so they tend to just bias
// the result unfairly
static int copy_eliminate_sequences(char **out, size_t outsize, char **in, char etoken)
{
size_t seq = 0;
char prev = **in, curr;
if (!prev || prev == etoken)
return 1;
if (!outsize--)
return 0;
*(*out)++ = prev;
++(*in);
while (1)
{
curr = **in;
if (!curr || curr == etoken)
return 1;
++(*in);
if (curr == prev)
{
if (++seq >= 3)
{
seq = 3;
continue;
}
if (!outsize--)
return 0;
*(*out)++ = curr;
}
else
{
if (!outsize--)
return 0;
*(*out)++ = curr;
seq = 0;
prev = curr;
}
}
// unreachable
return 0;
}
//
// this is the low level string scoring algorithm. It takes two strings
// and scores them on a scale of 0-100 where 0 is a terrible match and
// 100 is a great match. The block_size is used to cope with very small
// messages.
//
static uint32_t score_strings(const char *s1,
size_t s1len,
const char *s2,
size_t s2len,
unsigned long block_size)
{
uint32_t score;
#ifdef SSDEEP_ENABLE_POSITION_ARRAY
unsigned long long parray[CHAR_MAX - CHAR_MIN + 1];
size_t i;
// skip short strings
if (s1len < ROLLING_WINDOW)
return 0;
if (s2len < ROLLING_WINDOW)
return 0;
// construct position array for faster string algorithms
memset(parray, 0, sizeof(parray));
for (i = 0; i < s1len; i++)
parray[s1[i] - CHAR_MIN] |= 1ull << i;
// the two strings must have a common substring of length
// ROLLING_WINDOW to be candidates
if (!has_common_substring_pa(parray, s2, s2len))
return 0;
// compute the edit distance between the two strings. The edit distance gives
// us a pretty good idea of how closely related the two strings are
score = edit_distn_pa(parray, s1len, s2, s2len);
#else
// the two strings must have a common substring of length
// ROLLING_WINDOW to be candidates
if (!has_common_substring(s1, s1len, s2, s2len))
return 0;
// compute the edit distance between the two strings. The edit distance gives
// us a pretty good idea of how closely related the two strings are
score = edit_distn(s1, s1len, s2, s2len);
#endif
// scale the edit distance by the lengths of the two
// strings. This changes the score to be a measure of the
// proportion of the message that has changed rather than an
// absolute quantity. It also copes with the variability of
// the string lengths.
score = (score * SPAMSUM_LENGTH) / (s1len + s2len);
// at this stage the score occurs roughly on a 0-SPAMSUM_LENGTH scale,
// with 0 being a good match and SPAMSUM_LENGTH being a complete
// mismatch
// rescale to a 0-100 scale (friendlier to humans)
score = (100 * score) / SPAMSUM_LENGTH;
// now re-scale on a 0-100 scale with 0 being a poor match and
// 100 being a excellent match.
score = 100 - score;
// printf ("s1len: %"PRIu32" s2len: %"PRIu32"\n", (uint32_t)s1len, (uint32_t)s2len);
// when the blocksize is small we don't want to exaggerate the match size
if (block_size >= (99 + ROLLING_WINDOW) / ROLLING_WINDOW * MIN_BLOCKSIZE)
return score;
if (score > block_size/MIN_BLOCKSIZE * MIN(s1len, s2len))
{
score = block_size/MIN_BLOCKSIZE * MIN(s1len, s2len);
}
return score;
}
//
// Given two spamsum strings return a value indicating the degree
// to which they match.
//
int fuzzy_compare(const char *str1, const char *str2)
{
unsigned long block_size1, block_size2;
uint32_t score = 0;
size_t s1b1len, s1b2len, s2b1len, s2b2len;
char s1b1[SPAMSUM_LENGTH], s1b2[SPAMSUM_LENGTH];
char s2b1[SPAMSUM_LENGTH], s2b2[SPAMSUM_LENGTH];
char *s1p, *s2p, *tmp;
if (NULL == str1 || NULL == str2)
return -1;
// each spamsum is prefixed by its block size
if (sscanf(str1, "%lu:", &block_size1) != 1 ||
sscanf(str2, "%lu:", &block_size2) != 1) {
return -1;
}
// if the blocksizes don't match then we are comparing
// apples to oranges. This isn't an 'error' per se. We could
// have two valid signatures, but they can't be compared.
if (block_size1 != block_size2 &&
(block_size1 > ULONG_MAX / 2 || block_size1*2 != block_size2) &&
(block_size1 % 2 == 1 || block_size1 / 2 != block_size2)) {
return 0;
}
// move past the prefix
s1p = strchr(str1, ':');
s2p = strchr(str2, ':');
if (!s1p || !s2p) {
// badly formed ...
return -1;
}
// there is very little information content is sequences of
// the same character like 'LLLLL'. Eliminate any sequences
// longer than 3 while reading two pieces.
// This is especially important when combined with the
// has_common_substring() test at score_strings().
// read the first digest
++s1p;
tmp = s1b1;
if (!copy_eliminate_sequences(&tmp, SPAMSUM_LENGTH, &s1p, ':'))
return -1;
s1b1len = tmp - s1b1;
if (!*s1p++) {
// a signature is malformed - it doesn't have 2 parts
return -1;
}
tmp = s1b2;
if (!copy_eliminate_sequences(&tmp, SPAMSUM_LENGTH, &s1p, ','))
return -1;
s1b2len = tmp - s1b2;
// read the second digest
++s2p;
tmp = s2b1;
if (!copy_eliminate_sequences(&tmp, SPAMSUM_LENGTH, &s2p, ':'))
return -1;
s2b1len = tmp - s2b1;
if (!*s2p++) {
// a signature is malformed - it doesn't have 2 parts
return -1;
}
tmp = s2b2;
if (!copy_eliminate_sequences(&tmp, SPAMSUM_LENGTH, &s2p, ','))
return -1;
s2b2len = tmp - s2b2;
// Now that we know the strings are both well formed, are they
// identical? We could save ourselves some work here
if (block_size1 == block_size2 && s1b1len == s2b1len && s1b2len == s2b2len) {
if (!memcmp(s1b1, s2b1, s1b1len) && !memcmp(s1b2, s2b2, s1b2len)) {
return 100;
}
}
// each signature has a string for two block sizes. We now
// choose how to combine the two block sizes. We checked above
// that they have at least one block size in common
if (block_size1 <= ULONG_MAX / 2) {
if (block_size1 == block_size2) {
uint32_t score1, score2;
score1 = score_strings(s1b1, s1b1len, s2b1, s2b1len, block_size1);
score2 = score_strings(s1b2, s1b2len, s2b2, s2b2len, block_size1*2);
score = MAX(score1, score2);
}
else if (block_size1 * 2 == block_size2) {
score = score_strings(s2b1, s2b1len, s1b2, s1b2len, block_size2);
}
else {
score = score_strings(s1b1, s1b1len, s2b2, s2b2len, block_size1);
}
}
else {
if (block_size1 == block_size2) {
score = score_strings(s1b1, s1b1len, s2b1, s2b1len, block_size1);
}
else if (block_size1 % 2 == 0 && block_size1 / 2 == block_size2) {
score = score_strings(s1b1, s1b1len, s2b2, s2b2len, block_size1);
}
else {
score = 0;
}
}
return (int)score;
}