diff --git a/report_thesis/src/sections/experiments/stacking_ensemble.tex b/report_thesis/src/sections/experiments/stacking_ensemble.tex index f43f173b..5aa618ac 100644 --- a/report_thesis/src/sections/experiments/stacking_ensemble.tex +++ b/report_thesis/src/sections/experiments/stacking_ensemble.tex @@ -84,7 +84,7 @@ \subsubsection{Results}\label{subsec:stacking_ensemble_results} \begin{table} \centering -\caption{Stacking ensemble results using the \gls{enet} model as the meta-learner with default hyperparameters.} +\caption{Stacking ensemble results using the \gls{enet} model as the meta-learner with $\alpha = 1$.} \begin{tabular}{lcccc} \toprule Oxide & \gls{rmsep} & STDDEV & \gls{rmsecv} & Std. Dev. CV \\ @@ -185,14 +185,14 @@ \subsubsection{Results}\label{subsec:stacking_ensemble_results} \toprule Oxide & \gls{moc} (replica) & \gls{enet} ($\alpha = 1$) & \gls{enet} ($\alpha = 0.1$) & \gls{svr} \\ \midrule -\ce{SiO2} & 5.61 & 3.588 & 3.598 & \textbf{3.473} \\ -\ce{TiO2} & 0.61 & 0.571 & \textbf{0.319} & 0.340 \\ -\ce{Al2O3} & 2.47 & \textbf{1.656} & 1.658 & 1.729 \\ -\ce{FeO_T} & 1.82 & 1.794 & 1.841 & \textbf{1.693} \\ -\ce{MgO} & 1.56 & \textbf{0.711} & 0.768 & 0.819 \\ -\ce{CaO} & 2.09 & \textbf{1.636} & 1.647 & 1.594 \\ -\ce{Na2O} & 1.33 & 0.470 & 0.442 & \textbf{0.369} \\ -\ce{K2O} & 1.91 & \textbf{0.476} & 0.494 & 0.511 \\ +\ce{SiO2} & 5.61 & 3.59 & 3.60 & \textbf{3.47} \\ +\ce{TiO2} & 0.61 & 0.57 & \textbf{0.32} & 0.34 \\ +\ce{Al2O3} & 2.47 & \textbf{1.66} & 1.66 & 1.73 \\ +\ce{FeO_T} & 1.82 & 1.79 & 1.84 & \textbf{1.69} \\ +\ce{MgO} & 1.56 & \textbf{0.71} & 0.77 & 0.82 \\ +\ce{CaO} & 2.09 & \textbf{1.64} & 1.65 & 1.59 \\ +\ce{Na2O} & 1.33 & 0.47 & 0.44 & \textbf{0.37} \\ +\ce{K2O} & 1.91 & \textbf{0.48} & 0.49 & 0.51 \\ \bottomrule \end{tabular} } @@ -201,15 +201,13 @@ \subsubsection{Results}\label{subsec:stacking_ensemble_results} Table~\ref{tab:stacking_ensemble_vs_moc} compares the \gls{rmsep} values of different oxides for the \gls{moc} (replica) model with three stacking ensemble models: \gls{enet} with $\alpha = 1$, \gls{enet} with $\alpha = 0.1$, and \gls{svr}. -Overall, the stacking ensemble models tend to produce lower \gls{rmsep} values compared to the \gls{moc} (replica) model. Notably, \ce{SiO2}, \ce{TiO2}, \ce{Na2O}, and \ce{K2O} show significant improvements across all stacking ensemble models. For instance, the \gls{rmsep} for \ce{SiO2} is reduced from 5.61 (\gls{moc} (replica)) to around 3.588-3.598 (\gls{enet} with $\alpha = 1$) and further to 3.473 (\gls{svr}). Similarly, \ce{TiO2} shows a reduction from 0.61 (\gls{moc} (replica)) to 0.319-0.340 (\gls{enet} with $\alpha = 1$). - -The improvements are consistent across most oxides, with \gls{enet} and \gls{svr} models both outperforming the \gls{moc} (replica) model. This suggests that the ensemble approach, particularly with these meta-learners, enhances prediction accuracy for the oxides tested. - - - - - +Overall, the stacking ensemble models tend to produce lower \gls{rmsep} values compared to the \gls{moc} (replica) model. +Notably, \ce{SiO2}, \ce{TiO2}, \ce{Na2O}, and \ce{K2O} show large improvements across all stacking ensemble models. +For instance, the \gls{rmsep} for \ce{SiO2} is reduced from 5.61 (\gls{moc} (replica)) to around 3.59 (\gls{enet} with $\alpha = 1$) and further to 3.47 (\gls{svr}). +Similarly, \ce{TiO2} shows a reduction from 0.61 (\gls{moc} (replica)) to 0.32 (\gls{enet} with $\alpha = 0.1$). +The improvements are consistent across most oxides, with \gls{enet} and \gls{svr} models both outperforming the \gls{moc} (replica) model. +This shows that the ensemble approach, particularly with these meta-learners, enhances prediction accuracy for the oxides we tested. \begin{figure*} \centering