-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathutil.py
190 lines (173 loc) · 7.47 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import os,sys,time
import shutil
import datetime
import torch
import torch.nn.functional as torch_F
import ipdb
import types
import termcolor
import socket
import contextlib
from easydict import EasyDict as edict
# convert to colored strings
def red(message,**kwargs): return termcolor.colored(str(message),color="red",attrs=[k for k,v in kwargs.items() if v is True])
def green(message,**kwargs): return termcolor.colored(str(message),color="green",attrs=[k for k,v in kwargs.items() if v is True])
def blue(message,**kwargs): return termcolor.colored(str(message),color="blue",attrs=[k for k,v in kwargs.items() if v is True])
def cyan(message,**kwargs): return termcolor.colored(str(message),color="cyan",attrs=[k for k,v in kwargs.items() if v is True])
def yellow(message,**kwargs): return termcolor.colored(str(message),color="yellow",attrs=[k for k,v in kwargs.items() if v is True])
def magenta(message,**kwargs): return termcolor.colored(str(message),color="magenta",attrs=[k for k,v in kwargs.items() if v is True])
def grey(message,**kwargs): return termcolor.colored(str(message),color="grey",attrs=[k for k,v in kwargs.items() if v is True])
def get_time(sec):
d = int(sec//(24*60*60))
h = int(sec//(60*60)%24)
m = int((sec//60)%60)
s = int(sec%60)
return d,h,m,s
def add_datetime(func):
def wrapper(*args,**kwargs):
datetime_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(grey("[{}] ".format(datetime_str),bold=True),end="")
return func(*args,**kwargs)
return wrapper
def add_functionname(func):
def wrapper(*args,**kwargs):
print(grey("[{}] ".format(func.__name__),bold=True))
return func(*args,**kwargs)
return wrapper
def pre_post_actions(pre=None,post=None):
def func_decorator(func):
def wrapper(*args,**kwargs):
if pre: pre()
retval = func(*args,**kwargs)
if post: post()
return retval
return wrapper
return func_decorator
debug = ipdb.set_trace
class Log:
def __init__(self): pass
def process(self,pid):
print(grey("Process ID: {}".format(pid),bold=True))
def title(self,message):
print(yellow(message,bold=True,underline=True))
def info(self,message):
print(magenta(message,bold=True))
def options(self,opt,level=0):
for key,value in sorted(opt.items()):
if isinstance(value,(dict,edict)):
print(" "*level+cyan("* ")+green(key)+":")
self.options(value,level+1)
else:
print(" "*level+cyan("* ")+green(key)+":",yellow(value))
def loss_train(self,opt,ep,lr,loss,timer):
if not opt.max_epoch: return
message = grey("[train] ",bold=True)
message += "epoch {}/{}".format(cyan(ep,bold=True),opt.max_epoch)
message += ", lr:{}".format(yellow("{:.2e}".format(lr),bold=True))
message += ", loss:{}".format(red("{:.3e}".format(loss),bold=True))
message += ", time:{}".format(blue("{0}-{1:02d}:{2:02d}:{3:02d}".format(*get_time(timer.elapsed)),bold=True))
message += " (ETA:{})".format(blue("{0}-{1:02d}:{2:02d}:{3:02d}".format(*get_time(timer.arrival))))
print(message)
def loss_val(self,opt,loss):
message = grey("[val] ",bold=True)
message += "loss:{}".format(red("{:.3e}".format(loss),bold=True))
print(message)
log = Log()
def update_timer(opt,timer,ep,it_per_ep):
if not opt.max_epoch: return
momentum = 0.99
timer.elapsed = time.time()-timer.start
timer.it = timer.it_end-timer.it_start
# compute speed with moving average
timer.it_mean = timer.it_mean*momentum+timer.it*(1-momentum) if timer.it_mean is not None else timer.it
timer.arrival = timer.it_mean*it_per_ep*(opt.max_epoch-ep)
# move tensors to device in-place
def move_to_device(X,device):
if isinstance(X,dict):
for k,v in X.items():
X[k] = move_to_device(v,device)
elif isinstance(X,list):
for i,e in enumerate(X):
X[i] = move_to_device(e,device)
elif isinstance(X,tuple) and hasattr(X,"_fields"): # collections.namedtuple
dd = X._asdict()
dd = move_to_device(dd,device)
return type(X)(**dd)
elif isinstance(X,torch.Tensor):
return X.to(device=device)
return X
def to_dict(D,dict_type=dict):
D = dict_type(D)
for k,v in D.items():
if isinstance(v,dict):
D[k] = to_dict(v,dict_type)
return D
def get_child_state_dict(state_dict,key):
return { ".".join(k.split(".")[1:]): v for k,v in state_dict.items() if k.startswith("{}.".format(key)) }
def restore_checkpoint(opt,model,load_name=None,resume=False):
assert((load_name is None)==(resume is not False)) # resume can be True/False or epoch numbers
if resume:
load_name = "{0}/model.ckpt".format(opt.output_path) if resume is True else \
"{0}/model/{1}.ckpt".format(opt.output_path,resume)
checkpoint = torch.load(load_name,map_location=opt.device)
# load individual (possibly partial) children modules
for name,child in model.graph.named_children():
child_state_dict = get_child_state_dict(checkpoint["graph"],name)
if child_state_dict:
print("restoring {}...".format(name))
child.load_state_dict(child_state_dict)
for key in model.__dict__:
if key.split("_")[0] in ["optim","sched"] and key in checkpoint and resume:
print("restoring {}...".format(key))
getattr(model,key).load_state_dict(checkpoint[key])
if resume:
ep,it = checkpoint["epoch"],checkpoint["iter"]
if resume is not True: assert(resume==(ep or it))
print("resuming from epoch {0} (iteration {1})".format(ep,it))
else: ep,it = None,None
return ep,it
def save_checkpoint(opt,model,ep,it,latest=False,children=None):
os.makedirs("{0}/model".format(opt.output_path),exist_ok=True)
if children is not None:
graph_state_dict = { k: v for k,v in model.graph.state_dict().items() if k.startswith(children) }
else: graph_state_dict = model.graph.state_dict()
checkpoint = dict(
epoch=ep,
iter=it,
graph=graph_state_dict,
)
for key in model.__dict__:
if key.split("_")[0] in ["optim","sched"]:
checkpoint.update({ key: getattr(model,key).state_dict() })
torch.save(checkpoint,"{0}/model.ckpt".format(opt.output_path))
if not latest:
shutil.copy("{0}/model.ckpt".format(opt.output_path),
"{0}/model/{1}.ckpt".format(opt.output_path,ep or it)) # if ep is None, track it instead
def check_socket_open(hostname,port):
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
is_open = False
try:
s.bind((hostname,port))
except socket.error:
is_open = True
finally:
s.close()
return is_open
def get_layer_dims(layers):
# return a list of tuples (k_in,k_out)
return list(zip(layers[:-1],layers[1:]))
@contextlib.contextmanager
def suppress(stdout=False,stderr=False):
with open(os.devnull,"w") as devnull:
if stdout: old_stdout,sys.stdout = sys.stdout,devnull
if stderr: old_stderr,sys.stderr = sys.stderr,devnull
try: yield
finally:
if stdout: sys.stdout = old_stdout
if stderr: sys.stderr = old_stderr
def colorcode_to_number(code):
ords = [ord(c) for c in code[1:]]
ords = [n-48 if n<58 else n-87 for n in ords]
rgb = (ords[0]*16+ords[1],ords[2]*16+ords[3],ords[4]*16+ords[5])
return rgb