-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfuse_trainA.py
68 lines (53 loc) · 2.02 KB
/
fuse_trainA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import argparse
import numpy as np
import os
import json
import torch
import torch.multiprocessing as mp
import importlib
from option.fuse_optionA import args
import os
import torch
import torch.multiprocessing as mp
import sys
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES'] = '3,4'
def main_worker(id, ngpus_per_node, args):
args.local_rank = args.global_rank = id
if args.distributed:
torch.cuda.set_device(args.local_rank)
print(f'using GPU {args.world_size}-{args.global_rank} for training')
torch.distributed.init_process_group(
backend='nccl', init_method=args.init_method,
world_size=args.world_size, rank=args.global_rank,
group_name='mtorch')
args.save_dir = os.path.join(args.save_dir, f'{args.model_name}_{args.file_name}_{args.image_size}')
if (not args.distributed) or args.global_rank == 0:
os.makedirs(args.save_dir, exist_ok=True)
with open(os.path.join(args.save_dir, 'config.txt'), 'a') as f:
for key, val in vars(args).items():
f.write(f'{key}: {val}\n')
print(f'[**] create folder {args.save_dir}')
# trainer = Trainer(args)
trainer = importlib.import_module('trainer.'+args.trainer_name).Trainer(args)
trainer.train()
if __name__ == "__main__":
torch.manual_seed(args.seed)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# setup distributed parallel training environments
ngpus_per_node = torch.cuda.device_count()
print('ngpus_per_node is',ngpus_per_node)
# ngpus_per_node = 2
# print('ngpus_per_node is',ngpus_per_node)
if ngpus_per_node > 1:
args.world_size = ngpus_per_node
args.init_method = f'tcp://127.0.0.1:{args.port}'
args.distributed = True
mp.spawn(main_worker, nprocs=ngpus_per_node,
args=(ngpus_per_node, args))
else:
args.world_size = 1
args.distributed = False
main_worker(0, 1, args)