-
Notifications
You must be signed in to change notification settings - Fork 104
/
plot_results.py
executable file
·483 lines (369 loc) · 22.1 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import tikzplotlib
import matplotlib
import matplotlib.pyplot as plt
import os
import torch
import pickle
import json
from pytracking.evaluation.environment import env_settings
from pytracking.analysis.extract_results import extract_results
def get_plot_draw_styles():
plot_draw_style = [{'color': (1.0, 0.0, 0.0), 'line_style': '-'},
{'color': (0.0, 1.0, 0.0), 'line_style': '-'},
{'color': (0.0, 0.0, 1.0), 'line_style': '-'},
{'color': (0.0, 0.0, 0.0), 'line_style': '-'},
{'color': (1.0, 0.0, 1.0), 'line_style': '-'},
{'color': (0.0, 1.0, 1.0), 'line_style': '-'},
{'color': (0.5, 0.5, 0.5), 'line_style': '-'},
{'color': (136.0 / 255.0, 0.0, 21.0 / 255.0), 'line_style': '-'},
{'color': (1.0, 127.0 / 255.0, 39.0 / 255.0), 'line_style': '-'},
{'color': (0.0, 162.0 / 255.0, 232.0 / 255.0), 'line_style': '-'},
{'color': (0.0, 0.5, 0.0), 'line_style': '-'},
{'color': (1.0, 0.5, 0.2), 'line_style': '-'},
{'color': (0.1, 0.4, 0.0), 'line_style': '-'},
{'color': (0.6, 0.3, 0.9), 'line_style': '-'},
{'color': (0.4, 0.7, 0.1), 'line_style': '-'},
{'color': (0.2, 0.1, 0.7), 'line_style': '-'},
{'color': (0.7, 0.6, 0.2), 'line_style': '-'}]
return plot_draw_style
def check_eval_data_is_valid(eval_data, trackers, dataset):
""" Checks if the pre-computed results are valid"""
seq_names = [s.name for s in dataset]
seq_names_saved = eval_data['sequences']
tracker_names_f = [(t.name, t.parameter_name, t.run_id) for t in trackers]
tracker_names_f_saved = [(t['name'], t['param'], t['run_id']) for t in eval_data['trackers']]
return seq_names == seq_names_saved and tracker_names_f == tracker_names_f_saved
def merge_multiple_runs(eval_data):
new_tracker_names = []
ave_success_rate_plot_overlap_merged = []
ave_success_rate_plot_center_merged = []
ave_success_rate_plot_center_norm_merged = []
avg_overlap_all_merged = []
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
avg_overlap_all = torch.tensor(eval_data['avg_overlap_all'])
trackers = eval_data['trackers']
merged = torch.zeros(len(trackers), dtype=torch.uint8)
for i in range(len(trackers)):
if merged[i]:
continue
base_tracker = trackers[i]
new_tracker_names.append(base_tracker)
match = [t['name'] == base_tracker['name'] and t['param'] == base_tracker['param'] for t in trackers]
match = torch.tensor(match)
ave_success_rate_plot_overlap_merged.append(ave_success_rate_plot_overlap[:, match, :].mean(1))
ave_success_rate_plot_center_merged.append(ave_success_rate_plot_center[:, match, :].mean(1))
ave_success_rate_plot_center_norm_merged.append(ave_success_rate_plot_center_norm[:, match, :].mean(1))
avg_overlap_all_merged.append(avg_overlap_all[:, match].mean(1))
merged[match] = 1
ave_success_rate_plot_overlap_merged = torch.stack(ave_success_rate_plot_overlap_merged, dim=1)
ave_success_rate_plot_center_merged = torch.stack(ave_success_rate_plot_center_merged, dim=1)
ave_success_rate_plot_center_norm_merged = torch.stack(ave_success_rate_plot_center_norm_merged, dim=1)
