-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2_co_inc_rf.R
176 lines (133 loc) · 7.34 KB
/
2_co_inc_rf.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#-----------------------------------
# Co-occurence analysis
# Objective 1a
# Calculate cumulative incidence
# (ever stunted and wasted) at
# 3, 6, 12, 18, and 24 mo of age
# Cumulative incidence pooled using random effects
# Wasting and stunting must occur simultaneously
#-----------------------------------
rm(list=ls())
library(dplyr)
library(ggplot2)
library(tidyr)
library(metafor)
theme_set(theme_bw())
# load base functions
source("U:/Scripts/Stunting/1-outcomes/0_st_basefunctions.R")
load("U:/Data/Co-occurrence/co-occurrence_data.RData")
#Subset analysis to monthly studies
d <- d %>% filter(measurefreq!="yearly")
# define age windows
d = d %>%
mutate(agecat=
ifelse(agedays>0 & agedays<=6*30.4167,"0-6 months",
ifelse(agedays>6*30.4167 & agedays<=24*30.4167,"6-24 months",NA))) %>%
mutate(agecat=factor(agecat,levels=c("0-6 months","6-24 months")))
#--------------------------------------------------------------
# identify children ever stunted + wasted at the same time -
# Within specefic age ranges
#--------------------------------------------------------------
#calculate any stunting from 0-6
co_ci_0_6 = d %>% ungroup() %>%
arrange(studyid,country,subjid, agedays) %>%
filter(agecat=="0-6 months") %>%
group_by(studyid,country,subjid) %>%
mutate( minhaz=min(haz), anystunt=ifelse(minhaz< -2,1,0),
minwhz=min(whz), anywast=ifelse(minwhz< -2,1,0),
co_occurence = as.numeric(whz < -2 & haz < -2), ever_co=as.numeric(sum(co_occurence)>0),
anystunt_wast = as.numeric(anystunt==1 & anywast==1),
anystunt_wast_noco = as.numeric(anystunt_wast==1 & ever_co==0),
stunt = as.numeric(haz < -2),
wast = as.numeric(whz < -2),
co = as.numeric(whz < -2 & haz < -2),
Nobs=n()) %>%
#Mark incidence onset of wasting and stunting
group_by(studyid,country,subjid, stunt) %>%
mutate(stuntinc = ifelse(stunt==1 & agedays==first(agedays),1,0)) %>%
group_by(studyid,country,subjid, wast) %>%
mutate(wastinc = ifelse(wast==1 & agedays==first(agedays),1,0)) %>%
group_by(studyid,country,subjid, co) %>%
mutate(co_inc = ifelse(co==1 & agedays==first(agedays),1,0)) %>%
#Mark if wasting or stunting occurence happened first
group_by(studyid,country,subjid, stuntinc) %>%
mutate(minage_stunt_onset=min(agedays)) %>%
group_by(studyid,country,subjid, wastinc) %>%
mutate(minage_wast_onset=min(agedays)) %>%
group_by(studyid,country,subjid) %>%
mutate(minage_stunt_onset=ifelse(stuntinc==1, minage_stunt_onset, 99999),
minage_wast_onset=ifelse(wastinc==1, minage_wast_onset, 99999),
minage_stunt_onset=min(minage_stunt_onset, na.rm=T),
minage_wast_onset=min(minage_wast_onset, na.rm=T),
which_first=ifelse(minage_wast_onset==99999 & minage_stunt_onset==99999,"",
ifelse(minage_wast_onset==minage_stunt_onset, "Co-occurence",
ifelse(minage_wast_onset<minage_stunt_onset,"Wasting","Stunting"))),
which_first=ifelse(anystunt_wast==1,which_first,""),
wastfirst=as.numeric(which_first=="Wasting" & anystunt_wast_noco==1),
stuntfirst=as.numeric(which_first=="Stunting" & anystunt_wast_noco==1)
)%>%
slice(1) %>%
mutate(N=n()) %>%
subset(., select= -c(agedays, haz, whz, measurefreq, measid, co_occurence, stuntinc, wastinc, minage_stunt_onset, minage_wast_onset)) %>%
ungroup() %>% as.data.frame()
head(as.data.frame(co_ci_0_6))
table(co_ci_0_6$which_first)
table(co_ci_0_6$anystunt_wast)
table(co_ci_0_6$ever_co)
