-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
386 lines (276 loc) · 12.7 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#include <iostream>
#include <vector>
#include <functional>
#include <memory>
#include <cmath>
#include <assert.h>
#include <limits>
#include <random>
typedef std::pair<float, float> Coordinates;
struct Objective {
typedef std::function<float(Coordinates)> CallbackFunction;
typedef std::function<Coordinates(Coordinates)> CallbackGradient;
Objective(CallbackFunction foo, CallbackGradient grad)
: callable_function(foo), callable_gradient(grad) {}
float compute(Coordinates c) const {
return callable_function(c);
}
Coordinates gradient(Coordinates c) const {
return callable_gradient(c);
}
private:
CallbackFunction callable_function;
CallbackGradient callable_gradient;
};
struct Optimizer {
virtual void minimize(Objective const &) = 0;
};
struct SGD : Optimizer {
SGD(std::pair<float, float> start_point, size_t steps = 10000, float lr = 0.01)
: pos(start_point), count_steps(steps), learning_rate(lr) {}
void minimize(Objective const &loss) {
float loss_value = std::numeric_limits<float>::max();
for (size_t t = 0; t < count_steps; ++t) {
loss_value = loss.compute(pos);
auto gradient = loss.gradient(pos);
pos.first -= learning_rate * gradient.first;
pos.second -= learning_rate * gradient.second;
update_history.push_back(pos);
}
std::cout << "Finished at { x = " << pos.first << ", y = " << pos.second << " }" << std::endl;
std::cout << "Loss: " << loss_value << std::endl;
}
private:
std::pair<float, float> pos;
size_t count_steps;
float learning_rate;
std::vector<std::pair<float, float>> update_history{};
};
struct MomentumOptimizer : Optimizer {
MomentumOptimizer(Coordinates start_point,
size_t steps = 10000,
float lr = 0.01,
float momentum = 0.9)
: curr_point(start_point),
count_steps(steps),
learning_rate(lr),
gamma(momentum) {}
void minimize(Objective const &loss) {
float loss_value = std::numeric_limits<float>::max();
Coordinates v_curr;
// v_0 is undefined. E.g. make it small random numbers
Coordinates v_prev;
{
std::random_device device;
std::mt19937 mt(device());
std::uniform_real_distribution<> dist(-0.1, 0.1);
v_prev = std::make_pair(dist(mt), dist(mt));
}
for (size_t t = 0; t < count_steps; ++t) {
loss_value = loss.compute(curr_point);
Coordinates gradient = loss.gradient(curr_point);
// v_t = beta_1 * v_{t-1} + (1 - beta_1) * lr * gradient
float v_t_x = (float) (gamma * v_prev.first + (1.0 - gamma) * learning_rate * gradient.first);
float v_t_y = (float) (gamma * v_prev.second + (1.0 - gamma) * learning_rate * gradient.second);
v_curr = std::make_pair(v_t_x, v_t_y);
curr_point.first -= v_curr.first;
curr_point.second -= v_curr.second;
v_prev = v_curr;
update_history.push_back(curr_point);
}
std::cout << "Finished at { x = " << curr_point.first << ", y = " << curr_point.second << " }" << std::endl;
std::cout << "Loss: " << loss_value << std::endl;
}
private:
std::pair<float, float> curr_point;
size_t count_steps;
float learning_rate;
float gamma;
std::vector<std::pair<float, float>> update_history{};
};
struct NesterovAcceleratedGradient : Optimizer {
NesterovAcceleratedGradient(Coordinates start_point,
size_t steps = 10000,
float lr = 0.01,
float momentum = 0.9)
: pos(start_point),
count_steps(steps),
learning_rate(lr),
gamma(momentum) {}
void minimize(Objective const &loss) {
float loss_value = std::numeric_limits<float>::max();
Coordinates v_curr;
/* v_0 is undefined. E.g. make it small random numbers */
Coordinates v_prev;
{
std::random_device device;
std::mt19937 mt(device());
