-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathplayback_results.py
executable file
·176 lines (145 loc) · 6.37 KB
/
playback_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import sys
import importlib
import numpy as np
import torch
import time
import matplotlib.patches as patches
import cv2 as cv
import matplotlib.pyplot as plt
from pytracking.analysis.plot_results import get_plot_draw_styles
from pytracking.utils.plotting import draw_figure
from pytracking.evaluation import get_dataset, trackerlist
env_path = os.path.join(os.path.dirname(__file__), '../..')
if env_path not in sys.path:
sys.path.append(env_path)
class Display:
def __init__(self, sequence_length, plot_draw_styles, sequence_name):
self.active = True
self.frame_number = 0
self.pause_mode = True
self.step_size = 0
self.step_direction = 'forward'
self.fig, self.ax = plt.subplots(1)
self.fig.canvas.mpl_connect('key_press_event', self.key_callback_fn)
plt.tight_layout()
self.sequence_length = sequence_length
self.sequence_name = sequence_name
self.plot_draw_styles = plot_draw_styles
def key_callback_fn(self, event):
if event.key == ' ':
self.pause_mode = not self.pause_mode
self.step_size = 0
self.step_direction = 'forward'
elif event.key == 'right':
if self.pause_mode:
self.frame_number += 1
if self.frame_number >= self.sequence_length:
self.frame_number = self.sequence_length - 1
elif self.step_direction == 'stop':
self.step_direction = 'forward'
self.step_size = 0
elif self.step_direction == 'backward' and self.step_size == 0:
self.step_direction = 'stop'
else:
self.step_size += 1
elif event.key == 'left':
if self.pause_mode:
self.frame_number -= 1
if self.frame_number < 0:
self.frame_number = 0
elif self.step_direction == 'stop':
self.step_direction = 'backward'
self.step_size = 0
elif self.step_direction == 'forward' and self.step_size == 0:
self.step_direction = 'stop'
else:
self.step_size -= 1
elif event.key == 'escape' or event.key == 'q':
self.active = False
def _get_speed(self):
delta = 0
if self.step_direction == 'forward':
delta = 2 ** abs(self.step_size)
elif self.step_direction == 'backward':
delta = -1 * 2 ** abs(self.step_size)
return delta
def step(self):
delta = self._get_speed()
self.frame_number += delta
if self.frame_number < 0:
self.frame_number = 0
elif self.frame_number >= self.sequence_length:
self.frame_number = self.sequence_length - 1
def show(self, image, bb_list, trackers, gt=None):
self.ax.cla()
self.ax.imshow(image)
# Draw rects
rect_handles = []
for i, bb in enumerate(bb_list):
rect = patches.Rectangle((bb[0], bb[1]), bb[2], bb[3], linewidth=1,
edgecolor=self.plot_draw_styles[i]['color'], facecolor='none')
self.ax.add_patch(rect)
rect_handles.append(patches.Rectangle((bb[0], bb[1]), bb[2], bb[3], linewidth=1,
edgecolor=self.plot_draw_styles[i]['color'],
facecolor=self.plot_draw_styles[i]['color'],
label=trackers[i]))
if gt is not None:
rect = patches.Rectangle((gt[0], gt[1]), gt[2], gt[3], linewidth=2, edgecolor='g',
facecolor='none')
self.ax.add_patch(rect)
rect_handles.append(rect)
self.ax.set_axis_off()
self.ax.axis('equal')
plt.legend(handles=rect_handles, loc=4, borderaxespad=0.)
mode = 'manual' if self.pause_mode else 'auto '
speed = self._get_speed()
self.fig.suptitle('Sequence: {} Mode: {} Speed: {:d}x'.format(self.sequence_name, mode, speed),
fontsize=14)
draw_figure(self.fig)
def read_image(image_file: str):
im = cv.imread(image_file)
return cv.cvtColor(im, cv.COLOR_BGR2RGB)
def _get_display_name(tracker):
if tracker.display_name is None:
if tracker.run_id is not None:
return '{}_{}_{:03d}'.format(tracker.name, tracker.parameter_name, tracker.run_id)
else:
return '{}_{}'.format(tracker.name, tracker.parameter_name)
else:
return tracker.display_name
def playback_results(trackers, sequence):
"""
Playback saved results of input trackers for a particular sequence. You can navigate the sequence using left/right
arrow keys. You can also change to 'auto' mode by pressing space bar, in which case the sequence will be replayed
at a particular speed. The speed for playback in 'auto' mode can be controlled using the left/right arrow keys.
You can exit the application using escape or q keys.
"""
plot_draw_styles = get_plot_draw_styles()
tracker_results = []
# Load results
for trk_id, trk in enumerate(trackers):
# Load results
base_results_path = '{}/{}'.format(trk.results_dir, sequence.name)
results_path = '{}.txt'.format(base_results_path)
if os.path.isfile(results_path):
try:
pred_bb = torch.tensor(np.loadtxt(str(results_path), dtype=np.float64))
except:
pred_bb = torch.tensor(np.loadtxt(str(results_path), delimiter=',', dtype=np.float64))
else:
raise Exception('Result not found. {}'.format(results_path))
tracker_results.append(pred_bb)
# Convert to list of shape seq_length * num_trackers * 4
tracker_results = torch.stack(tracker_results, dim=1).tolist()
tracker_names = [_get_display_name(t) for t in trackers]
display = Display(len(tracker_results), plot_draw_styles, sequence.name)
while display.active:
frame_number = display.frame_number
image = read_image(sequence.frames[frame_number])
display.show(image, tracker_results[frame_number], tracker_names)
time.sleep(0.01)
if display.pause_mode and display.frame_number == frame_number:
time.sleep(0.1)
elif not display.pause_mode:
display.step()