-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathoptions.py
121 lines (113 loc) · 4.7 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import os,sys,time
import torch
import random
import string
import yaml
from easydict import EasyDict as edict
import util
from util import log
# torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def parse_arguments(args):
# parse from command line (syntax: --key1.key2.key3=value)
opt_cmd = {}
for arg in args:
assert(arg.startswith("--"))
if "=" not in arg[2:]: # --key means key=True, --key! means key=False
key_str,value = (arg[2:-1],"false") if arg[-1]=="!" else (arg[2:],"true")
else:
key_str,value = arg[2:].split("=")
keys_sub = key_str.split(".")
opt_sub = opt_cmd
for k in keys_sub[:-1]:
if k not in opt_sub: opt_sub[k] = {}
opt_sub = opt_sub[k]
assert keys_sub[-1] not in opt_sub,keys_sub[-1]
opt_sub[keys_sub[-1]] = yaml.safe_load(value)
opt_cmd = edict(opt_cmd)
return opt_cmd
def set(opt_cmd={}):
log.info("setting configurations...")
assert("model" in opt_cmd)
fname = opt_cmd.yaml if "yaml" in opt_cmd else "options/{}.yaml".format(opt_cmd.model) # load from yaml file
opt_base = load_options(fname)
# override with command line arguments
opt = override_options(opt_base,opt_cmd,key_stack=[],safe_check=True)
process_options(opt)
log.options(opt)
return opt
def load_options(fname):
with open(fname) as file:
opt = edict(yaml.safe_load(file))
if "_parent_" in opt:
# load parent yaml file(s) as base options
parent_fnames = opt.pop("_parent_")
if type(parent_fnames) is str:
parent_fnames = [parent_fnames]
for parent_fname in parent_fnames:
opt_parent = load_options(parent_fname)
opt_parent = override_options(opt_parent,opt,key_stack=[])
opt = opt_parent
print("loading {}...".format(fname))
return opt
def override_options(opt,opt_over,key_stack=None,safe_check=False):
for key,value in opt_over.items():
if isinstance(value,dict):
# parse child options (until leaf nodes are reached)
opt[key] = override_options(opt.get(key,dict()),value,key_stack=key_stack+[key],safe_check=safe_check)
else:
# ensure command line argument to override is also in yaml file
if safe_check and key not in opt:
add_new = None
while add_new not in ["y","n"]:
key_str = ".".join(key_stack+[key])
add_new = input("\"{}\" not found in original opt, add? (y/n) ".format(key_str))
if add_new=="n":
print("safe exiting...")
exit()
opt[key] = value
return opt
def process_options(opt):
# set seed
if opt.seed is not None:
random.seed(opt.seed)
np.random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
if opt.seed!=0:
opt.name += "_seed{}".format(opt.seed)
else:
# create random string as run ID
randkey = "".join(random.choice(string.ascii_uppercase) for _ in range(4))
opt.name += "_{}".format(randkey)
# other default options
opt.output_path = "{0}/{1}/{2}".format(opt.output_root,opt.group,opt.name)
os.makedirs(opt.output_path,exist_ok=True)
assert(isinstance(opt.gpu,int)) # disable multi-GPU support for now, single is enough
opt.device = "cpu" if opt.cpu or not torch.cuda.is_available() else "cuda:{}".format(opt.gpu)
opt.H,opt.W = opt.image_size
def save_options_file(opt):
opt_fname = "{}/options.yaml".format(opt.output_path)
if os.path.isfile(opt_fname):
with open(opt_fname) as file:
opt_old = yaml.safe_load(file)
if opt!=opt_old:
# prompt if options are not identical
opt_new_fname = "{}/options_temp.yaml".format(opt.output_path)
with open(opt_new_fname,"w") as file:
yaml.safe_dump(util.to_dict(opt),file,default_flow_style=False,indent=4)
print("existing options file found (different from current one)...")
os.system("diff {} {}".format(opt_fname,opt_new_fname))
os.system("rm {}".format(opt_new_fname))
override = None
while override not in ["y","n"]:
override = input("override? (y/n) ")
if override=="n":
print("safe exiting...")
exit()
else: print("existing options file found (identical)")
else: print("(creating new options file...)")
with open(opt_fname,"w") as file:
yaml.safe_dump(util.to_dict(opt),file,default_flow_style=False,indent=4)