std::uniform_real_distribution<> dist(-0.1, 0.1);
v_prev = std::make_pair(dist(mt), dist(mt));
}
for (size_t t = 0; t < count_steps; ++t) {
/* Key improvement w.r.t Momentum optimizer is to stabilize gradient along the future direction */
auto future_grad_1_3 = loss.gradient(std::make_pair(pos.first - 0.3333 * (gamma * v_prev.first),
pos.second - 0.3333 * (gamma * v_prev.second)));
auto future_grad_2_3 = loss.gradient(std::make_pair(pos.first - 0.6666 * (gamma * v_prev.first),
pos.second - 0.6666 * (gamma * v_prev.second)));
auto future_grad = loss.gradient(std::make_pair(pos.first - gamma * v_prev.first,
pos.second - gamma * v_prev.second));
/* Just mean of gradients along the future direction */
auto gradient_x = 0.3333 * (future_grad_1_3.first + future_grad_2_3.first + future_grad.first);
auto gradient_y = 0.3333 * (future_grad_1_3.second + future_grad_2_3.second + future_grad.second);
// v_t = beta_1 * v_{t-1} + (1 - beta_1) * lr * gradient
v_curr.first = gamma * v_prev.first + (1 - gamma) * learning_rate * gradient_x;
v_curr.second = gamma * v_prev.second + (1 - gamma) * learning_rate * gradient_y;
pos.first -= v_curr.first;
pos.second -= v_curr.second;
loss_value = loss.compute(pos);
v_prev = v_curr;
update_history.push_back(pos);
}
std::cout << "Finished at { x = " << pos.first << ", y = " << pos.second << " }" << std::endl;
std::cout << "Loss: " << loss_value << std::endl;
}
private:
std::pair<float, float> pos;
size_t count_steps;
float learning_rate;
float gamma;
std::vector<std::pair<float, float>> update_history{};
};
struct Adagrad : Optimizer {
Adagrad(Coordinates start_point, size_t steps = 10000, float lr = 0.1, float eps = 1e-6)
: pos(start_point), count_steps(steps), learning_rate(lr), eps(eps) {}
void minimize(Objective const &loss) {
float loss_value = std::numeric_limits<float>::max();
Coordinates G_t;
for (size_t t = 0; t < count_steps; ++t) {
loss_value = loss.compute(pos);
Coordinates gradient = loss.gradient(pos);
/* G_{t + 1} = G_t + g^2 */
G_t.first += (gradient.first * gradient.first);
G_t.second += (gradient.second * gradient.second);
pos.first -= learning_rate * gradient.first / sqrt(G_t.first + eps);
pos.second -= learning_rate * gradient.second / sqrt(G_t.second + eps);
}
std::cout << "Finished at { x = " << pos.first << ", y = " << pos.second << " }" << std::endl;
std::cout << "Loss: " << loss_value << std::endl;
}
private:
std::pair<float, float> pos;
size_t count_steps;
float learning_rate;
float eps;
};
struct RMSProp : Optimizer {
RMSProp(Coordinates start_point, size_t steps = 10000, float lr = 0.01, float gamma = 0.9, float eps = 1e-6)
: pos(start_point), count_steps(steps), learning_rate(lr), gamma(gamma), eps(eps) {}
void minimize(Objective const &loss) {
float loss_value = std::numeric_limits<float>::max();
Coordinates msg = std::make_pair(0.0, 0.0); // mean square gradient moving average
for (size_t t = 0; t < count_steps; ++t) {
loss_value = loss.compute(pos);
Coordinates gradient = loss.gradient(pos);
msg.first = gamma * msg.first + (1 - gamma) * (gradient.first * gradient.first);
msg.second = gamma * msg.second + (1 - gamma) * (gradient.second * gradient.second);
pos.first -= learning_rate * gradient.first / sqrt(msg.first + eps);
pos.second -= learning_rate * gradient.second / sqrt(msg.second + eps);
}
std::cout << "Finished at { x = " << pos.first << ", y = " << pos.second << " }" << std::endl;
std::cout << "Loss: " << loss_value << std::endl;
}
private:
std::pair<float, float> pos;
size_t count_steps;
float learning_rate;
float gamma;
float eps;
};
struct Adam : Optimizer {
