-
Notifications
You must be signed in to change notification settings - Fork 23
/
tanh.go
77 lines (73 loc) · 1.46 KB
/
tanh.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
package math32
// The original C code, the long comment, and the constants
// below were from http://netlib.sandia.gov/cephes/cmath/tanh.c,
// available from http://www.netlib.org/cephes/single.tgz.
// The go code is a simplified version of the original C.
// tanhf.c
//
// Hyperbolic tangent
//
//
//
// SYNOPSIS:
//
// float x, y, tanhf();
//
// y = tanhf( x );
//
//
//
// DESCRIPTION:
//
// Returns hyperbolic tangent of argument in the range MINLOG to
// MAXLOG.
//
// A polynomial approximation is used for |x| < 0.625.
// Otherwise,
//
// tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
//
//
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// IEEE -2,2 100000 1.3e-7 2.6e-8
//
//
/*
Cephes Math Library Release 2.2: June, 1992
Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* Single precision hyperbolic tangent
* test interval: [-0.625, +0.625]
* trials: 10000
* peak relative error: 7.2e-8
* rms relative error: 2.6e-8
*/
func Tanh(x float32) float32 {
const MAXLOG = 88.02969187150841
z := Abs(x)
switch {
case z > 0.5*MAXLOG:
if x < 0 {
return -1
}
return 1
case z >= 0.625:
s := Exp(z + z)
z = 1 - 2/(s+1)
if x < 0 {
z = -z
}
default:
if x == 0 {
return x
}
s := x * x
z = ((((-5.70498872745E-3*s+2.06390887954E-2)*s-5.37397155531E-2)*s+1.33314422036E-1)*s-3.33332819422E-1)*s*x + x
}
return z
}