-
Notifications
You must be signed in to change notification settings - Fork 104
/
optimization.py
executable file
·713 lines (513 loc) · 21.4 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
import torch
import torch.autograd
import math
from pytracking.libs import TensorList
from pytracking.utils.plotting import plot_graph
class L2Problem:
"""Base class for representing an L2 optimization problem."""
def __call__(self, x: TensorList) -> TensorList:
"""Shall compute the residuals of the problem."""
raise NotImplementedError
def ip_input(self, a, b):
"""Inner product of the input space."""
return sum(a.view(-1) @ b.view(-1))
def ip_output(self, a, b):
"""Inner product of the output space."""
return sum(a.view(-1) @ b.view(-1))
def M1(self, x):
"""M1 preconditioner."""
return x
def M2(self, x):
"""M2 preconditioner."""
return x
class MinimizationProblem:
"""General minimization problem."""
def __call__(self, x: TensorList) -> TensorList:
"""Shall compute the loss."""
raise NotImplementedError
def ip_input(self, a, b):
"""Inner product of the input space."""
return sum(a.view(-1) @ b.view(-1))
def M1(self, x):
return x
def M2(self, x):
return x
class ConjugateGradientBase:
"""Conjugate Gradient optimizer base class. Implements the CG loop."""
def __init__(self, fletcher_reeves = True, standard_alpha = True, direction_forget_factor = 0, debug = False):
self.fletcher_reeves = fletcher_reeves
self.standard_alpha = standard_alpha
self.direction_forget_factor = direction_forget_factor
self.debug = debug
# State
self.p = None
self.rho = torch.ones(1)
self.r_prev = None
# Right hand side
self.b = None
def reset_state(self):
self.p = None
self.rho = torch.ones(1)
self.r_prev = None
def run_CG(self, num_iter, x=None, eps=0.0):
"""Main conjugate gradient method.
args:
num_iter: Number of iterations.
x: Initial guess. Assumed zero if None.
eps: Stop if the residual norm gets smaller than this.
"""
# Apply forgetting factor
if self.direction_forget_factor == 0:
self.reset_state()
elif self.p is not None:
self.rho /= self.direction_forget_factor
if x is None:
r = self.b.clone()
else:
r = self.b - self.A(x)
# Norms of residuals etc for debugging
resvec = None
if self.debug:
normr = self.residual_norm(r)
resvec = torch.zeros(num_iter+1)
resvec[0] = normr
# Loop over iterations
for ii in range(num_iter):
# Preconditioners
y = self.M1(r)
z = self.M2(y)
rho1 = self.rho
self.rho = self.ip(r, z)
if self.check_zero(self.rho):
if self.debug:
print('Stopped CG since rho = 0')
if resvec is not None:
resvec = resvec[:ii+1]
return x, resvec
if self.p is None:
self.p = z.clone()
else:
if self.fletcher_reeves:
beta = self.rho / rho1
else:
rho2 = self.ip(self.r_prev, z)
beta = (self.rho - rho2) / rho1
beta = beta.clamp(0)
self.p = z + self.p * beta
q = self.A(self.p)
pq = self.ip(self.p, q)
if self.standard_alpha:
alpha = self.rho / pq
else:
alpha = self.ip(self.p, r) / pq
# Save old r for PR formula
if not self.fletcher_reeves:
self.r_prev = r.clone()
# Form new iterate
if x is None:
x = self.p * alpha
else:
x += self.p * alpha
if ii < num_iter - 1 or self.debug:
r -= q * alpha
if eps > 0.0 or self.debug:
normr = self.residual_norm(r)
if self.debug:
self.evaluate_CG_iteration(x)
resvec[ii+1] = normr
if eps > 0 and normr <= eps:
if self.debug:
print('Stopped CG since norm smaller than eps')
break
if resvec is not None:
resvec = resvec[:ii+2]
return x, resvec
def A(self, x):
# Implements the left hand operation
raise NotImplementedError
def ip(self, a, b):
# Implements the inner product
return a.view(-1) @ b.view(-1)
def residual_norm(self, r):
res = self.ip(r, r).sum()
if isinstance(res, (TensorList, list, tuple)):
res = sum(res)
return res.sqrt()
def check_zero(self, s, eps = 0.0):
ss = s.abs() <= eps
if isinstance(ss, (TensorList, list, tuple)):
ss = sum(ss)
return ss.item() > 0
def M1(self, x):
# M1 preconditioner
return x
def M2(self, x):
# M2 preconditioner
return x
def evaluate_CG_iteration(self, x):
pass
class ConjugateGradient(ConjugateGradientBase):
"""Conjugate Gradient optimizer, performing single linearization of the residuals in the start."""