avg_overlap_all_merged = torch.stack(avg_overlap_all_merged, dim=1)
eval_data['trackers'] = new_tracker_names
eval_data['ave_success_rate_plot_overlap'] = ave_success_rate_plot_overlap_merged.tolist()
eval_data['ave_success_rate_plot_center'] = ave_success_rate_plot_center_merged.tolist()
eval_data['ave_success_rate_plot_center_norm'] = ave_success_rate_plot_center_norm_merged.tolist()
eval_data['avg_overlap_all'] = avg_overlap_all_merged.tolist()
return eval_data
def get_tracker_display_name(tracker):
if tracker['disp_name'] is None:
if tracker['run_id'] is None:
disp_name = '{}_{}'.format(tracker['name'], tracker['param'])
else:
disp_name = '{}_{}_{:03d}'.format(tracker['name'], tracker['param'],
tracker['run_id'])
else:
disp_name = tracker['disp_name']
return disp_name
def plot_draw_save(y, x, scores, trackers, plot_draw_styles, result_plot_path, plot_opts):
# Plot settings
font_size = plot_opts.get('font_size', 12)
font_size_axis = plot_opts.get('font_size_axis', 13)
line_width = plot_opts.get('line_width', 2)
font_size_legend = plot_opts.get('font_size_legend', 13)
plot_type = plot_opts['plot_type']
legend_loc = plot_opts['legend_loc']
xlabel = plot_opts['xlabel']
ylabel = plot_opts['ylabel']
xlim = plot_opts['xlim']
ylim = plot_opts['ylim']
title = plot_opts['title']
matplotlib.rcParams.update({'font.size': font_size})
matplotlib.rcParams.update({'axes.titlesize': font_size_axis})
matplotlib.rcParams.update({'axes.titleweight': 'black'})
matplotlib.rcParams.update({'axes.labelsize': font_size_axis})
fig, ax = plt.subplots()
index_sort = scores.argsort(descending=False)
plotted_lines = []
legend_text = []
for id, id_sort in enumerate(index_sort):
line = ax.plot(x.tolist(), y[id_sort, :].tolist(),
linewidth=line_width,
color=plot_draw_styles[index_sort.numel() - id - 1]['color'],
linestyle=plot_draw_styles[index_sort.numel() - id - 1]['line_style'])
plotted_lines.append(line[0])
tracker = trackers[id_sort]
disp_name = get_tracker_display_name(tracker)
legend_text.append('{} [{:.1f}]'.format(disp_name, scores[id_sort]))
ax.legend(plotted_lines[::-1], legend_text[::-1], loc=legend_loc, fancybox=False, edgecolor='black',
fontsize=font_size_legend, framealpha=1.0)
ax.set(xlabel=xlabel,
ylabel=ylabel,
xlim=xlim, ylim=ylim,
title=title)
ax.grid(True, linestyle='-.')
fig.tight_layout()
tikzplotlib.save('{}/{}_plot.tex'.format(result_plot_path, plot_type))
fig.savefig('{}/{}_plot.pdf'.format(result_plot_path, plot_type), dpi=300, format='pdf', transparent=True)
plt.draw()
def check_and_load_precomputed_results(trackers, dataset, report_name, force_evaluation=False, **kwargs):
# Load data
settings = env_settings()
# Load pre-computed results
result_plot_path = os.path.join(settings.result_plot_path, report_name)
eval_data_path = os.path.join(result_plot_path, 'eval_data.pkl')
if os.path.isfile(eval_data_path) and not force_evaluation:
with open(eval_data_path, 'rb') as fh:
eval_data = pickle.load(fh)
else:
# print('Pre-computed evaluation data not found. Computing results!')
eval_data = extract_results(trackers, dataset, report_name, **kwargs)
if not check_eval_data_is_valid(eval_data, trackers, dataset):
