forked from USCCACS/ThermalTools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
py_tc_lammps.py
125 lines (117 loc) · 6.28 KB
/
py_tc_lammps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import matplotlib.pyplot as plt # Plotting package
import numpy as np # For basic math
import pandas as pd # For reading temperature dump files; faster processing than usual read
import linecache # Traversing to specific linenumbers in the file without opening explicitly; faster
#import os
#import subprocess
#import shlex
import sys # For command line args
plt.style.use('ggplot') # R style plots
# Class that contains all the data members and member functions required for calculating thermal gradient and Thermal Conductivity
class TC:
def __init__(self, ip_val = {}, temp_data = pd.DataFrame()):
self.ip_val = ip_val # Values from the input files stored as a dict
self.temp_data = temp_data # Values from the Temperature LAMMPS Dump file stored as a pandas df
self.meanTC = 0.0
self.stddevTC = 0.0
self.meaninvTC = 0.0
self.stddevinvTC = 0.0
self.boxsize = 0
@classmethod # Used to instantiate the class
def read_data(cls, inputfile, tempdata):
input_values = {}
with open(inputfile, 'r') as fin:
for line in fin:
data = line.split()
try :
input_values.update({data[0]:float(data[1])})
except ValueError:
input_values.update({data[0]:data[1]})
fin.close()
# Area in Amstrong^2
input_values.update({'Area': input_values['height']*input_values['width']})
# how frequently heat is added in ps
input_values.update({'delT' : input_values['frequency']*input_values['dtstep']})
# heatflux = heat in eV/(time(ps)*Area)
input_values.update({'heatflux' : -input_values['energy']/(2.0*input_values['Area']*input_values['delT'])})
# conversion from eV to Watt
input_values.update({'evtoWatt' : 1.60217733*1000})
#return input_values
c = int(linecache.getline(tempdata, 4).split()[1]) + 1
hot = ((c-1)/4) + input_values['nbin_skip']
cold = ((c-1)*3/4) - input_values['nbin_skip']
df = pd.read_csv(tempdata, delim_whitespace = True, comment = '#', header = None, names = ['Bin', 'Coord', 'Ncount', 'v_atemp'], chunksize = c, dtype = float)
TC1 = cls(input_values, df)
slope = []
df1 = pd.DataFrame()
for chunk in TC1.temp_data:
chunk = chunk.dropna()
chunk = chunk.reset_index(drop = True)
TC1.boxsize = round(chunk.at[chunk.shape[0]-1, 'Coord'] - chunk.at[0, 'Coord'] )
fit_region = [chunk.loc[hot:cold]['Coord'].values, chunk.loc[hot:cold]['v_atemp'].values]
fit=np.polyfit(fit_region[0],fit_region[1],1)
fit_fn=np.poly1d(fit)
slope.append(fit[0])
df1 = pd.concat((df1, chunk))
by_row_index = df1.groupby(df1.index)
df_means = by_row_index.mean()
K = [TC1.ip_val['evtoWatt']*TC1.ip_val['heatflux']/i for i in slope]
Kinv = [1.0/i for i in K]
print Kinv
TC1.meanTC = np.mean(K)
TC1.stddevTC = np.std(K)
TC1.meaninvTC = np.mean(Kinv)
TC1.stddevinvTC = np.std(Kinv)
print 'Mean Thermal Conductivity of ',TC1.meanTC ,'\n', 'Standard Deviation in Thermal Conductivity is ',TC1.stddevTC, '\n'
print 'Mean Inverse Thermal Conductivity is', TC1.meaninvTC, '\n', 'Standard Deviation in Inverse Thermal Conductivity is', TC1.stddevinvTC, '\n'
fit_region = [df_means.loc[hot:cold]['Coord'].values, df_means.loc[hot:cold]['v_atemp'].values]
fit=np.polyfit(fit_region[0],fit_region[1],1)
fit_fn=np.poly1d(fit)
df_means.plot('Coord', 'v_atemp', linewidth = 2.0, figsize=(10,8))
plt.plot(fit_region[0],fit_region[1], linewidth = 3.0)
plt.plot(fit_region[0],fit_region[1],'yo',fit_region[0],fit_fn(fit_region[0]),"--k",linewidth=2.0)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.title('Temperature Gradient', color = 'r', fontsize=20)
plt.ylabel('Temperature(K)', fontsize=14)
plt.xlabel('Distance ($\AA$)', fontsize=14)
#plt.show()
if(TC1.ip_val['plt_op'] == 'display'):
plt.show()
elif(TC1.ip_val['plt_op'] == 'png'):
plt.savefig('TC' + str(int(TC1.boxsize)) + '.png')
return ((TC1.meaninvTC, TC1.stddevinvTC), 1/TC1.boxsize), ((TC1.meanTC, TC1.stddevTC), TC1.ip_val['temperature'])
if(__name__ == '__main__'):
scaling_param = {}
with open('scaling_params.txt', 'r') as fin:
for line in fin:
data = line.split()
try :
scaling_param.update({data[0]:float(data[1])})
except ValueError:
scaling_param.update({data[0]:data[1].split(',')})
print scaling_param
def plotscaling(X = [], Y = [], yerror = [], title = [], xlabel = [], ylabel = [], flag = 'png', scalingtype = 'length'):
fig = plt.figure(figsize=(10,8))
plt.title(title, color = 'r', fontsize=20)
plt.xlabel(xlabel, fontsize=14)
plt.ylabel(ylabel, fontsize=14)
plt.xticks(fontsize = 14)
plt.yticks(fontsize = 14)
plt.errorbar(X, Y, yerr = yerror)
if(flag == 'display'):
plt.show()
elif(flag == 'png'):
plt.savefig(scalingtype + 'Scaling' + '.png')
if(not(scaling_param['L_scaling']) and not(scaling_param['T_scaling'])):
plot = TC.read_data(scaling_param['default_ip'][0], scaling_param['default_Tdump'][0])
lscaling = []
if(scaling_param['L_scaling']):
for i in zip(scaling_param['L_scaling_ip'], scaling_param['L_scaling_Tdump']):
lscaling.append(TC.read_data(i[0],i[1]))
plotscaling([i[0][1] for i in lscaling], [i[0][0][0] for i in lscaling],[i[0][0][1] for i in lscaling], 'Length Scaling', 'Inverse Length(x10$\ \mu m^{-1}$)', 'Inverse Thermal Conductivity(mK/W)', flag = scaling_param['plt_op'][0], scalingtype = 'Length')
tscaling = []
if(scaling_param['T_scaling']):
for i in zip(scaling_param['T_scaling_ip'], scaling_param['T_scaling_Tdump']):
tscaling.append(TC.read_data(i[0],i[1]))
plotscaling([i[1][1] for i in tscaling], [i[1][0][0] for i in tscaling],[i[1][0][1] for i in tscaling], 'Temperature Scaling', 'Temperature($K$)', 'Thermal Conductivity(W/mK)', scalingtype = 'Temperature', flag = scaling_param['plt_op'][0])