-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
90 lines (73 loc) · 2.73 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from lib import github
from fastai.tabular.all import *
from flask import Flask, request, jsonify, abort, render_template
from werkzeug.exceptions import HTTPException
import os
from dotenv import load_dotenv
load_dotenv()
MODEL_PATH = './model/model.pkl'
VIEWER_LOGIN = os.environ.get("VIEWER_LOGIN")
if VIEWER_LOGIN is None:
print("VIEWER_LOGIN not found")
exit(0)
GITHUB_API_TOKEN = os.environ.get("GITHUB_API_TOKEN")
if GITHUB_API_TOKEN is None:
print("GITHUB_API_TOKEN not found")
exit(0)
# TODO Share with notebook
def _preprocess(df):
# Fill missing values with zeroes
df = df.fillna(value=0)
# Clip outliers in scoring inputs to provide a better range to the regression
df['viewer_events_count'].clip(upper=3, inplace=True)
df['viewer_comments_count'].clip(upper=3, inplace=True)
df['viewer_comments_body_count'].clip(upper=1000, inplace=True)
# Inconsistencies between githubarchive and Github API, cap to avoid noise
df['viewer_repo_issues_opened_count'].clip(upper=5, inplace=True)
df['viewer_repo_pull_requests_opened_count'].clip(upper=5, inplace=True)
df['creator_repo_issues_opened_count'].clip(upper=5, inplace=True)
df['creator_repo_pull_requests_opened_count'].clip(upper=5, inplace=True)
return df
app = Flask(__name__, static_url_path='/static')
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
data = request.get_json()
# Retrieve params from Github
# Let Flask handle error handling on params
try:
params = github.fetch(
url=data['url'],
viewer_login=VIEWER_LOGIN,
github_api_token=GITHUB_API_TOKEN
)
except ValueError:
abort(400, description='Not a valid URL')
except:
abort(500, description='Could not retrieve data from Github')
# Create DataFrame
test_df = pd.DataFrame.from_dict([params])
# Reapply preprocessing
test_df = _preprocess(test_df)
# Scores were normalised to a 0-1 range,
# so predictions in this range express level of interest
learn = load_learner(MODEL_PATH)
row, pred, _ = learn.predict(test_df.iloc[0])
return jsonify({'pred': pred.item()})
@app.errorhandler(HTTPException)
def handle_exception(e):
"""Return JSON instead of HTML for HTTP errors."""
# start with the correct headers and status code from the error
response = e.get_response()
# replace the body with JSON
response.data = json.dumps({
"code": e.code,
"name": e.name,
"description": e.description,
})
response.content_type = "application/json"
return response
if __name__ == '__main__':
app.run(debug=False, port=os.getenv('PORT', 5000))