def __init__(self, problem: L2Problem, variable: TensorList, cg_eps = 0.0, fletcher_reeves = True,
standard_alpha = True, direction_forget_factor = 0, debug = False, plotting = False, visdom=None):
super().__init__(fletcher_reeves, standard_alpha, direction_forget_factor, debug or plotting)
self.problem = problem
self.x = variable
self.plotting = plotting
self.fig_num = (10,11)
self.visdom = visdom
self.cg_eps = cg_eps
self.f0 = None
self.g = None
self.dfdxt_g = None
self.residuals = torch.zeros(0)
self.losses = torch.zeros(0)
def clear_temp(self):
self.f0 = None
self.g = None
self.dfdxt_g = None
def run(self, num_cg_iter):
"""Run the oprimizer with the provided number of iterations."""
if num_cg_iter == 0:
return
lossvec = None
if self.debug:
lossvec = torch.zeros(2)
self.x.requires_grad_(True)
# Evaluate function at current estimate
self.f0 = self.problem(self.x)
# Create copy with graph detached
self.g = self.f0.detach()
if self.debug:
lossvec[0] = self.problem.ip_output(self.g, self.g)
self.g.requires_grad_(True)
# Get df/dx^t @ f0
self.dfdxt_g = TensorList(torch.autograd.grad(self.f0, self.x, self.g, create_graph=True))
# Get the right hand side
self.b = - self.dfdxt_g.detach()
# Run CG
delta_x, res = self.run_CG(num_cg_iter, eps=self.cg_eps)
self.x.detach_()
self.x += delta_x
if self.debug:
self.f0 = self.problem(self.x)
lossvec[-1] = self.problem.ip_output(self.f0, self.f0)
self.residuals = torch.cat((self.residuals, res))
self.losses = torch.cat((self.losses, lossvec))
if self.visdom is not None:
self.visdom.register(self.losses, 'lineplot', 3, 'Loss')
self.visdom.register(self.residuals, 'lineplot', 3, 'CG residuals')
elif self.plotting:
plot_graph(self.losses, self.fig_num[0], title='Loss')
plot_graph(self.residuals, self.fig_num[1], title='CG residuals')
self.x.detach_()
self.clear_temp()
def A(self, x):
dfdx_x = torch.autograd.grad(self.dfdxt_g, self.g, x, retain_graph=True)
return TensorList(torch.autograd.grad(self.f0, self.x, dfdx_x, retain_graph=True))
def ip(self, a, b):
return self.problem.ip_input(a, b)
def M1(self, x):
return self.problem.M1(x)
def M2(self, x):
return self.problem.M2(x)
class GaussNewtonCG(ConjugateGradientBase):
"""Gauss-Newton with Conjugate Gradient optimizer."""
def __init__(self, problem: L2Problem, variable: TensorList, cg_eps = 0.0, fletcher_reeves = True,
standard_alpha = True, direction_forget_factor = 0, debug = False, analyze = False, plotting = False,
visdom=None):
super().__init__(fletcher_reeves, standard_alpha, direction_forget_factor, debug or analyze or plotting)
self.problem = problem
self.x = variable
self.analyze_convergence = analyze
self.plotting = plotting
self.fig_num = (10,11,12)
self.visdom = visdom
self.cg_eps = cg_eps
self.f0 = None
self.g = None
self.dfdxt_g = None
self.residuals = torch.zeros(0)
self.losses = torch.zeros(0)
self.gradient_mags = torch.zeros(0)
def clear_temp(self):
self.f0 = None
self.g = None
self.dfdxt_g = None
def run_GN(self, *args, **kwargs):
return self.run(*args, **kwargs)
def run(self, num_cg_iter, num_gn_iter=None):
"""Run the optimizer.