Adam(Coordinates start_point, size_t steps = 10000, float lr = 0.01, float b1 = 0.9, float b2 = 0.99999,
float eps = 1e-8)
: pos(start_point), count_steps(steps), learning_rate(lr), beta_1(b1), beta_2(b2), eps(eps) {}
void minimize(Objective const &loss) {
float loss_value = std::numeric_limits<float>::max();
Coordinates mg; // mean gradient moving average
Coordinates m_t; // mean gradient normalized by (1 - beta_1)
Coordinates msg; // mean square gradient moving average
Coordinates v_t; // mean square gradient normalized by (1 - beta_2)
for (size_t t = 0; t < count_steps; ++t) {
loss_value = loss.compute(pos);
Coordinates gradient = loss.gradient(pos);
mg.first = beta_1 * mg.first + (1.0 - beta_1) * gradient.first;
mg.second = beta_1 * mg.second + (1.0 - beta_1) * gradient.second;
m_t.first = mg.first / (1.0 - beta_1);
m_t.second = mg.second / (1.0 - beta_1);
msg.first = beta_2 * msg.first + (1.0 - beta_2) * (gradient.first * gradient.first);
msg.second = beta_2 * msg.second + (1.0 - beta_2) * (gradient.second * gradient.second);
v_t.first = msg.first / (1.0 - beta_2);
v_t.second = msg.second / (1.0 - beta_2);
pos.first -= learning_rate * m_t.first / sqrt(v_t.first + eps);
pos.second -= learning_rate * m_t.second / sqrt(v_t.second + eps);
}
std::cout << "Finished at { x = " << pos.first << ", y = " << pos.second << " }" << std::endl;
std::cout << "Loss: " << loss_value << std::endl;
}
private:
std::pair<float, float> pos;
size_t count_steps;
float learning_rate;
float beta_1;
float beta_2;
float eps;
};
void run_all_with(Objective const &loss, Coordinates const &start_point, size_t max_steps) {
auto sgd = std::make_shared<SGD>(start_point);
sgd->minimize(loss);
auto momentum = std::make_shared<MomentumOptimizer>(start_point, max_steps);
momentum->minimize(loss);
auto nesterov = std::make_shared<NesterovAcceleratedGradient>(start_point, max_steps);
nesterov->minimize(loss);
auto adagrad = std::make_shared<Adagrad>(start_point, max_steps);
adagrad->minimize(loss);
auto rms = std::make_shared<RMSProp>(start_point, max_steps);
rms->minimize(loss);
auto adam = std::make_shared<Adam>(start_point, max_steps);
adam->minimize(loss);
}
void test_paraboloid() {
Objective loss(
[](std::pair<float, float> coord) {
float val = std::pow(coord.first - 3, 2) + std::pow(coord.second - 3, 2);
return val;
},
[](std::pair<float, float> coord) {
float dfdx = 2 * (coord.first - 3);
float dfdy = 2 * (coord.second - 3);
return std::make_pair(dfdx, dfdy);
});
assert(loss.compute(std::make_pair(3, 3)) == 0.0);
assert(loss.gradient(std::make_pair(3, 3)).first == 0.0);
assert(loss.gradient(std::make_pair(3, 3)).second == 0.0);
auto start_point = std::make_pair(100.0, 100.0);
std::cout << "Parabilic objective :" << std::endl << std::endl;
run_all_with(loss, start_point, 1000000);
std::cout << "==================================" << std::endl;
}
void test_rosenbrock() {
Objective loss(
[](std::pair<float, float> coord) {
return std::pow(1 - coord.first, 2) + 100 * std::pow(coord.second - std::pow(coord.first, 2), 2);
},
[](std::pair<float, float> coord) {
float dfdx = 2 * (200 * std::pow(coord.first, 3) - 200 * coord.first * coord.second + coord.first - 1);
float dfdy = 200 * (coord.second - std::pow(coord.first, 2));
return std::make_pair(dfdx, dfdy);
});
auto start_point = std::make_pair(0.0, 3.0);
std::cout << "Rosenbrock objective :" << std::endl << std::endl;
run_all_with(loss, start_point, 1000000);
std::cout << "==================================" << std::endl;
}
int main() {
test_paraboloid();
test_rosenbrock();
return 0;
}