# print('Pre-computed evaluation data invalid. Re-computing results!')
eval_data = extract_results(trackers, dataset, report_name, **kwargs)
else:
# Update display names
tracker_names = [{'name': t.name, 'param': t.parameter_name, 'run_id': t.run_id, 'disp_name': t.display_name}
for t in trackers]
eval_data['trackers'] = tracker_names
return eval_data
def get_auc_curve(ave_success_rate_plot_overlap, valid_sequence):
ave_success_rate_plot_overlap = ave_success_rate_plot_overlap[valid_sequence, :, :]
auc_curve = ave_success_rate_plot_overlap.mean(0) * 100.0
auc = auc_curve.mean(-1)
return auc_curve, auc
def get_prec_curve(ave_success_rate_plot_center, valid_sequence):
ave_success_rate_plot_center = ave_success_rate_plot_center[valid_sequence, :, :]
prec_curve = ave_success_rate_plot_center.mean(0) * 100.0
prec_score = prec_curve[:, 20]
return prec_curve, prec_score
def plot_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), force_evaluation=False, **kwargs):
"""
Plot results for the given trackers
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
plot_types - List of scores to display. Can contain 'success',
'prec' (precision), and 'norm_prec' (normalized precision)
"""
# Load data
settings = env_settings()
plot_draw_styles = get_plot_draw_styles()
# Load pre-computed results
result_plot_path = os.path.join(settings.result_plot_path, report_name)
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, force_evaluation, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
print('\nPlotting results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
print('\nGenerating plots for: {}'.format(report_name))
# ******************************** Success Plot **************************************
if 'success' in plot_types:
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
success_plot_opts = {'plot_type': 'success', 'legend_loc': 'lower left', 'xlabel': 'Overlap threshold',
'ylabel': 'Overlap Precision [%]', 'xlim': (0, 1.0), 'ylim': (0, 100), 'title': 'Success plot'}
plot_draw_save(auc_curve, threshold_set_overlap, auc, tracker_names, plot_draw_styles, result_plot_path, success_plot_opts)
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
threshold_set_center = torch.tensor(eval_data['threshold_set_center'])
precision_plot_opts = {'plot_type': 'precision', 'legend_loc': 'lower right',
'xlabel': 'Location error threshold [pixels]', 'ylabel': 'Distance Precision [%]',
'xlim': (0, 50), 'ylim': (0, 100), 'title': 'Precision plot'}
plot_draw_save(prec_curve, threshold_set_center, prec_score, tracker_names, plot_draw_styles, result_plot_path,
precision_plot_opts)
# ******************************** Norm Precision Plot **************************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
threshold_set_center_norm = torch.tensor(eval_data['threshold_set_center_norm'])
norm_precision_plot_opts = {'plot_type': 'norm_precision', 'legend_loc': 'lower right',
'xlabel': 'Location error threshold', 'ylabel': 'Distance Precision [%]',
'xlim': (0, 0.5), 'ylim': (0, 100), 'title': 'Normalized Precision plot'}
plot_draw_save(prec_curve, threshold_set_center_norm, prec_score, tracker_names, plot_draw_styles, result_plot_path,
norm_precision_plot_opts)
plt.show()
def generate_formatted_report(row_labels, scores, table_name=''):
name_width = max([len(d) for d in row_labels] + [len(table_name)]) + 5
min_score_width = 10
report_text = '\n{label: <{width}} |'.format(label=table_name, width=name_width)
score_widths = [max(min_score_width, len(k) + 3) for k in scores.keys()]
for s, s_w in zip(scores.keys(), score_widths):
report_text = '{prev} {s: <{width}} |'.format(prev=report_text, s=s, width=s_w)
report_text = '{prev}\n'.format(prev=report_text)
for trk_id, d_name in enumerate(row_labels):
# display name
report_text = '{prev}{tracker: <{width}} |'.format(prev=report_text, tracker=d_name,
width=name_width)
for (score_type, score_value), s_w in zip(scores.items(), score_widths):
report_text = '{prev} {score: <{width}} |'.format(prev=report_text,
score='{:0.2f}'.format(score_value[trk_id].item()),
width=s_w)
report_text = '{prev}\n'.format(prev=report_text)
return report_text
def print_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), **kwargs):
""" Print the results for the given trackers in a formatted table
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
plot_types - List of scores to display. Can contain 'success' (prints AUC, OP50, and OP75 scores),
'prec' (prints precision score), and 'norm_prec' (prints normalized precision score)
"""
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
print('\nReporting results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
scores = {}
# ******************************** Success Plot **************************************
if 'success' in plot_types:
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
scores['AUC'] = auc
scores['OP50'] = auc_curve[:, threshold_set_overlap == 0.50]
scores['OP75'] = auc_curve[:, threshold_set_overlap == 0.75]
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
scores['Precision'] = prec_score
# ******************************** Norm Precision Plot *********************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
scores['Norm Precision'] = norm_prec_score
# Print
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=report_name)
print(report_text)
def plot_got_success(trackers, report_name):
""" Plot success plot for GOT-10k dataset using the json reports.