args:
num_cg_iter: Number of CG iterations per GN iter. If list, then each entry specifies number of CG iterations
and number of GN iterations is given by the length of the list.
num_gn_iter: Number of GN iterations. Shall only be given if num_cg_iter is an integer.
"""
if isinstance(num_cg_iter, int):
if num_gn_iter is None:
raise ValueError('Must specify number of GN iter if CG iter is constant')
num_cg_iter = [num_cg_iter]*num_gn_iter
num_gn_iter = len(num_cg_iter)
if num_gn_iter == 0:
return
if self.analyze_convergence:
self.evaluate_CG_iteration(0)
# Outer loop for running the GN iterations.
for cg_iter in num_cg_iter:
self.run_GN_iter(cg_iter)
if self.debug:
if not self.analyze_convergence:
self.f0 = self.problem(self.x)
loss = self.problem.ip_output(self.f0, self.f0)
self.losses = torch.cat((self.losses, loss.detach().cpu().view(-1)))
if self.visdom is not None:
self.visdom.register(self.losses, 'lineplot', 3, 'Loss')
self.visdom.register(self.residuals, 'lineplot', 3, 'CG residuals')
if self.analyze_convergence:
self.visdom.register(self.gradient_mags, 'lineplot', 4, 'Gradient magnitude')
elif self.plotting:
plot_graph(self.losses, self.fig_num[0], title='Loss')
plot_graph(self.residuals, self.fig_num[1], title='CG residuals')
if self.analyze_convergence:
plot_graph(self.gradient_mags, self.fig_num[2], 'Gradient magnitude')
self.x.detach_()
self.clear_temp()
return self.losses, self.residuals
def run_GN_iter(self, num_cg_iter):
"""Runs a single GN iteration."""
self.x.requires_grad_(True)
# Evaluate function at current estimate
self.f0 = self.problem(self.x)
# Create copy with graph detached
self.g = self.f0.detach()
if self.debug and not self.analyze_convergence:
loss = self.problem.ip_output(self.g, self.g)
self.losses = torch.cat((self.losses, loss.detach().cpu().view(-1)))
self.g.requires_grad_(True)
# Get df/dx^t @ f0
self.dfdxt_g = TensorList(torch.autograd.grad(self.f0, self.x, self.g, create_graph=True))
# Get the right hand side
self.b = - self.dfdxt_g.detach()
# Run CG
delta_x, res = self.run_CG(num_cg_iter, eps=self.cg_eps)
self.x.detach_()
self.x += delta_x
if self.debug:
self.residuals = torch.cat((self.residuals, res))
def A(self, x):
dfdx_x = torch.autograd.grad(self.dfdxt_g, self.g, x, retain_graph=True)
return TensorList(torch.autograd.grad(self.f0, self.x, dfdx_x, retain_graph=True))
def ip(self, a, b):
return self.problem.ip_input(a, b)
def M1(self, x):
return self.problem.M1(x)
def M2(self, x):
return self.problem.M2(x)
def evaluate_CG_iteration(self, delta_x):
if self.analyze_convergence:
x = (self.x + delta_x).detach()
x.requires_grad_(True)
# compute loss and gradient
f = self.problem(x)
loss = self.problem.ip_output(f, f)
grad = TensorList(torch.autograd.grad(loss, x))
# store in the vectors
self.losses = torch.cat((self.losses, loss.detach().cpu().view(-1)))
self.gradient_mags = torch.cat((self.gradient_mags, sum(grad.view(-1) @ grad.view(-1)).cpu().sqrt().detach().view(-1)))
class GradientDescentL2:
"""Gradient descent with momentum for L2 problems."""