#calculate any co-occurence from 6-24 months
co_ci_6_24 <- d %>% ungroup() %>%
arrange(studyid,country,subjid, agedays) %>%
group_by(studyid,country,subjid) %>%
mutate(laghaz=lag(haz), lagwhz=lag(whz)) %>%
filter(agecat!="0-6 months") %>%
#mark if children started stunted and/or wasted. They need to recover to be included in the at-risk pool
mutate(start_stunt= as.numeric(first(laghaz) < -2), cumsum_notstunted=cumsum(as.numeric(haz >= -2 & laghaz >= -2)), anystuntrecovery=max(cumsum_notstunted)>0) %>%
mutate(start_wast= as.numeric(first(lagwhz) < -2), cumsum_notwasted=cumsum(as.numeric(whz >= -2 & lagwhz >= -2)), anywastrecovery=max(cumsum_notwasted)>0) %>%
#drop children never at risk (start stunted and never recovered or started wasted and never recovered) and drop obs prior to recovery
filter((anystuntrecovery & cumsum_notstunted!=0 & start_stunt==1 & anywastrecovery & cumsum_notwasted!=0 & start_wast==1) |
(anystuntrecovery & cumsum_notstunted!=0 & start_stunt==1 & start_wast==0) |
(anywastrecovery & cumsum_notwasted!=0 & start_wast==1 & start_stunt==0) |
(start_stunt==0 & start_wast==0)) %>%
subset(., select = -c(start_stunt, cumsum_notstunted, anystuntrecovery, start_wast, cumsum_notwasted, anywastrecovery)) %>%
mutate(minhaz=min(haz), anystunt=ifelse(minhaz< -2,1,0),
minwhz=min(whz), anywast=ifelse(minwhz< -2,1,0),
co_occurence = as.numeric(whz < -2 & haz < -2), ever_co=as.numeric(sum(co_occurence)>0),
anystunt_wast = as.numeric(anystunt==1 & anywast==1),
anystunt_wast_noco = as.numeric(anystunt_wast==1 & ever_co==0),
stunt = as.numeric(haz < -2),
wast = as.numeric(whz < -2),
co = as.numeric(whz < -2 & haz < -2),
Nobs=n()) %>%
#Mark incidence onset of wasting and stunting
group_by(studyid,country,subjid, stunt) %>%
mutate(stuntinc = ifelse(stunt==1 & agedays==first(agedays),1,0)) %>%
group_by(studyid,country,subjid, wast) %>%
mutate(wastinc = ifelse(wast==1 & agedays==first(agedays),1,0)) %>%
group_by(studyid,country,subjid, co) %>%
mutate(co_inc = ifelse(co==1 & agedays==first(agedays),1,0)) %>%
#Mark if wasting or stunting occurence happened first
group_by(studyid,country,subjid, stuntinc) %>%
mutate(minage_stunt_onset=min(agedays)) %>%
group_by(studyid,country,subjid, wastinc) %>%
mutate(minage_wast_onset=min(agedays)) %>%
group_by(studyid,country,subjid) %>%
mutate(minage_stunt_onset=ifelse(stuntinc==1, minage_stunt_onset, 99999),
minage_wast_onset=ifelse(wastinc==1, minage_wast_onset, 99999),
minage_stunt_onset=min(minage_stunt_onset, na.rm=T),
minage_wast_onset=min(minage_wast_onset, na.rm=T),
which_first=ifelse(minage_wast_onset==99999 & minage_stunt_onset==99999,"",
ifelse(minage_wast_onset==minage_stunt_onset, "Co-occurence",
ifelse(minage_wast_onset<minage_stunt_onset,"Wasting","Stunting"))),
which_first=ifelse(anystunt_wast==1,which_first,""),
wastfirst=as.numeric(which_first=="Wasting" & anystunt_wast_noco==1),
stuntfirst=as.numeric(which_first=="Stunting" & anystunt_wast_noco==1)
) %>%
slice(1) %>%
mutate(N=n()) %>%
subset(., select= -c(agedays, haz, whz, laghaz, lagwhz, measurefreq, measid, co_occurence, stuntinc, wastinc, minage_stunt_onset, minage_wast_onset)) %>%
ungroup() %>% as.data.frame()
#Combine age categories
co_ci <- rbind(co_ci_0_6, co_ci_6_24)
co_ci %>% group_by(studyid, country, agecat) %>% summarize(n(), sum(co_inc), mean(co_inc))
co_ci %>% group_by(agecat) %>% summarize(n(), sum(anystunt_wast), mean(anystunt_wast))
save(co_ci, file="U:/ucb-superlearner/Co-occurrence/co_CI_rf_outcomes.RData")