Save the json reports from http://got-10k.aitestunion.com/leaderboard in the directory set to
env_settings.got_reports_path
The tracker name in the experiment file should be set to the name of the report file for that tracker,
e.g. DiMP50_report_2019_09_02_15_44_25 if the report is name DiMP50_report_2019_09_02_15_44_25.json
args:
trackers - List of trackers to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
"""
# Load data
settings = env_settings()
plot_draw_styles = get_plot_draw_styles()
result_plot_path = os.path.join(settings.result_plot_path, report_name)
auc_curve = torch.zeros((len(trackers), 101))
scores = torch.zeros(len(trackers))
# Load results
tracker_names = []
for trk_id, trk in enumerate(trackers):
json_path = '{}/{}.json'.format(settings.got_reports_path, trk.name)
if os.path.isfile(json_path):
with open(json_path, 'r') as f:
eval_data = json.load(f)
else:
raise Exception('Report not found {}'.format(json_path))
if len(eval_data.keys()) > 1:
raise Exception
# First field is the tracker name. Index it out
eval_data = eval_data[list(eval_data.keys())[0]]
if 'succ_curve' in eval_data.keys():
curve = eval_data['succ_curve']
ao = eval_data['ao']
elif 'overall' in eval_data.keys() and 'succ_curve' in eval_data['overall'].keys():
curve = eval_data['overall']['succ_curve']
ao = eval_data['overall']['ao']
else:
raise Exception('Invalid JSON file {}'.format(json_path))
auc_curve[trk_id, :] = torch.tensor(curve) * 100.0
scores[trk_id] = ao * 100.0
tracker_names.append({'name': trk.name, 'param': trk.parameter_name, 'run_id': trk.run_id,
'disp_name': trk.display_name})
threshold_set_overlap = torch.arange(0.0, 1.01, 0.01, dtype=torch.float64)
success_plot_opts = {'plot_type': 'success', 'legend_loc': 'lower left', 'xlabel': 'Overlap threshold',
'ylabel': 'Overlap Precision [%]', 'xlim': (0, 1.0), 'ylim': (0, 100), 'title': 'Success plot'}
plot_draw_save(auc_curve, threshold_set_overlap, scores, tracker_names, plot_draw_styles, result_plot_path,
success_plot_opts)
plt.show()
def print_per_sequence_results(trackers, dataset, report_name, merge_results=False,
filter_criteria=None, **kwargs):
""" Print per-sequence results for the given trackers. Additionally, the sequences to list can be filtered using
the filter criteria.
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
filter_criteria - Filter sequence results which are reported. Following modes are supported
None: No filtering. Display results for all sequences in dataset
'ao_min': Only display sequences for which the minimum average overlap (AO) score over the
trackers is less than a threshold filter_criteria['threshold']. This mode can
be used to select sequences where at least one tracker performs poorly.
'ao_max': Only display sequences for which the maximum average overlap (AO) score over the
trackers is less than a threshold filter_criteria['threshold']. This mode can
be used to select sequences all tracker performs poorly.
'delta_ao': Only display sequences for which the performance of different trackers vary by at
least filter_criteria['threshold'] in average overlap (AO) score. This mode can
be used to select sequences where the behaviour of the trackers greatly differ
between each other.
"""
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
sequence_names = eval_data['sequences']
avg_overlap_all = torch.tensor(eval_data['avg_overlap_all']) * 100.0
# Filter sequences
if filter_criteria is not None:
if filter_criteria['mode'] == 'ao_min':
min_ao = avg_overlap_all.min(dim=1)[0]
valid_sequence = valid_sequence & (min_ao < filter_criteria['threshold'])
elif filter_criteria['mode'] == 'ao_max':
max_ao = avg_overlap_all.max(dim=1)[0]
valid_sequence = valid_sequence & (max_ao < filter_criteria['threshold'])
elif filter_criteria['mode'] == 'delta_ao':
min_ao = avg_overlap_all.min(dim=1)[0]
max_ao = avg_overlap_all.max(dim=1)[0]
valid_sequence = valid_sequence & ((max_ao - min_ao) > filter_criteria['threshold'])
else:
raise Exception
avg_overlap_all = avg_overlap_all[valid_sequence, :]
sequence_names = [s + ' (ID={})'.format(i) for i, (s, v) in enumerate(zip(sequence_names, valid_sequence.tolist())) if v]
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
scores_per_tracker = {k: avg_overlap_all[:, i] for i, k in enumerate(tracker_disp_names)}
report_text = generate_formatted_report(sequence_names, scores_per_tracker)
print(report_text)