def __init__(self, problem: L2Problem, variable: TensorList, step_length: float, momentum: float = 0.0, debug = False, plotting = False, visdom=None):
self.problem = problem
self.x = variable
self.step_legnth = step_length
self.momentum = momentum
self.debug = debug or plotting
self.plotting = plotting
self.fig_num = (10,11)
self.visdom = visdom
self.losses = torch.zeros(0)
self.gradient_mags = torch.zeros(0)
self.residuals = None
self.clear_temp()
def clear_temp(self):
self.f0 = None
self.dir = None
def run(self, num_iter, dummy = None):
if num_iter == 0:
return
lossvec = None
if self.debug:
lossvec = torch.zeros(num_iter+1)
grad_mags = torch.zeros(num_iter+1)
for i in range(num_iter):
self.x.requires_grad_(True)
# Evaluate function at current estimate
self.f0 = self.problem(self.x)
# Compute loss
loss = self.problem.ip_output(self.f0, self.f0)
# Compute grad
grad = TensorList(torch.autograd.grad(loss, self.x))
# Update direction
if self.dir is None:
self.dir = grad
else:
self.dir = grad + self.momentum * self.dir
self.x.detach_()
self.x -= self.step_legnth * self.dir
if self.debug:
lossvec[i] = loss.item()
grad_mags[i] = sum(grad.view(-1) @ grad.view(-1)).sqrt().item()
if self.debug:
self.x.requires_grad_(True)
self.f0 = self.problem(self.x)
loss = self.problem.ip_output(self.f0, self.f0)
grad = TensorList(torch.autograd.grad(loss, self.x))
lossvec[-1] = self.problem.ip_output(self.f0, self.f0).item()
grad_mags[-1] = sum(grad.view(-1) @ grad.view(-1)).cpu().sqrt().item()
self.losses = torch.cat((self.losses, lossvec))
self.gradient_mags = torch.cat((self.gradient_mags, grad_mags))
if self.visdom is not None:
self.visdom.register(self.losses, 'lineplot', 3, 'Loss')
self.visdom.register(self.gradient_mags, 'lineplot', 4, 'Gradient magnitude')
elif self.plotting:
plot_graph(self.losses, self.fig_num[0], title='Loss')
plot_graph(self.gradient_mags, self.fig_num[1], title='Gradient magnitude')
self.x.detach_()
self.clear_temp()
class NewtonCG(ConjugateGradientBase):
"""Newton with Conjugate Gradient. Handels general minimization problems."""
def __init__(self, problem: MinimizationProblem, variable: TensorList, init_hessian_reg = 0.0, hessian_reg_factor = 1.0,
cg_eps = 0.0, fletcher_reeves = True, standard_alpha = True, direction_forget_factor = 0,
debug = False, analyze = False, plotting = False, fig_num=(10, 11, 12)):
super().__init__(fletcher_reeves, standard_alpha, direction_forget_factor, debug or analyze or plotting)
self.problem = problem
self.x = variable
self.analyze_convergence = analyze
self.plotting = plotting
self.fig_num = fig_num
self.hessian_reg = init_hessian_reg
self.hessian_reg_factor = hessian_reg_factor
self.cg_eps = cg_eps
self.f0 = None
self.g = None
self.residuals = torch.zeros(0)
self.losses = torch.zeros(0)
self.gradient_mags = torch.zeros(0)
def clear_temp(self):
self.f0 = None
self.g = None
def run(self, num_cg_iter, num_newton_iter=None):
if isinstance(num_cg_iter, int):
if num_cg_iter == 0:
return
if num_newton_iter is None:
num_newton_iter = 1
num_cg_iter = [num_cg_iter] * num_newton_iter
num_newton_iter = len(num_cg_iter)
if num_newton_iter == 0:
return
if self.analyze_convergence:
self.evaluate_CG_iteration(0)
for cg_iter in num_cg_iter:
self.run_newton_iter(cg_iter)
self.hessian_reg *= self.hessian_reg_factor
if self.debug:
if not self.analyze_convergence:
loss = self.problem(self.x)
