-
Notifications
You must be signed in to change notification settings - Fork 15
/
interfaces.go
70 lines (51 loc) · 1.94 KB
/
interfaces.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
package lingo
import (
"encoding/gob"
"gorgonia.org/tensor"
)
// Lemmatizer is anything that can lemmatize
type Lemmatizer interface {
Lemmatize(string, POSTag) ([]string, error)
}
// Stemmer is anything that can stem
type Stemmer interface {
Stem(string) (string, error)
}
// Sentencer is anything that returns an AnnotatedSentence
type Sentencer interface {
Sentence() AnnotatedSentence
}
// Corpus is the interface for the corpus.
type Corpus interface {
// ID returns the ID of a word and whether or not it was found in the corpus
Id(word string) (id int, ok bool)
// Word returns the word given the ID, and whether or not it was found in the corpus
Word(id int) (word string, ok bool)
// Add adds a word to the corpus and returns its ID. If a word was previously in the corpus, it merely updates the frequency count and returns the ID
Add(word string) int
// Size returns the size of the corpus.
Size() int
// WordFreq returns the frequency of the word. If the word wasn't in the corpus, it returns 0.
WordFreq(word string) int
// IDFreq returns the frequency of a word given an ID. If the word isn't in the corpus it returns 0.
IDFreq(id int) int
// TotalFreq returns the total number of words ever seen by the corpus. This number includes the count of repeat words.
TotalFreq() int
// MaxWordLength returns the length of the longest known word in the corpus
MaxWordLength() int
// WordProb returns the probability of a word appearing in the corpus
WordProb(word string) (float64, bool)
// IO stuff
gob.GobEncoder
gob.GobDecoder
}
// WordEmbeddings is any type that is both a corpus and can return word vectors
type WordEmbeddings interface {
Corpus
// WordVector returns a vector of embeddings given the word
WordVector(word string) (vec tensor.Tensor, err error)
// Vector returns a vector of embeddings given the word ID
Vector(id int) (vec tensor.Tensor, err error)
// Embedding returns the matrix
Embedding() tensor.Tensor
}