-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathwarp.py
169 lines (151 loc) · 6.72 KB
/
warp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import os,sys,time
import torch
import torch.nn.functional as torch_F
import util
from util import log,debug
import camera
def get_normalized_pixel_grid(opt):
y_range = ((torch.arange(opt.H,dtype=torch.float32,device=opt.device)+0.5)/opt.H*2-1)*(opt.H/max(opt.H,opt.W))
x_range = ((torch.arange(opt.W,dtype=torch.float32,device=opt.device)+0.5)/opt.W*2-1)*(opt.W/max(opt.H,opt.W))
Y,X = torch.meshgrid(y_range,x_range) # [H,W]
xy_grid = torch.stack([X,Y],dim=-1).view(-1,2) # [HW,2]
xy_grid = xy_grid.repeat(opt.batch_size,1,1) # [B,HW,2]
return xy_grid
def get_normalized_pixel_grid_crop(opt):
y_crop = (opt.H//2-opt.H_crop//2,opt.H//2+opt.H_crop//2)
x_crop = (opt.W//2-opt.W_crop//2,opt.W//2+opt.W_crop//2)
y_range = ((torch.arange(*(y_crop),dtype=torch.float32,device=opt.device)+0.5)/opt.H*2-1)*(opt.H/max(opt.H,opt.W))
x_range = ((torch.arange(*(x_crop),dtype=torch.float32,device=opt.device)+0.5)/opt.W*2-1)*(opt.W/max(opt.H,opt.W))
Y,X = torch.meshgrid(y_range,x_range) # [H,W]
xy_grid = torch.stack([X,Y],dim=-1).view(-1,2) # [HW,2]
xy_grid = xy_grid.repeat(opt.batch_size,1,1) # [B,HW,2]
return xy_grid
def warp_grid(opt,xy_grid,warp):
if opt.warp.type=="translation":
assert(opt.warp.dof==2)
warped_grid = xy_grid+warp[...,None,:]
elif opt.warp.type=="rotation":
assert(opt.warp.dof==1)
warp_matrix = lie.so2_to_SO2(warp)
warped_grid = xy_grid@warp_matrix.transpose(-2,-1) # [B,HW,2]
elif opt.warp.type=="rigid":
assert(opt.warp.dof==3)
xy_grid_hom = camera.to_hom(xy_grid)
warp_matrix = lie.se2_to_SE2(warp)
warped_grid = xy_grid_hom@warp_matrix.transpose(-2,-1) # [B,HW,2]
elif opt.warp.type=="homography":
assert(opt.warp.dof==8)
xy_grid_hom = camera.to_hom(xy_grid)
warp_matrix = lie.sl3_to_SL3(warp)
warped_grid_hom = xy_grid_hom@warp_matrix.transpose(-2,-1)
warped_grid = warped_grid_hom[...,:2]/(warped_grid_hom[...,2:]+1e-8) # [B,HW,2]
else: assert(False)
return warped_grid
def warp_corners(opt,warp_param):
y_crop = (opt.H//2-opt.H_crop//2,opt.H//2+opt.H_crop//2)
x_crop = (opt.W//2-opt.W_crop//2,opt.W//2+opt.W_crop//2)
Y = [((y+0.5)/opt.H*2-1)*(opt.H/max(opt.H,opt.W)) for y in y_crop]
X = [((x+0.5)/opt.W*2-1)*(opt.W/max(opt.H,opt.W)) for x in x_crop]
corners = [(X[0],Y[0]),(X[0],Y[1]),(X[1],Y[1]),(X[1],Y[0])]
corners = torch.tensor(corners,dtype=torch.float32,device=opt.device).repeat(opt.batch_size,1,1)
corners_warped = warp_grid(opt,corners,warp_param)
return corners_warped
def check_corners_in_range(opt,warp_param):
corners_all = warp_corners(opt,warp_param)
X = (corners_all[...,0]/opt.W*max(opt.H,opt.W)+1)/2*opt.W-0.5
Y = (corners_all[...,1]/opt.H*max(opt.H,opt.W)+1)/2*opt.H-0.5
return (0<=X).all() and (X<opt.W).all() and (0<=Y).all() and (Y<opt.H).all()
class Lie():
def so2_to_SO2(self,theta): # [...,1]
thetax = torch.stack([torch.cat([theta.cos(),-theta.sin()],dim=-1),