self.losses = torch.cat((self.losses, loss.detach().cpu().view(-1)))
if self.plotting:
plot_graph(self.losses, self.fig_num[0], title='Loss')
plot_graph(self.residuals, self.fig_num[1], title='CG residuals')
if self.analyze_convergence:
plot_graph(self.gradient_mags, self.fig_num[2], 'Gradient magnitude')
self.x.detach_()
self.clear_temp()
return self.losses, self.residuals
def run_newton_iter(self, num_cg_iter):
self.x.requires_grad_(True)
# Evaluate function at current estimate
self.f0 = self.problem(self.x)
if self.debug and not self.analyze_convergence:
self.losses = torch.cat((self.losses, self.f0.detach().cpu().view(-1)))
# Gradient of loss
self.g = TensorList(torch.autograd.grad(self.f0, self.x, create_graph=True))
# Get the right hand side
self.b = - self.g.detach()
# Run CG
delta_x, res = self.run_CG(num_cg_iter, eps=self.cg_eps)
self.x.detach_()
self.x += delta_x
if self.debug:
self.residuals = torch.cat((self.residuals, res))
def A(self, x):
return TensorList(torch.autograd.grad(self.g, self.x, x, retain_graph=True)) + self.hessian_reg * x
def ip(self, a, b):
# Implements the inner product
return self.problem.ip_input(a, b)
def M1(self, x):
return self.problem.M1(x)
def M2(self, x):
return self.problem.M2(x)
def evaluate_CG_iteration(self, delta_x):
if self.analyze_convergence:
x = (self.x + delta_x).detach()
x.requires_grad_(True)
# compute loss and gradient
loss = self.problem(x)
grad = TensorList(torch.autograd.grad(loss, x))
# store in the vectors
self.losses = torch.cat((self.losses, loss.detach().cpu().view(-1)))
self.gradient_mags = torch.cat((self.gradient_mags, sum(grad.view(-1) @ grad.view(-1)).cpu().sqrt().detach().view(-1)))
class GradientDescent:
"""Gradient descent for general minimization problems."""
def __init__(self, problem: MinimizationProblem, variable: TensorList, step_length: float, momentum: float = 0.0,
debug = False, plotting = False, fig_num=(10,11)):
self.problem = problem
self.x = variable
self.step_legnth = step_length
self.momentum = momentum
self.debug = debug or plotting
self.plotting = plotting
self.fig_num = fig_num
self.losses = torch.zeros(0)
self.gradient_mags = torch.zeros(0)
self.residuals = None
self.clear_temp()
def clear_temp(self):
self.dir = None
def run(self, num_iter, dummy = None):
if num_iter == 0:
return
lossvec = None
if self.debug:
lossvec = torch.zeros(num_iter+1)
grad_mags = torch.zeros(num_iter+1)
for i in range(num_iter):
self.x.requires_grad_(True)
# Evaluate function at current estimate
loss = self.problem(self.x)
# Compute grad
grad = TensorList(torch.autograd.grad(loss, self.x))
# Update direction
if self.dir is None:
self.dir = grad
else:
self.dir = grad + self.momentum * self.dir
self.x.detach_()
self.x -= self.step_legnth * self.dir
if self.debug:
lossvec[i] = loss.item()
grad_mags[i] = sum(grad.view(-1) @ grad.view(-1)).sqrt().item()
if self.debug:
self.x.requires_grad_(True)
loss = self.problem(self.x)
grad = TensorList(torch.autograd.grad(loss, self.x))
lossvec[-1] = loss.item()
grad_mags[-1] = sum(grad.view(-1) @ grad.view(-1)).cpu().sqrt().item()
self.losses = torch.cat((self.losses, lossvec))
self.gradient_mags = torch.cat((self.gradient_mags, grad_mags))
if self.plotting:
plot_graph(self.losses, self.fig_num[0], title='Loss')
plot_graph(self.gradient_mags, self.fig_num[1], title='Gradient magnitude')
self.x.detach_()
self.clear_temp()