torch.cat([theta.sin(),theta.cos()],dim=-1)],dim=-2)
R = thetax
return R
def SO2_to_so2(self,R): # [...,2,2]
theta = torch.atan2(R[...,1,0],R[...,0,0])
return theta[...,None]
def so2_jacobian(self,X,theta): # [...,N,2],[...,1]
dR_dtheta = torch.stack([torch.cat([-theta.sin(),-theta.cos()],dim=-1),
torch.cat([theta.cos(),-theta.sin()],dim=-1)],dim=-2) # [...,2,2]
J = X@dR_dtheta.transpose(-2,-1)
return J[...,None] # [...,N,2,1]
def se2_to_SE2(self,delta): # [...,3]
u,theta = delta.split([2,1],dim=-1)
A = self.taylor_A(theta)
B = self.taylor_B(theta)
V = torch.stack([torch.cat([A,-B],dim=-1),
torch.cat([B,A],dim=-1)],dim=-2)
R = self.so2_to_SO2(theta)
Rt = torch.cat([R,V@u[...,None]],dim=-1)
return Rt
def SE2_to_se2(self,Rt,eps=1e-7): # [...,2,3]
R,t = Rt.split([2,1],dim=-1)
theta = self.SO2_to_so2(R)
A = self.taylor_A(theta)
B = self.taylor_B(theta)
denom = (A**2+B**2+eps)[...,None]
invV = torch.stack([torch.cat([A,B],dim=-1),
torch.cat([-B,A],dim=-1)],dim=-2)/denom
u = (invV@t)[...,0]
delta = torch.cat([u,theta],dim=-1)
return delta
def se2_jacobian(self,X,delta): # [...,N,2],[...,3]
u,theta = delta.split([2,1],dim=-1)
A = self.taylor_A(theta)
B = self.taylor_B(theta)
C = self.taylor_C(theta)
D = self.taylor_D(theta)
V = torch.stack([torch.cat([A,-B],dim=-1),
torch.cat([B,A],dim=-1)],dim=-2)
R = self.so2_to_SO2(theta)
dV_dtheta = torch.stack([torch.cat([C,-D],dim=-1),
torch.cat([D,C],dim=-1)],dim=-2) # [...,2,2]
dt_dtheta = dV_dtheta@u[...,None] # [...,2,1]
J_so2 = self.so2_jacobian(X,theta) # [...,N,2,1]
dX_dtheta = J_so2+dt_dtheta[...,None,:,:] # [...,N,2,1]
dX_du = V[...,None,:,:].repeat(*[1]*(len(dX_dtheta.shape)-3),dX_dtheta.shape[-3],1,1)
J = torch.cat([dX_du,dX_dtheta],dim=-1)
return J # [...,N,2,3]
def sl3_to_SL3(self,h):
# homography: directly expand matrix exponential
# https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.6151&rep=rep1&type=pdf
h1,h2,h3,h4,h5,h6,h7,h8 = h.chunk(8,dim=-1)
A = torch.stack([torch.cat([h5,h3,h1],dim=-1),
torch.cat([h4,-h5-h6,h2],dim=-1),
torch.cat([h7,h8,h6],dim=-1)],dim=-2)
H = A.matrix_exp()
return H
def taylor_A(self,x,nth=10):
# Taylor expansion of sin(x)/x
ans = torch.zeros_like(x)
denom = 1.
for i in range(nth+1):
if i>0: denom *= (2*i)*(2*i+1)
ans = ans+(-1)**i*x**(2*i)/denom
return ans
def taylor_B(self,x,nth=10):
# Taylor expansion of (1-cos(x))/x
ans = torch.zeros_like(x)
denom = 1.
for i in range(nth+1):
denom *= (2*i+1)*(2*i+2)
ans = ans+(-1)**i*x**(2*i+1)/denom
return ans
def taylor_C(self,x,nth=10):
# Taylor expansion of (x*cos(x)-sin(x))/x**2
ans = torch.zeros_like(x)
denom = 1.
for i in range(nth+1):
denom *= (2*i+2)*(2*i+3)
ans = ans+(-1)**(i+1)*x**(2*i+1)*(2*i+2)/denom
return ans
def taylor_D(self,x,nth=10):
# Taylor expansion of (x*sin(x)+cos(x)-1)/x**2
ans = torch.zeros_like(x)
denom = 1.
for i in range(nth+1):
denom *= (2*i+1)*(2*i+2)
ans = ans+(-1)**i*x**(2*i)*(2*i+1)/denom
return ans
lie = Lie()